A equationes Math. 58 (1999) 214–222 0001-9054/99/030214-91.50+0.20/0 © Birkhäuser Verlag, Basel, 1999

Aequationes Mathematicae

Monomial selections of set-valued maps

Roman Badora, Zsolt Páles* and László Székelyhidi*

Dedicated to Professor János Aczél on the occasion of his 75th birthday

Summary. The main result of this paper offers a necessary and sufficient condition for the existence of a multimonomial selection of a set-valued map with weakly compact convex values defined on an amenable semigroup.

Mathematics Subject Classification (1991). Primary 39B72.

Keywords. Multiadditive function, monomial function selection of set-valued map, invariant mean, amenable semigroup, stability of functional equation.

1. Introduction

The original problems concerning stability of linear functional equations lead to different fruitful generalizations of classical concepts. There are different known techniques to prove stability theorems: one of them is based on the use of invariant means introduced by Székelyhidi [18]. It has turned out that this technique can be widely extended via the generalization of scalar-valued invariant means to vector-valued means. The main existence theorems on vector-valued invariant means can be used to derive very general stability theorems concerning different linear functional equations. From this point on the main emphasis is on the existence of vector-valued invariant means instead of stability problems. Existence theorems of this kind can be obtained usually by different functional analytical methods. And at this point a new idea comes into the picture: the so-called selection theorems. The first selection theorems concerned with additive selections: to find necessary and sufficient conditions in order that a set-valued mapping has an additive selection. From additive-type selection theorems one can derive easily quite general

^{*} Research supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. T-016846 and by the Hungarian High Educational Research and Development Found (FKFP) Grant No. 0310/1997.

stability theorems for the Cauchy-equation. Going on this line we arrive at the natural problem of finding monomial and multimonomial selections of set-valued mappings under suitable conditions. In this paper we solve this problem using the vector-valued invariant mean technique. We remark that part of these results have been reported in the Problems and Remarks Session of the 35th ISFE in Graz, 1997 (see [16]).

Here we give a short summary of the structure of this paper. In the first part, we recall a recent result of Badora, Ger and Páles [2] on the existence of left (right) invariant means (defined on a subspace of locally convex vector space valued functions over a semigroup). This generalizes the results of Székelyhidi [18], Gajda [5], and Przesławski–Yost [17] who obtained analogous statements for the semi-reflexive locally convex space valued setting.

In the real valued and first order case, such results have recently been obtained by Páles [15]. For the set-valued setting the necessary and sufficient condition for the existence of additive selections has been established in Badora, Ger and Páles [2]. This result offers necessary and sufficient conditions for the existence of additive selections from a set-valued mapping with nonempty weakly compact convex values. The proof uses the vector-valued invariant mean from the previous section and the ideas of the proof of Theorem 2 in Ger [6]. The result obtained answers a more general problem than that of Páles [15], [16] affirmatively. We note that an affirmative answer was also given independently by Jacek Tabor [19].

Theorem 1. Let (S, \cdot) be a left amenable semigroup and let X be a locally convex linear space. Let $\Phi : S \to 2^X$ be a set-valued map such that, for all $s \in S$, $\Phi(s)$ is nonempty, convex and weakly compact. Then Φ admits an additive selection $A: S \to X$ if and only if there exists a function $f: S \to X$ such that

$$\Delta_t f(s) := f(ts) - f(s) \in \Phi(t), \quad s, t \in S.$$
(1)

In the case when the image space is \mathbb{R} and F is a compact interval valued set-valued map from a commutative semigroup S, then this theorem reduces to a recent result of Páles [15] which was proved by a completely different technique based on the sandwich theorems obtained by Nikodem–Páles–Wąsowicz [14].

In the main result of this paper, we derive a necessary and sufficient condition for the existence of a monomial selection of a weakly compact convex set valued map. This result has direct consequences in the stability theory of functional equations.

2. Invariant means for locally convex space-valued functions

Let X be an arbitrary topological vector space over the field of real numbers. If S is a nonempty set, then denote by $\mathcal{B}(S, X)$ the space of all bounded X-valued

functions defined on S. For a set $Y \subseteq X$, $\operatorname{co}(Y)$ denotes the convex hull of Y and $\overline{\operatorname{co}}(Y)$ the closed convex hull of Y.

Definition 1. Let *L* be a linear subspace of $\mathcal{B}(S, X)$. A mapping $M : L \to X$ is called a *mean on L* if it satisfies the following properties: (M1) *M* is *linear* on *L*; (M2) for all $f \in L$,

 $M(f) \in \overline{\operatorname{co}} f(S).$

This latter property will be called mean value property.

