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1. Introduction

The original problems concerning stability of linear functional equations lead to
different fruitful generalizations of classical concepts. There are different known
techniques to prove stability theorems: one of them is based on the use of invariant
means introduced by Székelyhidi [18]. It has turned out that this technique can be
widely extended via the generalization of scalar-valued invariant means to vector-
valued means. The main existence theorems on vector-valued invariant means
can be used to derive very general stability theorems concerning different linear
functional equations. From this point on the main emphasis is on the existence of
vector-valued invariant means instead of stability problems. Existence theorems of
this kind can be obtained usually by different functional analytical methods. And
at this point a new idea comes into the picture: the so-called selection theorems.
The first selection theorems concerned with additive selections: to find necessary
and sufficient conditions in order that a set-valued mapping has an additive se-
lection. From additive-type selection theorems one can derive easily quite general
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stability theorems for the Cauchy-equation. Going on this line we arrive at the
natural problem of finding monomial and multimonomial selections of set-valued
mappings under suitable conditions. In this paper we solve this problem using the
vector-valued invariant mean technique. We remark that part of these results have
been reported in the Problems and Remarks Session of the 35th ISFE in Graz,
1997 (see [16]).

Here we give a short summary of the structure of this paper. In the first
part, we recall a recent result of Badora, Ger and Páles [2] on the existence of
left (right) invariant means (defined on a subspace of locally convex vector space
valued functions over a semigroup). This generalizes the results of Székelyhidi [18],
Gajda [5], and Przes lawski–Yost [17] who obtained analogous statements for the
semi-reflexive locally convex space valued setting.

In the real valued and first order case, such results have recently been obtained
by Páles [15]. For the set-valued setting the necessary and sufficient condition
for the existence of additive selections has been established in Badora, Ger and
Páles [2]. This result offers necessary and sufficient conditions for the existence
of additive selections from a set-valued mapping with nonempty weakly compact
convex values. The proof uses the vector-valued invariant mean from the previous
section and the ideas of the proof of Theorem 2 in Ger [6]. The result obtained
answers a more general problem than that of Páles [15], [16] affirmatively. We
note that an affirmative answer was also given independently by Jacek Tabor [19].

Theorem 1. Let (S, ·) be a left amenable semigroup and let X be a locally convex
linear space. Let Φ : S → 2X be a set-valued map such that, for all s ∈ S, Φ(s)
is nonempty, convex and weakly compact. Then Φ admits an additive selection
A : S → X if and only if there exists a function f : S → X such that

∆tf(s) := f(ts)− f(s) ∈ Φ(t), s, t ∈ S. (1)

In the case when the image space is R and F is a compact interval valued
set-valued map from a commutative semigroup S, then this theorem reduces to a
recent result of Páles [15] which was proved by a completely different technique
based on the sandwich theorems obtained by Nikodem–Páles–Wa̧sowicz [14].

In the main result of this paper, we derive a necessary and sufficient condition
for the existence of a monomial selection of a weakly compact convex set valued
map. This result has direct consequences in the stability theory of functional
equations.

2. Invariant means for locally convex space-valued functions

Let X be an arbitrary topological vector space over the field of real numbers. If
S is a nonempty set, then denote by B(S,X) the space of all bounded X-valued
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functions defined on S. For a set Y ⊆ X , co(Y ) denotes the convex hull of Y and
co(Y ) the closed convex hull of Y .

Definition 1. Let L be a linear subspace of B(S,X). A mapping M : L→ X is
called a mean on L if it satisfies the following properties:
(M1) M is linear on L;
(M2) for all f ∈ L,

M(f) ∈ co f(S).

This latter property will be called mean value property.

Now assume that S admits a semigroup structure, that is, (S, ·) is a (not
necessarily commutative) semigroup. The elements of S induce the notion of left
translation for functions f : S → X in the following way. If t ∈ S, then denote

τtf(s) := f(ts) (s ∈ S).

The function τtf so defined is called left translate of f .

Definition 2. The semigroup S is called left amenable if there exists a mean M
on B(S,R) which is invariant with respect to the left translations, i.e., if it satisfies

M(τtf) = M(f)

for all f ∈ B(S,R) and t ∈ S.
The notions of right invariant mean and right amenability can analogously be

defined. If a both left and right invariant mean exists, then S is called amenable.

