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Two-sided delay-difference equations and evolution maps

Lúıs Barreira and Claudia Valls

Abstract. We establish the equivalence of hyperbolicity and of two other properties for a
two-sided linear delay-difference equation and its evolution map. These two properties are
the admissibility with respect to various pairs of spaces, and the Ulam–Hyers stability of
the equation, again with respect to various spaces. This gives characterizations of impor-
tant properties of a linear dynamical system in terms of corresponding properties of the
autonomous dynamical system determined by the associated evolution map.
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1. Introduction

The main aim of this work is to show that hyperbolicity and two related
properties are equivalent for a two-sided dynamical system determined by a
linear delay-difference equation and for the dynamical system determined by its
evolution map. The main advantage of considering evolution maps is that they
always determine autonomous dynamical systems. Indeed, it is well known that
it is often much simpler to establish a given property for an autonomous system
than for a general nonautonomous system. The two additional properties can
be described in terms of certain perturbations of the original linear dynamical
system. More precisely, other than hyperbolicity, we consider:

(i) the admissibility with respect to various pairs of admissible spaces, for
the perturbations of the dynamical system;

(ii) the Ulam–Hyers stability of the system, which amounts to show that
there are exact solutions when there are approximate solutions.
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Our results thus give characterizations of several important stability properties
related to a linear dynamical system and its perturbations, in terms of cor-
responding properties for the autonomous dynamical system determined by
the associated evolution map. To a certain extent these results are motivated
by corresponding results for dynamical systems without delay, although we
emphasize that to obtain related results for delay-difference equations requires
several nontrivial changes. In particular, this includes dealing with the local-
ization problem for the projections of an exponential dichotomy onto higher-
dimensional spaces, as well as introducing appropriate admissible spaces that
are adapted to a delay-difference equation.

We briefly recall the importance of the notions considered in the paper. The
introduction of hyperbolicity goes back to seminal work of Perron [23] and has
many consequences, such as the construction of stable and unstable invariant
manifolds, the closing and shadowing lemmas, etc. For details and further
references on the notion of hyperbolicity and its consequences, we refer the
reader to the books [10,12,18,25] and specifically to [9,11] for delay equations.
The notion of admissibility also goes back to Perron, in the same work [23], and
allows one to characterize hyperbolicity via the existence and uniqueness of
solutions of the perturbations of a given linear system, taking the perturbations
and the solutions in certain admissible Banach spaces. We refer the reader to
the books [8,18] for details and many early references. Finally, for the Ulam–
Hyers stability property we refer the reader to the book [14] for details on the
origin of the notion and further references. For many developments one can
see the books [7,15,26] and the references therein. In the context of differential
equations Ulam–Hyers stability seems to have been first considered by Ob�loza
[19] and then by Alsina and Ger [1]. There are also some works for delay
equations, such as [13,20,21,27].

As already noted above, our main aim is to consider each of these three
properties (hyperbolicity, admissibility, and Ulam–Hyers stability) for a delay-
difference equation and show that each of them is equivalent to a corresponding
property of the evolution map associated to the given equation. The evolution
map is defined on a certain space of sequences, and while the original dynam-
ical system may be nonautonomous, this map always defines an autonomous
dynamical system.

Before proceeding, we mention with more detail why the equivalence results
for hyperbolicity and Ulam–Hyers stability between a nonautonomous setting
and the associated autonomous setting given by an evolution map may be of in-
terest. We first note that Ulam–Hyers stability can be described, equivalently,
as a shadowing property (see the books [22,24] for details and references).
We emphasize that shadowing theory was mainly motivated by hyperbolic dy-
namical systems. In particular, results of Anosov [2] and Bowen [6] lead to
the structural stability of hyperbolic sets. These shadowing results also have
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important generalizations to nonuniformly hyperbolic systems (a detailed de-
scription falls out of the scope of our work). In particular, a closing lemma was
first proved by Katok in [16] (see [17] for a shadowing lemma for nonuniformly
hyperbolic systems). These results and their proofs are somewhat technical,
and it is often convenient to use instead an autonomous setting, although at
the expense of considering a higher-dimensional space. In another direction,
while the notion of hyperbolicity for a nonautonomous linear dynamical sys-
tem gives rise to a spectrum such as the Sacker–Sell spectrum, on the other
hand an autonomous linear system defined by a single linear operator leads to
the study of the spectrum of this operator.