Now assume that S admits a semigroup structure, that is, (S, \cdot) is a (not necessarily commutative) semigroup. The elements of S induce the notion of *left translation* for functions $f: S \to X$ in the following way. If $t \in S$, then denote

$$\tau_t f(s) := f(ts) \quad (s \in S).$$

The function $\tau_t f$ so defined is called *left translate of f*.

Definition 2. The semigroup S is called *left amenable* if there exists a mean M on $\mathcal{B}(S, \mathbb{R})$ which is *invariant with respect to the left translations*, i.e., if it satisfies

$$M(\tau_t f) = M(f)$$

for all $f \in \mathcal{B}(S, \mathbb{R})$ and $t \in S$.

The notions of *right invariant mean* and *right amenability* can analogously be defined. If a both left and right invariant mean exists, then S is called *amenable*.

It is well known that any commutative semigroup is amenable (cf. e.g. Hewitt-Ross [8, Chapter 4, Theorem 17.5] and Day [3]).

The main existence result on invariant means is contained in the following theorem (see Badora–Ger–Páles [2, Theorem 4] and also Tabor [19]). If X is a locally convex space, then denote by WC(X) the family of nonempty weakly compact and convex subsets of X and by WC(S, X) the space of all functions $f: S \to X$ such that $\overline{\operatorname{co}} f(S)$ is weakly compact.

Theorem 2. Let (S, \cdot) be a left amenable semigroup and let X be a locally convex linear space. Then the subspace $\mathcal{WC}(S, X)$ admits a left invariant mean.

It is not difficult to see that $\mathcal{WC}(S, X)$ is a vector space, moreover it is a subspace of all bounded X-valued functions on S. In many cases (e.g., when X with the weak topology is a quasi-complete locally convex space), the weak relative compactness of f(S) yields the weak relative compactness of co f(S) (cf. Holmes [9, Theorem 11B, p. 61]). If X is a semi-reflexive locally convex space, then bounded

sets are always weakly relatively compact (see Yosida [20, Chapter V, Theorem 3.1, p. 140]). Hence, if f(S) is bounded then $\overline{\operatorname{co}} f(S)$ is weakly compact. Therefore, in this case $\mathcal{WC}(S, X)$ is identical with the space of bounded functions, that is, with $\mathcal{B}(S, X)$.

The above theorem is a direct generalization of the following result of Székelyhidi [18] and Gajda [5], cf. also Przesławski–Yost [17, Proposition 1. 3.]

Corollary 1. Let (S, \cdot) be a left amenable semigroup and let X be a semi-reflexive locally convex linear space. Then the space $\mathcal{B}(S, X)$ of all bounded X-valued functions admits a left invariant mean.

3. Selection theorems

In this section we formulate and prove the main results of the paper. It will be required to introduce the following notation.

If (S, \cdot) is a semigroup and X is a vector space. For $t \in S$, we define the difference operator Δ_t by $\Delta_t := \tau_t - I$. Then, for any function $f : S \to X$, we have

$$\Delta_t f(s) := \tau_t f(s) - f(s) = f(ts) - f(s).$$

For n variable functions, we define the i-th partial translation and difference operators τ and Δ by (i)

$$\tau_t F(s_1, \dots, s_n) := F(s_1, \dots, ts_i, \dots, s_n),$$

$$\sum_{\substack{(i) \\ (i)}} F(s_1, \dots, s_n) := F(s_1, \dots, ts_i, \dots, s_n) - F(s_1, \dots, s_i, \dots, s_n),$$

where $F: S^n \to X$ is an arbitrary function.

Theorem 3. Let (S, \cdot) be a commutative semigroup and X be a locally convex space. Let $\Phi : S^n \to WC(X)$ and assume that there exists a function $f : S \to X$ such that

$$\frac{1}{k_1!\cdots k_n!}\Delta_{t_1}^{k_1}\cdots\Delta_{t_n}^{k_n}f(s)\in\Phi(t_1,\ldots,t_n),\quad s,t_1,\ldots,t_n\in S.$$
(2)

Then there exists a function $F: S^n \to X$ such that F is a selection of Φ , i.e.,

$$F(t_1, \dots, t_n) \in \Phi(t_1, \dots, t_n), \quad t_1, \dots, t_n \in S$$
(3)

and, for all i = 1, ..., n, F satisfies the functional equation

$$\frac{1}{k_i!} \Delta_u^{k_i} F(t_1, \dots, t_n) = F(t_1, \dots, u, \dots, t_n), \quad u, t_1, \dots, t_n \in S.$$
(4)

On the other hand, for all fixed t_1, \ldots, t_n , the function

$$s\mapsto \varphi_{t_1,\dots,t_n}(s):=\frac{1}{k_1!\cdots k_n!}\Delta_{t_1}^{k_1}\cdots \Delta_{t_n}^{k_n}f(s),\quad s\in S$$

belongs to $\mathcal{WC}(S, X)$, because, by (2), the range of this function is contained in $\Phi(t_1, \ldots, t_n)$ and this latter set is convex and weakly compact, and hence $\overline{\operatorname{co}} \varphi_{t_1,\ldots,t_n}(S)$ is also weakly compact.