It is well known that any commutative semigroup is amenable (cf. e.g. Hewitt–
Ross [8, Chapter 4, Theorem 17.5] and Day [3]).

The main existence result on invariant means is contained in the following
theorem (see Badora–Ger–Páles [2, Theorem 4] and also Tabor [19]). If X is
a locally convex space, then denote by WC(X) the family of nonempty weakly
compact and convex subsets of X and by WC(S,X) the space of all functions
f : S → X such that co f(S) is weakly compact.

Theorem 2. Let (S, ·) be a left amenable semigroup and let X be a locally convex
linear space. Then the subspace WC(S,X) admits a left invariant mean.

It is not difficult to see that WC(S,X) is a vector space, moreover it is a
subspace of all bounded X-valued functions on S. In many cases (e.g., when X
with the weak topology is a quasi-complete locally convex space), the weak relative
compactness of f(S) yields the weak relative compactness of co f(S) (cf. Holmes [9,
Theorem 11B, p. 61]). If X is a semi-reflexive locally convex space, then bounded
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sets are always weakly relatively compact (see Yosida [20, Chapter V, Theorem
3.1, p. 140]). Hence, if f(S) is bounded then co f(S) is weakly compact. Therefore,
in this case WC(S,X) is identical with the space of bounded functions, that is,
with B(S,X).

The above theorem is a direct generalization of the following result of Székely-
hidi [18] and Gajda [5], cf. also Przes lawski–Yost [17, Proposition 1. 3.]

Corollary 1. Let (S, ·) be a left amenable semigroup and let X be a semi-reflexive
locally convex linear space. Then the space B(S,X) of all bounded X-valued func-
tions admits a left invariant mean.

3. Selection theorems

In this section we formulate and prove the main results of the paper. It will be
required to introduce the following notation.

If (S, ·) is a semigroup and X is a vector space. For t ∈ S, we define the
difference operator ∆t by ∆t := τt − I. Then, for any function f : S → X , we
have

∆tf(s) := τtf(s)− f(s) = f(ts)− f(s).

For n variable functions, we define the i-th partial translation and difference op-
erators τ

(i)
and ∆

(i)
by

τ
(i)
tF (s1, . . . , sn) := F (s1, . . . , tsi, . . . , sn),

∆
(i)
tF (s1, . . . , sn) := F (s1, . . . , tsi, . . . , sn)− F (s1, . . . , si, . . . , sn),

where F : Sn → X is an arbitrary function.

Theorem 3. Let (S, ·) be a commutative semigroup and X be a locally convex
space. Let Φ : Sn → WC(X) and assume that there exists a function f : S → X
such that

1
k1! · · ·kn!

∆k1
t1
· · ·∆kn

tn f(s) ∈ Φ(t1, . . . , tn), s, t1, . . . , tn ∈ S. (2)

Then there exists a function F : Sn → X such that F is a selection of Φ, i.e.,

F (t1, . . . , tn) ∈ Φ(t1, . . . , tn), t1, . . . , tn ∈ S (3)

and, for all i = 1, . . . , n, F satisfies the functional equation

1
ki!

∆
(i)

ki
u F (t1, . . . , tn) = F (t1, . . . , u, . . . , tn), u, t1, . . . , tn ∈ S. (4)
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Proof. The semigroup S is commutative and hence it is amenable (cf. Hewitt–
Ross [8, Chapter 4, Theorem 17.5] and Day [3]). Thus, by Theorem 2, the space
WC(S,X) of all X-valued functions whose range has a weakly compact closed
convex hull admits a left invariant mean. Denote by M such an invariant mean.

On the other hand, for all fixed t1, . . . , tn, the function

s 7→ ϕt1,...,tn(s) :=
1

k1! · · · kn!
∆k1
t1
· · ·∆kn

tn f(s), s ∈ S

belongs to WC(S,X), because, by (2), the range of this function is contained
in Φ(t1, . . . , tn) and this latter set is convex and weakly compact, and hence
coϕt1,...,tn(S) is also weakly compact.