So that we can describe rigorously how evolution maps can characterize
the former properties, we first introduce several basic notions. Take r ∈ N and
let Ir = [−r, 0] ∩ Z. Given a Banach space X with norm |·|, the set Y of all
functions ϕ : Ir → X is a Banach space when equipped with the (supremum)
norm

‖ϕ‖ = max{|ϕ(s)| : s ∈ Ir}.

Now let Lm : Y → X be bounded linear operators for m ∈ Z such that

c := sup
m∈Z

‖Lm‖ < +∞ (1)

and consider the delay-difference equation

x(m + 1) = Lmxm for m ∈ Z. (2)

Here the function xm ∈ Y is defined by

xm(s) = x(m + s) for s ∈ Ir,

provided that the domain of x contains Ir + m. In general, equation (2) gives
rise to a nonautonomous dynamical system.

Given a set A ⊂ Z
n for some n ∈ {1, 2}, let �∞(A) be the Banach space of

bounded functions ψ : A → X equipped with the supremum norm ‖·‖∞. We
define a linear operator L : �∞(Ir × Z) → �∞(Z) by

(Lϕ)(k) = Lk−1ϕ(·, k − 1) for k ∈ Z (3)

and we consider the induced equation

u(m + 1, k) = (Lum)(k) for m, k ∈ Z, (4)

where the map um : Ir × Z → X is given by

um(s, k) = u(m + s, k + s) for (s, k) ∈ Ir × Z. (5)

Since the operator L is (3) does not depend on m, equation (4) gives rise to
an autonomous dynamical system.

The solutions of the equations (2) and (4) induce certain linear operators
that in particular can be used to describe the hyperbolicity of the equations.
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Namely, one can define linear operators T (m,n) : Y → Y for m ≥ n by requir-
ing that

T (m,n)xn = xm (6)

for any solution x of equation (2) and any m,n ∈ Z with m ≥ n. Moreover,
one can define a linear operator S : �∞(Ir ×Z) → �∞(Ir ×Z) by requiring that

Sun = un+1

for any solution u of equation (4) and any n ∈ Z. One can show that

(Sϕ)(s, k) = (T (k, k − 1)ϕ(·, k − 1))(s) for (s, k) ∈ Ir × Z

(see Proposition 1). Using the equations and these operators, we show in the
paper that:

(i) equation (2) has an exponential dichotomy if and only if equation (4) has
an exponential dichotomy (see Theorem 2);

(ii) equation (2) satisfies an admissibility property if and only if equation (4)
satisfies an analogous admissibility property (see Theorem 3);

(iii) equation (2) is Ulam–Hyers stable if and only if equation (4) is Ulam–
Hyers stable (see Theorem 5).

The notion of exponential dichotomy is recalled in Sect. 3 while the notions
of admissibility and Ulam–Hyers stability are recalled, respectively, in Sects. 4
and 5. For the convenience of the reader, in the following paragraphs we also
describe briefly the latter property in a particular case.

Given a Banach space E of functions x : Z → X, we say that the pair (E,E)
is admissible for equation (2) if for each y ∈ E there exists a unique x ∈ E
satisfying

x(m + 1) = Lmxm + y(m + 1) form ∈ Z. (7)

Similarly, given a Banach space F of functions u : Z2 → X, we say that the
pair (F, F ) is admissible for equation (4) if for each v ∈ F there exists a unique
u ∈ F satisfying

u(m + 1) = Lum + v(m + 1) form ∈ Z. (8)

We consider in particular the spaces of bounded sequences

E∞ = �∞(Z) and F∞ = �∞(Z2). (9)

Moreover, for each p ∈ [1,+∞) we consider Banach spaces Ep and F p that are
obtained modifying in some appropriate manner the spaces �p(Z) and �p(Z2)
so that they are adapted to delay-difference equations (see Sect. 4 for more
details). Namely, Ep is the set of all functions x : Z → X such that

∑

m∈Z

max
s∈Ir

‖x(m + s)‖p < +∞, (10)
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while F p is the set of all functions u : Z2 → X such that∑

m,k∈Z

max
s∈Ir

‖u(m + s, k + s)‖p < +∞. (11)

We say that equation (2) is uniformly Ulam–Hyers stable with respect
to E∞ if there exists κ > 0 such that for each ε > 0 and x, y ∈ E∞ sat-
isfying

sup
m∈Z

|x(m + 1) − Lmxm − y(m + 1)| < ε

there exists z ∈ E∞ satisfying

z(m + 1) = Lmzm + y(m + 1) for m ∈ Z

such that

sup
m∈Z

|x(m) − z(m)| < κε.