Thus, we may apply M to φ_{t_1,\ldots,t_n} . Define

$$F(t_1,\ldots,t_n) := M_s[\varphi_{t_1,\ldots,t_n}(s)] := M[\varphi_{t_1,\ldots,t_n}].$$

By the mean value property of M, and by (2) again, we have at once that (3) is valid.

In the rest of the proof, we show that F satisfies the functional equation (4) as well.

Let $i \in \{1, ..., n\}$ and $u, t_1, ..., t_n \in S$ be fixed. We start with computing the left hand side of (4).

$$\begin{split} k_{1}!\cdots k_{n}! & (\lambda_{j}^{k_{i}}F(t_{1},\ldots,t_{n})) \\ &= k_{1}!\cdots k_{n}! \sum_{j=0}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j}F(t_{1},\ldots,u^{j}t_{i},\ldots,t_{n}) \\ &= \sum_{j=0}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j} M_{s} \left[\left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}}\right) \cdot \Delta_{u^{j}t_{i}}^{k_{i}}f(s) \right] \\ &= M_{s} \left[\left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}}\right) \cdot \left(\sum_{j=0}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j} \Delta_{u^{j}t_{i}}^{k_{i}}\right) f(s) \right] \\ &= M_{s} \left[\left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}}\right) \cdot \sum_{j=0}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j} \sum_{\mu=0}^{k_{i}} \binom{k_{i}}{\mu} (-1)^{k_{i}-\mu} f((u^{j}t_{i})^{\mu}s) \right] \\ &= M_{s} \left[\left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}}\right) \cdot \sum_{\mu=0}^{k_{i}} \binom{k_{i}}{\mu} (-1)^{k_{i}-\mu} \sum_{j=0}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j} f(u^{j\mu}t_{i}^{\mu}s) \right] \\ &= M_{s} \left[\left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}}\right) \cdot \sum_{\mu=1}^{k_{i}} \binom{k_{i}}{\mu} (-1)^{k_{i}-\mu} \sum_{j=0}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j} f(u^{j\mu}t_{i}^{\mu}s) \right] \end{split}$$

$$= M_s \left[\left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}} \right) \cdot \sum_{\mu=1}^{k_i} {k_i \choose \mu} (-1)^{k_i - \mu} \Delta_{u^{\mu}}^{k_i} f(t_i^{\mu} s) \right]$$

$$= M_s \left[\sum_{\mu=1}^{k_i} {k_i \choose \mu} (-1)^{k_i - \mu} \left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}} \right) \cdot \Delta_{u^{\mu}}^{k_i} f(t_i^{\mu} s) \right]$$

$$= k_1! \cdots k_n! M_s \left[\sum_{\mu=1}^{k_i} {k_i \choose \mu} (-1)^{k_i - \mu} \varphi_{t_1, \dots, u^{\mu}, \dots, t_n} (t_i^{\mu} s) \right]$$

$$= k_1! \cdots k_n! M_s \left[\sum_{\mu=1}^{k_i} {k_i \choose \mu} (-1)^{k_i - \mu} \varphi_{t_1, \dots, u^{\mu}, \dots, t_n} (s) \right].$$

Here, the last equality follows from the translation invariance of the mean M. Thus, we get equality in the above chain of equations if we omit t_i everywhere. Hence

$$k_1! \cdots k_n! \Delta_u^{k_i} F(t_1, \dots, t_n) = \sum_{j=0}^{k_i} \binom{k_i}{j} (-1)^{k_i - j} M_s \left[\left(\prod_{\nu \neq i} \Delta_{t_\nu}^{k_\nu} \right) \cdot \Delta_{u^j}^{k_i} f(s) \right]$$
$$= \sum_{j=1}^{k_i} \binom{k_i}{j} (-1)^{k_i - j} M_s \left[\left(\prod_{\nu \neq i} \Delta_{t_\nu}^{k_\nu} \right) \cdot \Delta_{u^j}^{k_i} f(s) \right].$$