Thus, we may apply M to ϕt1,...,tn . Define

F (t1, . . . , tn) := Ms[ϕt1,...,tn(s)] := M [ϕt1,...,tn ].

By the mean value property of M , and by (2) again, we have at once that (3) is
valid.

In the rest of the proof, we show that F satisfies the functional equation (4) as
well.

Let i ∈ {1, . . . , n} and u, t1, . . . , tn ∈ S be fixed. We start with computing the
left hand side of (4).

k1! · · ·kn!∆
(i)

ki
u F (t1, . . . , tn)

= k1! · · ·kn!
ki∑
j=0

(
ki
j

)
(−1)ki−jF (t1, . . . , ujti, . . . , tn)

=
ki∑
j=0

(
ki
j

)
(−1)ki−jMs

∏
ν 6=i

∆kν
tν

 ·∆ki
ujti

f(s)


= Ms

∏
ν 6=i

∆kν
tν

 ·
 ki∑
j=0

(
ki
j

)
(−1)ki−j∆ki

ujti

 f(s)


= Ms

∏
ν 6=i

∆kν
tν

 · ki∑
j=0

(
ki
j

)
(−1)ki−j

ki∑
µ=0

(
ki
µ

)
(−1)ki−µf((ujti)µs)


= Ms

∏
ν 6=i

∆kν
tν

 · ki∑
µ=0

(
ki
µ

)
(−1)ki−µ

ki∑
j=0

(
ki
j

)
(−1)ki−jf(ujµtµi s)


= Ms

∏
ν 6=i

∆kν
tν

 · ki∑
µ=1

(
ki
µ

)
(−1)ki−µ

ki∑
j=0

(
ki
j

)
(−1)ki−jf(ujµtµi s)


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= Ms

∏
ν 6=i

∆kν
tν

 · ki∑
µ=1

(
ki
µ

)
(−1)ki−µ∆ki

uµf(tµi s)


= Ms

 ki∑
µ=1

(
ki
µ

)
(−1)ki−µ

∏
ν 6=i

∆kν
tν

 ·∆ki
uµf(tµi s)


= k1! · · ·kn!Ms

 ki∑
µ=1

(
ki
µ

)
(−1)ki−µϕt1,...,uµ,...,tn(tµi s)


= k1! · · ·kn!Ms

 ki∑
µ=1

(
ki
µ

)
(−1)ki−µϕt1,...,uµ,...,tn(s)

 .
Here, the last equality follows from the translation invariance of the mean M .
Thus, we get equality in the above chain of equations if we omit ti everywhere.
Hence

k1! · · · kn!∆
(i)

ki
u F (t1, . . . , tn) =

ki∑
j=0

(
ki
j

)
(−1)ki−jMs

∏
ν 6=i

∆kν
tν

 ·∆ki
ujf(s)


=

ki∑
j=1

(
ki
j

)
(−1)ki−jMs

∏
ν 6=i

∆kν
tν

 ·∆ki
ujf(s)

 .
Using the identity

∆ki
uj = (τuj − I)ki = (τ ju − I)ki

= (τu − I)ki(τ j−1
u + · · ·+ I)ki = ∆ki

u (τ j−1
u + · · ·+ I)ki ,

we get

k1! · · ·kn!∆
(i)

ki
u F (t1, . . . , tn)

=
ki∑
j=1

(
ki
j

)
(−1)ki−jMs

∏
ν 6=i

∆kν
tν

 ·∆ki
ujf(s)


=

ki∑
j=1

(
ki
j

)
(−1)ki−jMs

(τ j−1
u + · · ·+ I)ki

∏
ν 6=i

∆kν
tν

 ·∆ki
u f(s)


= k1! · · ·kn!

ki∑
j=1

(
ki
j

)
(−1)ki−jMs

[
(τ j−1
u + · · ·+ I)kiϕt1,...,u,...,tn(s)

]
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= k1! · · ·kn!
ki∑
j=1

(
ki
j

)
(−1)ki−jMs

[
jkiϕt1,...,u,...,tn(s)

]

= k1! · · ·kn!

 ki∑
j=1

(
ki
j

)
(−1)ki−jjki

F (t1, . . . , u, . . . , tn).