Here |·| denotes the norm on the space X. One can define similarly the notion
of uniform Ulam–Hyers stability for equation (4) with respect to the space F∞.
See Sect. 5 for corresponding notions with respect to the spaces Ep and F p for
each p ∈ [1,+∞).

We observe that is shown in [4] that if supm∈Z
‖Lm‖ < +∞ (see (1)), then

for each p ∈ [1,+∞] equation (2) has an exponential dichotomy if and only if
the pair (Ep, Ep) is admissible. Together with Theorems 2 and 3 this yields
the following result.

Theorem 1. Let Lm : Y → X, for m ∈ Z, be bounded linear operators satisfy-
ing supm∈Z

‖Lm‖ < +∞. Then the following properties are equivalent:
(i) equation (2) has an exponential dichotomy;
(ii) equation (4) has an exponential dichotomy;
(iii) given p ∈ [1,+∞], for each y ∈ Ep there exists a unique x ∈ Ep satisfy-

ing (7);
(iv) given p ∈ [1,+∞], for each v ∈ F p there exists a unique u ∈ F p satisfy-

ing (8).

A simple consequence of our work is that property (iii) holds for some
p ∈ [1,+∞] if and only if it holds for all p ∈ [1,+∞]. A similar observation
applies to property (iv). In addition, we also show that if any of the properties
in Theorem 1 holds, then for each p ∈ [1,+∞] equation (2) is uniformly Ulam–
Hyers stable with respect to Ep, and equation (4) is uniformly Ulam–Hyers
stable with respect to F p (see Theorem 4).

To some extent Theorem 2 is based on a related approach in [5] for one-sided
equations, but there are many differences between the two. In particular, the
two notions of exponential dichotomy are necessarily distinct (more precisely,
unlike in (22) below, the evolution map S need not take the unstable space
onto itself). Theorem 3 and its proof are inspired by related work in [3] for
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equations without delay, but the existence of a delay requires various nontrivial
changes, starting with the choice of appropriate pairs of admissible spaces.

2. Induced equations

In this section we introduce some basic notions from the theory of delay-
difference equations. Moreover, to each nonautonomous delay-difference equa-
tion we associate an autonomous delay-difference equation on a higher-
dimensional space that is crucial for our approach.

2.1. Delay-difference equations

We continue to use the same notations and notions as in the introduction.
Let Lm : Y → X be bounded linear operators for m ∈ Z satisfying (1). We
consider the nonautonomous delay-difference equation in (2).

Since the space Y can be identified with Xr+1, one can think of each
operator Lm as a row of bounded linear operators Ls

m : X → X for s =
−r, . . . , 0 that applies to the column with values xm(s) for s = −r, . . . , 0.
Then equation (2) is equivalent to

x(m + 1) =
0∑

s=−r

Ls
mxm(s) =

0∑

s=−r

Ls
mx(m + s).

Now we consider appropriate initial value problems and their solutions.
Namely, given n ∈ N and ϕ ∈ Y , we denote by x : [n − r,+∞) ∩ Z → X the
unique solution of the problem

x(m + 1) = Lmxm for m ≥ nwith xn = ϕ.

This means that we are given the values x(n + s) = ϕ(s) for s = −r, . . . , 0,
and that the remaining ones, that is, x(m) for m > n, are obtained from
equation (2). As already noted in the introduction, these solutions induce
linear operators T (m,n) : Y → Y for m ≥ n defined by (6).

It follows readily from (2) and (6) that

(T (m + 1,m)ϕ)(0) = Lmϕ for ϕ ∈ Y and m ∈ Z. (12)

Moreover, we have

‖xm+1‖ ≤ max{‖xm‖, |x(m + 1)|} ≤ max{1, c}‖xm‖
and so

‖T (m + 1,m)‖ ≤ max{1, c} for m ∈ Z. (13)
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2.2. Induced equations

In this section we introduce an autonomous delay-difference equation associ-
ated to equation (2), although on a higher-dimensional space. It turns out that
the new dynamical system can be used to characterize completely some prop-
erties of the original (nonautonomous) dynamical system induced by equation
(2). This is the case for example of hyperbolicity, which is considered in Sect. 3.