Using the identity

$$\Delta_{u^j}^{k_i} = (\tau_{u^j} - I)^{k_i} = (\tau_u^j - I)^{k_i} = (\tau_u - I)^{k_i} (\tau_u^{j-1} + \dots + I)^{k_i} = \Delta_u^{k_i} (\tau_u^{j-1} + \dots + I)^{k_i},$$

we get

$$k_{1}!\cdots k_{n}! \underbrace{\Delta_{u}^{k_{i}} F(t_{1},\ldots,t_{n})}_{(i)} = \sum_{j=1}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j} M_{s} \left[\left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}} \right) \cdot \Delta_{u^{j}}^{k_{i}} f(s) \right]$$
$$= \sum_{j=1}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j} M_{s} \left[(\tau_{u}^{j-1} + \cdots + I)^{k_{i}} \left(\prod_{\nu \neq i} \Delta_{t_{\nu}}^{k_{\nu}} \right) \cdot \Delta_{u}^{k_{i}} f(s) \right]$$
$$= k_{1}! \cdots k_{n}! \sum_{j=1}^{k_{i}} \binom{k_{i}}{j} (-1)^{k_{i}-j} M_{s} \left[(\tau_{u}^{j-1} + \cdots + I)^{k_{i}} \varphi_{t_{1},\ldots,u,\ldots,t_{n}}(s) \right]$$

$$= k_{1}! \cdots k_{n}! \sum_{j=1}^{k_{i}} {\binom{k_{i}}{j}} (-1)^{k_{i}-j} M_{s} \left[j^{k_{i}} \varphi_{t_{1},\dots,u,\dots,t_{n}}(s) \right]$$
$$= k_{1}! \cdots k_{n}! \left(\sum_{j=1}^{k_{i}} {\binom{k_{i}}{j}} (-1)^{k_{i}-j} j^{k_{i}} \right) F(t_{1},\dots,u,\dots,t_{n})$$

In order to complete the proof of the theorem, it suffices to show that

$$\sum_{j=1}^{k_i} \binom{k_i}{j} (-1)^{k_i - j} j^{k_i} = k_i!.$$

Observe that the k_i -th difference operator applied to the power function $x \to x^{k_i}$ results the constant function k_i !. One can observe that the left hand side of the above relation can be written as $\Delta_1^{k_i} x^k|_{x=0}$. Hence, the equality follows.

In the case n = 1, we immediately obtain the following corollary.

Corollary 2. Let (S, \cdot) be a commutative semigroup and X be a locally convex space. Let $\Phi : S \to WC(X)$ and assume that there exists a function $f : S \to X$ such that

$$\frac{1}{k!}\Delta_t^k f(s) \in \Phi(t), \quad s, t \in S.$$
(5)

Then there exists a function $F: S \to X$ such that F is a selection of Φ and F satisfies the functional equation

$$\frac{1}{k!}\Delta_u^k F(t) = F(u), \quad u, t \in S.$$
(6)

However, in the case $k_1 = \cdots = k_n$, we can prove a stronger result than that of following from Theorem 3 directly, because the commutativity need not be assumed here.

Theorem 4. Let (S, \cdot) be a left amenable semigroup and X be a locally convex space. Let $\Phi : S^n \to WC(X)$ and assume that there exists a function $f : S \to X$ such that

$$\Delta_{t_1} \cdots \Delta_{t_n} f(s) \in \Phi(t_1, \dots, t_n), \quad s, t_1, \dots, t_n \in S.$$
(7)

Then there exists a function $F: S^n \to X$ such that F is a selection of Φ , and, for all i = 1, ..., n, F satisfies the functional equation

$$\Delta_u F(t_1, \dots, t_n) = F(t_1, \dots, u, \dots, t_n), \quad u, t_1, \dots, t_n \in S$$
(8)

or, in other words, F is n-additive.

220

Proof. By Theorem 2, the space $\mathcal{WC}(S, X)$ admits a left invariant mean. Denote by M such an invariant mean. Arguing similarly as in the proof of Theorem 3, define

$$F(t_1,\ldots,t_n) := M_s[\Delta_{t_1}\cdots\Delta_{t_n}f(s)].$$

By the mean value property of M, and by (7), we have that F is a selection of Φ .