In order to complete the proof of the theorem, it suffices to show that

ki∑
j=1

(
ki
j

)
(−1)ki−jjki = ki!.

Observe that the ki-th difference operator applied to the power function x→ xki

results the constant function ki!. One can observe that the left hand side of the
above relation can be written as ∆ki

1 x
k|x=0. Hence, the equality follows. �

In the case n = 1, we immediately obtain the following corollary.

Corollary 2. Let (S, ·) be a commutative semigroup and X be a locally convex
space. Let Φ : S → WC(X) and assume that there exists a function f : S → X
such that

1
k!

∆k
t f(s) ∈ Φ(t), s, t ∈ S. (5)

Then there exists a function F : S → X such that F is a selection of Φ and F
satisfies the functional equation

1
k!

∆k
uF (t) = F (u), u, t ∈ S. (6)

However, in the case k1 = · · · = kn, we can prove a stronger result than that
of following from Theorem 3 directly, because the commutativity need not be
assumed here.

Theorem 4. Let (S, ·) be a left amenable semigroup and X be a locally convex
space. Let Φ : Sn → WC(X) and assume that there exists a function f : S → X
such that

∆t1 · · ·∆tnf(s) ∈ Φ(t1, . . . , tn), s, t1, . . . , tn ∈ S. (7)

Then there exists a function F : Sn → X such that F is a selection of Φ, and, for
all i = 1, . . . , n, F satisfies the functional equation

∆
(i)
uF (t1, . . . , tn) = F (t1, . . . , u, . . . , tn), u, t1, . . . , tn ∈ S (8)

or, in other words, F is n-additive.
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Proof. By Theorem 2, the space WC(S,X) admits a left invariant mean. Denote
by M such an invariant mean. Arguing similarly as in the proof of Theorem 3,
define

F (t1, . . . , tn) := Ms[∆t1 · · ·∆tnf(s)].

By the mean value property of M , and by (7), we have that F is a selection of Φ.
We show that F is additive in the ith variable. Let, for j 6= i, tj ∈ S and

u, v ∈ S. Then we have

F (t1, . . . , uv, . . . , tn)− F (t1, . . . , u, . . . , tn)− F (t1, . . . , v, . . . , tn)

= Ms

[(
∆t1 · · ·∆uv · · ·∆tn −∆t1 · · ·∆u · · ·∆tn −∆t1 · · ·∆v · · ·∆tn

)
f(s)

]
= Ms

[
∆t1 · · · (∆uv −∆u −∆v) · · ·∆tnf(s)

]
= Ms

[
∆t1 · · · (τuv − I − τu + I − τv + I) · · ·∆tnf(s)

]
= Ms

[
∆t1 · · · (τu − I)(τv − I) · · ·∆tnf(s)

]
= Ms

[
∆t1 · · ·∆u∆v · · ·∆tnf(s)

]
= Ms

[
(τt1 − I)∆t2 · · ·∆u∆v · · ·∆tnf(s)

]
= Ms

[
τt1(∆t2 · · ·∆u∆v · · ·∆tn)f(s)

]
−Ms

[
∆t2 · · ·∆u∆v · · ·∆tnf(s)

]
= 0.

�

References

[1] R. Badora, On some generalized invariant means and their applications to the stability
of the Hyers–Ulam type, Ann. Polon. Math. 58 (1993), 147–159.

[2] R. Badora, R. Ger and Zs. Páles, Additive selections and the stability of the Cauchy
functional equation, preprint.

[3] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544.
[4] G.-L. Forti, Hyers–Ulam stability of functional equations in several variables, Aequationes

Math. 50 (1995), 143–190.
[5] Z. Gajda, Invariant means and representation of semigroups in the theory of functional

equations, Pr. Nauk. Uniw. Śl. Katow. 1273, 1992.
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Państwowe Wydawnictwo Naukowe, Warszawa–Krakow–Katowice, 1985.
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[14] K. Nikodem, Zs. Páles and Sz. Wa̧sowicz, Abstract separation theorems of Rodé type
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