Given a function u : B → X with domain B ⊂ Z
2 and m ∈ Z:

(i) when B ⊃ Ir × {m}, we define a function um ∈ Y by

um(s) = u(s,m) for s ∈ Ir; (14)

(ii) when B ⊃ {m} × Z, we define a function u(m) : Z → X by

u(m)(k) = u(m, k) for k ∈ Z. (15)

Now let L : �∞(Ir × Z) → �∞(Z) be the linear operator defined by (3) or,
equivalently,

(Lϕ)(k) = Lk−1ϕ
k−1 for k ∈ Z,

using the notation introduced in (14). We consider the autonomous delay-
difference equation

u(m + 1) = Lum for m ∈ Z, (16)

which can also be written in the equivalent form in (4). We call it the induced
equation. Note that

u(m + 1, k) = u(m + 1)(k) = (Lum)(k) = Lk−1u
k−1
m

for m, k ∈ Z, where

uk−1
m (s) = (um)k−1(s) = um(s, k − 1) = u(m + s, k − 1 + s) (17)

for (s, k) ∈ Ir × Z (following (14) and then (5)). The next function um+1 in
(16) is given by

um+1(s, k) =

{
u(m + 1, k) if s = 0,

u(m + 1 + s, s + k) if s < 0

=

{
Lk−1u

k−1
m if s = 0,

um(s + 1, k − 1) if, s < 0.

Given n ∈ Z and ϕ ∈ �∞(Ir × Z), we denote by

u : ([n − r,+∞) ∩ Z) × Z → X

the unique solution of the problem

u(m + 1) = Lum form ≥ nwith un = ϕ. (18)
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Using these solutions, we can introduce the evolution map associated to equa-
tion (16). We recall that this is the linear operator S : �∞(Ir ×Z) → �∞(Ir ×Z)
defined by

Sϕ = un+1 for ϕ ∈ �∞(Ir × Z),

where u is the unique solution of problem (18). It follows readily from the
definitions that

(Sϕ)(0) = Lϕ forϕ ∈ �∞(Ir × Z).

We also define another linear operator R : �∞(Ir × Z) → �∞(Ir × Z) by

(Rϕ)(s, k) = (T (k, k − 1)ϕk−1)(s) for (s, k) ∈ Ir × Z. (19)

Proposition 1. We have S = R on �∞(Ir × Z).

Proof. By (12) we obtain

(T (k, k − 1)ϕk−1)(0) = Lk−1ϕ
k−1 = (Lϕ)(k).

On the other hand, for s < 0 we have

(T (k, k − 1)ϕk−1)(s) = ϕk−1(s + 1)

and writing ϕ = un we obtain

ϕk−1(s + 1) = uk−1
n (s + 1) = un(s + 1, k − 1)

= u(n + s + 1, k + s) = un+1(s, k).

Therefore,

(Rϕ)(s, k) =

{
(Lun)(k) if s = 0,

un+1(s, k) if s < 0

=

{
u(n + 1, k) if s = 0,

un+1(s, k) if s < 0

= un+1(s, k) = (Sϕ)(s, k),

which shows that the operators S and R are equal. �

It follows readily from (1) and (13) that the operators L and S are well
defined and bounded. Moreover, it follows from (19) and Proposition 1 that

(Smϕ)(s, k) = (T (k, k − m)ϕk−m)(s) for m ∈ N, (20)

where Sm denotes the mth power of the operator S (no confusion arises with
the definition of um in (14) since we use capitals only for linear operators).
Incidentally, using the notation in (14) one can rewrite (20) in the form

(Smϕ)k = T (k, k − m)ϕk−m for m ∈ N.
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The constructions and arguments presented in this section are two-sided
versions of corresponding constructions and arguments introduced in [5]. Nev-
ertheless, here the operator S may be invertible along certain subspaces, while
there the corresponding operator is invertible along no subspace. This corre-
sponds to consider the space �∞(Ir × Z) instead of �∞(Ir × N).