We show that F is additive in the *i*th variable. Let, for $j \neq i, t_j \in S$ and $u, v \in S$. Then we have

$$F(t_1, \dots, uv, \dots, t_n) - F(t_1, \dots, u, \dots, t_n) - F(t_1, \dots, v, \dots, t_n)$$

$$= M_s \Big[\Big(\Delta_{t_1} \cdots \Delta_{uv} \cdots \Delta_{t_n} - \Delta_{t_1} \cdots \Delta_{u} \cdots \Delta_{t_n} - \Delta_{t_1} \cdots \Delta_{v} \cdots \Delta_{t_n} \Big) f(s) \Big]$$

$$= M_s \Big[\Delta_{t_1} \cdots (\Delta_{uv} - \Delta_u - \Delta_v) \cdots \Delta_{t_n} f(s) \Big]$$

$$= M_s \Big[\Delta_{t_1} \cdots (\tau_{uv} - I - \tau_u + I - \tau_v + I) \cdots \Delta_{t_n} f(s) \Big]$$

$$= M_s \Big[\Delta_{t_1} \cdots (\tau_u - I) (\tau_v - I) \cdots \Delta_{t_n} f(s) \Big]$$

$$= M_s \Big[\Delta_{t_1} \cdots \Delta_u \Delta_v \cdots \Delta_{t_n} f(s) \Big]$$

$$= M_s \Big[(\tau_{t_1} - I) \Delta_{t_2} \cdots \Delta_u \Delta_v \cdots \Delta_{t_n} f(s) \Big]$$

$$= M_s \Big[\tau_{t_1} (\Delta_{t_2} \cdots \Delta_u \Delta_v \cdots \Delta_{t_n}) f(s) \Big] - M_s \Big[\Delta_{t_2} \cdots \Delta_u \Delta_v \cdots \Delta_{t_n} f(s) \Big] = 0.$$

References

- R. BADORA, On some generalized invariant means and their applications to the stability of the Hyers-Ulam type, Ann. Polon. Math. 58 (1993), 147–159.
- [2] R. BADORA, R. GER AND ZS. PÁLES, Additive selections and the stability of the Cauchy functional equation, preprint.
- [3] M. M. DAY, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
- [4] G.-L. FORTI, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143–190.
- [5] Z. GAJDA, Invariant means and representation of semigroups in the theory of functional equations, Pr. Nauk. Uniw. Śl. Katow. 1273, 1992.
- [6] R. GER, The singular case in the stability behaviour of linear mappings, Grazer Math. Ber., 316 (1992), 59–70.
- [7] R. GER, A survey of recent results on stability of functional equations, Proc. of the 4th International Conference on Functional Equations and Inequalities, Pedagogical University in Cracow, 1994, 5–36.
- [8] E. HEWITT AND K. A. ROSS, *Abstract Harmonic Analysis*, Die Grundlehren der Mathematischen Wissenschaften, Vol. 115, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963.
- [9] R. B. HOLMES, Geometric Functional Analysis and its Applications, Graduate Texts in Mathematics, Vol. 24, Springer-Verlag, New York-Heidelberg-Berlin, 1975.
- [10] D. H. HYERS, On the stability of linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.

- [12] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe, Warszawa-Krakow-Katowice, 1985.
- K. NIKODEM AND ZS. PÁLES, A characterization of midpoint-quasiaffine functions, Publ. Math. Debrecen 52 (1998), 575–595.
- [14] K. NIKODEM, ZS. PÁLES AND SZ. WASOWICZ, Abstract separation theorems of Rodé type and their applications, Ann. Polonici Math., submitted.
- [15] Zs. PÁLES, Generalized stability of the Cauchy functional equation, Aequationes Math., to appear.
- [16] Zs. PÁLES, 11. Problem in Report of Meeting, Aequationes Math. 55 (1998), 301.
- [17] K. PRZESLAWSKI AND D. YOST, Continuity properties of selectors and Michael's theorem, Michigan Math. J. 36 (1989), 113–134.
- [18] L. SZÉKELYHIDI, A note on Hyers's theorem, C. R. Math. Rep. Acad. Sci. Canada VIII (1986), 127–129.
- [19] JACEK TABOR, Monomial selections of set-valued functions, Publ. Math. Debrecen, submitted.
- [20] K. YOSIDA, Functional Analysis, Grundlehren der Mathematischen Wissenschaften, Vol. 123, Springer-Verlag, New York-Berlin-Heidelberg, 1980.

R. Badora Institute of Mathematics Silesian University ul. Bankowa 14 PL-40-007 Katowice Poland e-mail: robadora@gate.math.us.edu.pl

Zs. Páles Institute of Mathematics and Informatics Lajos Kossuth University Pf. 12 H–4010 Debrecen Hungary e-mail: pales@math.klte.hu

L. Székelyhidi Institute of Mathematics and Informatics Lajos Kossuth University Pf. 12 H–4010 Debrecen Hungary e-mail: szekely@math.klte.hu

Manuscript received: June 30, 1998 and, in final form, April 26, 1999.

222