3. Characterization of hyperbolicity

In this section we show that equation (2) has an exponential dichotomy if
and only if equation (16) has an exponential dichotomy. We first recall these
notions. Equation (2) is said to have an exponential dichotomy if there exist
λ,D > 0 and projections Pm : Y → Y for m ∈ Z such that for each m,n ∈ Z

with m ≥ n:

(i) PmT (m,n) = T (m,n)Pn;
(ii) letting Qm = Id − Pm, the map

T (m,n)|Qn(Y ) : Qn(Y ) → Qm(Y ) (21)

is onto and invertible;
(iii) ‖T (m,n)Pn‖ ≤ De−λ(m−n) and ‖T (m,n)|−1

Qn(Y )‖ ≤ De−λ(m−n).

Similarly, equation (16) is said to have an exponential dichotomy if there exist
λ,D > 0 and a projection P : �∞(Ir × Z) → �∞(Ir × Z) such that:

(i) PS = SP ;
(ii) letting Q = Id − P , the map

S|Q(�∞(Ir×Z)) : Q(�∞(Ir × Z)) → Q(�∞(Ir × Z)) (22)

is onto and invertible;
(iii) ‖SmP‖ ≤ De−λm and ‖Sm|−1

Q(�∞(Ir×Z))‖ ≤ De−λm for m ≥ 0.

Theorem 2. Let Lm : Y → X, for m ∈ Z, be bounded linear operators satisfy-
ing (1). Then equation (2) has an exponential dichotomy if and only if equation
(16) has an exponential dichotomy.

Proof. We first assume that equation (2) has an exponential dichotomy. We
define a linear operator P : �∞(Ir × Z) → �∞(Ir × Z) by

(Pu)m = Pmum for u ∈ �∞(Ir × Z) and m ∈ Z.

One can easily verify that P is a projection. Moreover,

(SPu)m = T (m,m − 1)(Pu)m−1 = T (m,m − 1)Pm−1u
m−1

= PmT (m,m − 1)um−1 = Pm(Su)m = (PSu)m
(23)

for each m ∈ Z and so SP = PS.
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Now take v ∈ �∞(Ir ×Z) such that SQv = 0, where Q = Id−P . Proceeding
as in (23) we obtain

0 = (SQv)m = T (m,m − 1)(Qv)m−1 = T (m,m − 1)Qm−1v
m−1.

Since the map in (21) with n = m − 1 is one-to-one, we have Qm−1v
m−1 = 0

for all m ∈ Z and so Qv = 0. This shows that the map S|Q(�∞(Ir×Z)) is also
one-to-one. We will show that it is onto after having exponential bounds.

To obtain the exponential bounds, take u ∈ �∞(Ir × Z) and m,n ∈ Z with
m ≥ 0. By (20) we have

(SmPu)n = T (n, n − m)(Pu)n−m = T (n, n − m)Pn−mun−m.

Hence,

‖SmPu‖∞ = sup
n∈Z

‖T (n, n − m)Pn−mun−m‖

≤ De−λm sup
n∈Z

‖un−m‖ = De−λm‖u‖∞

and so ‖SmP‖ ≤ De−λm for m ≥ 0. Similarly, we have

(SmQu)n = T (n, n − m)Qn−mun−m

and so
‖SmQu‖∞ = sup

n∈Z

‖T (n, n − m)Qn−mun−m‖

≥ D−1eλm sup
n∈Z

‖Qn−mun−m‖ = D−1eλm‖Qu‖∞

for m ≥ 0. This readily yields the second exponential bound in the notion of
exponential dichotomy.

Take u ∈ Q(�∞(Ir ×Z)). Since the maps T (m,n)|Qn(Y ) in (21) are onto for
m ≥ n, there exists wn−1 ∈ Qn−1(Y ) such that un = T (n, n−1)wn−1 for each
n ∈ Z. These functions wn−1 determine a function w : Ir × Z → X. Since

‖wn−1‖ = ‖T (n, n − 1)|−1
Qn−1(Y )u

n‖ ≤ De−λ‖un‖,

we obtain ‖w‖∞ ≤ De−λ‖u‖∞ and w ∈ �∞(Ir × Z). Clearly, Sw = u and
so the map in (22) is onto. Summing up, equation (16) has an exponential
dichotomy.

Now we establish the converse statement. Assume that equation (16) has
an exponential dichotomy. Given a bounded sequence α = (αn)n∈Z of real
numbers, for each u ∈ �∞(Ir×Z) we consider the new sequence αu ∈ �∞(Ir×Z)
such that

(αu)n = αnun for n ∈ Z.

We have

(Sm(αPu))n = T (n, n − m)αn−m(Pu)n−m = αn−m(SmPu)n−m
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and so

‖Sm(αPu)‖∞ ≤ ‖α‖∞‖SmPu‖∞ → 0 (24)

when m → ∞. One can easily verify that

P (�∞(Ir × Z)) =
{
v ∈ �∞(Ir × Z) : Smv → 0 when m → ∞}

and so it follows from (24) that αPu ∈ P (�∞(Ir × Z)).
Now observe that αu = αPu + αQu, which gives

P (αu) = P (αPu) + P (αQu) = αPu + P (αQu). (25)

For each m ∈ Z we define a new sequence α(m) by α(m)n = αn+m for each
m ∈ Z. Then

(αSmUmQu)n = αn(SmUmQu)n

= αnT (n, n − m)(UmQu)n−m

= T (n, n − m)α(m)n−m(UmQu)n−m

= T (n, n − m)(α(m)nUmQu)n−m

= (Smα(m)nUmQu)n.

Letting U = S|−1
Q(�∞(Ir×Z)), we obtain

‖P (αQu)‖∞ = ‖P (αSmUmQu)‖∞
= ‖P (Sm(α(m)UmQu))‖∞
= ‖SmP (α(m)UmQu)‖∞,

(26)

because Sm and P commute. Using the exponential bounds in the notion of
exponential dichotomy, it follows from (26) that

‖P (αQu)‖∞ ≤ De−λm‖αmUmQu‖∞ ≤ D2e−2λm‖α‖∞‖u‖∞

for m ≥ 0, which implies that P (αQu) = 0. Hence, it follows from (25) that

P (αu) = αPu foru ∈ �∞(Ir × Z).

Now take α = (αn)n∈Z with αm = 1 and αn = 0 for n �= m. For each
u ∈ �∞(Ir × Z) we have

‖(Pu)m‖ = ‖αm(Pu)m‖ = ‖(αPu)m‖ = ‖αPu‖∞
= ‖P (αu)‖∞ ≤ ‖P‖ · ‖αu‖∞ = ‖P‖ · ‖um‖.

Therefore, if um = 0, then (Pu)m = 0 and so one can define a linear operators
Pm : Y → Y by

Pmϕ = (Pu)m for any u ∈ �∞(Ir × Z)with um = ϕ. (27)

It follows readily from (27) that Pm is onto for each m ∈ Z. Moreover,

P 2
mϕ = Pm(Pu)m = (P 2u)m = (Pu)m
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and so Pm is a projection. On the other hand, by (20) we have

PmT (m,n)un = (PSm−nu)m = (Sm−nPu)m

= T (m,n)(Pu)n = T (m,n)Pnun,

which shows that PmT (m,n) = T (m,n)Pn.
To obtain exponential bounds, take n ∈ Z, ϕ ∈ Y and u ∈ �∞(Ir ×Z) with

un = ϕ and um = 0 for m �= n. Note that (Sm−nPu)k = 0 for m ≥ n and
k �= m. Hence, by (20) we have

‖T (m,n)Pnϕ‖ = ‖(Sm−nPu)m‖ = ‖Sm−nPu‖∞

≤ De−λ(m−n)‖u‖∞ = De−λ(m−n)‖ϕ‖
for m ≥ n. Similarly,

‖T (m,n)Qnϕ‖ = ‖(Sm−nQu)m‖ = ‖Sm−nQu‖∞

≥ D−1eλ(m−n)‖Qu‖∞ = D−1eλ(m−n)‖Qnϕ‖.

Finally, we show that the maps in (21) are onto for m ≥ n. For ψ ∈
Q(�∞(Ir × Z)) we have ψn−1 ∈ Qn−1(Y ) for all n ∈ Z. Moreover,

(Sψ)n = T (n, n − 1)ψn−1 for n ∈ Z.

Since the maps in (22) are onto, T (n, n − 1)ψn−1 attains all values of Qn(Y )
by taking an appropriate function ψ (with an appropriate component ψn−1).
In other words, each map

T (n, n − 1)|Qn−1(Y ) : Qn−1(Y ) → Qn(Y )

is onto. This readily implies that each map in (21) is also onto. �

4. Admissibility properties

In this section we show that equation (2) satisfies an admissibility property
if and only if equation (16) satisfies an analogous admissibility property on
appropriate corresponding spaces. For the convenience of the reader, we first
recall these notions. Given a Banach space E of functions x : Z → X, we say
that the pair (E,E) is admissible for equation (2) if for each y ∈ E there exists
a unique x ∈ E satisfying (7). Similarly, given a Banach space F of functions
u : Z2 → X, we say that the pair (F, F ) is admissible for equation (16) if for
each v ∈ F there exists a unique u ∈ F satisfying (8).

Now we consider several admissible spaces, such as the Banach spaces E∞

and F∞ in (9). In particular, F∞ can be identified with the space of bounded
sequences ψ : Z → �∞(Z) equipped with the supremum norm: a function u ∈
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�∞(Z2) can be identified with the sequence (u(m))m∈Z with u(m) as in (15).
More precisely, for any x ∈ E∞ we have ‖x‖∞ = ‖x‖′

∞, where

‖x‖′
∞ = sup

m∈Z

‖xm‖.

Analogously, for any u ∈ F∞ we have ‖u‖∞ = ‖u‖′
∞, where

‖u‖′
∞ = sup

m,k∈Z

‖uk
m‖

with uk
m ∈ Y as in (17) with k − 1 replaced by k. Thus,

E∞ = (�∞(Z), ‖·‖′
∞) and F∞ = (�∞(Z2), ‖·‖′

∞).

Similarly, for each p ∈ [1,+∞) the space Ep is the set of all functions x : Z → X
such that

‖x‖′
p :=

(
∑

m∈Z

‖xm‖p

)1/p

< +∞

equipped with the norm ‖·‖′
p (see (10)). Moreover, the space F p is the set of

all functions u : Z2 → X such that

‖u‖′
p :=

(
∑

m,k∈Z

‖uk
m‖p

)1/p

< +∞

equipped with the norm ‖·‖′
p (see (11)). One can verify with standard argu-

ments that Ep and F p are Banach spaces for each p ∈ [1,+∞].

Theorem 3. Let Lm : Y → X, for m ∈ Z, be bounded linear operators. Then
for each p ∈ [1,+∞] the following properties are equivalent:

(i) the pair (Ep, Ep) is admissible, that is, for each y ∈ Ep there exists a
unique x ∈ Ep satisfying equation (7);

(ii) the pair (F p, F p) is admissible, that is, for each v ∈ F p there exists a
unique u ∈ F p satisfying equation (8).

Proof. We first prove an auxiliary result.

Lemma 1. Given u, v : Z2 → X, equation (8) holds if and only if

x[ι](m + 1) = Lmx[ι]
m + y[ι](m + 1) for m, ι ∈ Z,

where the functions x[ι], y[ι] : Z → Z are defined for each ι ∈ Z by

x[ι](k) = u(ι + k, k) and y[ι](k) = v(ι + k, k). (28)

Proof of the lemma. By the definition of L, equation (8) is equivalent to

u(m + 1, k) = Lk−1u
k−1
m + v(m + 1, k) for m, k ∈ Z. (29)

We claim that

x
[m+1−k]
k−1 := (x[m+1−k])k−1 = uk−1

m ,
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using the notation in (28). Indeed, for s ∈ Ir we have

x
[m+1−k]
k−1 (s) = x[m+1−k](k − 1 + s) = u(m + s, k − 1 + s) = uk−1

m (s).

Thus, equation (29) is equivalent to

x[m+1−k](k) = Lk−1x
[m+1−k]
k−1 + y[m+1−k](k) for m, k ∈ Z. (30)

Since m and k are arbitrary, replacing k by k +1 and then m by ι+ k, we find
that equation (30) is equivalent to

x[ι](k + 1) = Lkx
[ι]
k + x[ι](k + 1) for m, k ∈ Z.

This completes the proof of the lemma. �

We proceed with the proof of the theorem. We first assume that property (i)
holds and we show that property (ii) holds. Take a function v ∈ F p for some
p ∈ [1,+∞].

Claim: We have y[ι] ∈ Ep for each ι ∈ Z.

Proof of the claim. The statement is clear for p = ∞. On the other hand, for
p < +∞ we have

vk
m(s) = v(m + s, k + s) = y[m−k](k + s) = y

[m−k]
k (s)

for each s ∈ Ir, and so
(‖v‖′

p

)p =
∑

m,k∈Z

‖vk
m‖p =

∑

m,k∈Z

‖y
[m−k]
k ‖p =

∑

ι,k∈Z

‖y
[ι]
k ‖p < +∞. (31)

Therefore,
(‖y[ι]‖′

p

)p =
∑

k∈Z

‖y
[ι]
k ‖p < +∞,

which shows that y[ι] ∈ Ep for each ι ∈ Z. �

By property (i), for each ι ∈ Z there exists a unique solution x(ι) ∈ Ep of
the equation

x(ι)(m + 1) = Lmx(ι)
m + y[ι](m + 1) for m ∈ Z. (32)

On the other hand, by Lemma 1, if u : Z2 → X is a solution of equation (8),
then for each ι ∈ Z the function x[ι] in (28) is a solution of equation (32) (with
x(ι) replaced by x[ι]). Since each solution x(ι) is unique, necessarily x[ι] = x(ι)

for all ι ∈ Z, and so

u(m,n) = x(m−n)(n) form,n ∈ Z. (33)

This shows that any solution of equation (8) (if it exists) is given by (33) and
so, in particular, it is unique.
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Given v ∈ F p and the corresponding functions x(ι) obtained above, the
former discussion leads us to introduce a function u : Z2 → X by (33). It
follows from Lemma 1 that it satisfies equation (8) (and it follows from the
discussion that u is the unique solution of that equation). Hence, to show that
property (ii) holds, it remains to verify that u belongs to F p.

Now we define a linear operator Rp : D(Rp) → Ep by

(Rpx)(m) = x(m) − Lm−1xm−1 for m ∈ Z (34)

on the domain formed by all sequences x ∈ Ep such that
(
x(m) − Lm−1xm−1

)
m∈Z

∈ Ep.

We show that Rp is closed. Let (xi)i∈Z be a sequence in D(Rp) converging to
x ∈ Ep such that Rpx

i converges to y ∈ Ep. Then

x(m) − Lm−1xm−1 = lim
i→∞

(
xi(m) − Lm−1(xi)m−1

)

= lim
i→∞

(Rpx
i)(m) = y(m)

for m ∈ Z. This shows that Rpx = y and so x ∈ D(Rp). Hence, the operator
Rp is closed. We consider the graph norm on Ep given by

‖x‖′ = ‖x‖′
p + ‖Rpx‖′

p.

Since Rp is closed, (D(Rp), ‖·‖′) is a Banach space and the operator

Rp : (D(Rp), ‖·‖′) → Ep

is bounded. By property (i), it is onto and invertible. It follows from the open
mapping theorem that it has a bounded inverse

R−1
p : Ep → (D(Rp), ‖·‖′).

Claim: We have u ∈ F p .

Proof of the claim. First take p = ∞. For each m ∈ Z we have

sup
n∈Z

‖x(n−m)(n)‖ = sup
k∈Z

‖x(k)(m + k)‖ ≤ sup
k∈Z

‖x(k)‖∞ ≤ sup
k∈Z

‖x(k)‖′.

Since R∞x(k) = y[k], we obtain

‖u‖∞ = sup
m,n∈Z

‖x(n−m)(n)‖ ≤ sup
k∈Z

‖x(k)‖′

≤ ‖R−1
∞ ‖ sup

k∈Z

‖y[k]‖∞ = ‖R−1
∞ ‖ · ‖v‖∞.

This shows that u ∈ E∞.
Now take p < +∞. In a similar manner to that in (31) we have

(‖u‖′
p

)p =
∑

ι,k∈Z

‖x
[ι]
k ‖p =

∑

ι∈Z

(‖x[ι]‖′
p

)p ≤
∑

ι∈Z

(‖x[ι]‖′)p
. (35)
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Since Rpx
[ι] = y[ι], it follows from (31) that

(‖u‖′
p

)p ≤ ‖R−1
p ‖p

∑

ι∈Z

(‖y[ι]‖′
p

)p

= ‖R−1
p ‖p

∑

ι,k∈Z

‖y
[ι]
k ‖p = ‖R−1

p ‖p
(‖v‖′

p

)p
.

Therefore,

‖u‖′
p ≤ ‖R−1

p ‖ · ‖v‖′
p < +∞

and so u ∈ F p. �

This establishes property (ii).
Now we assume that property (ii) holds and we show that property (i)

holds. Take a function y ∈ F p for some p ∈ [1,+∞]. We define v : Z2 → X by

v(m,n) =
y(n)

1 + (m − n)2/p
for m,n ∈ Z.

Note that when p = ∞ this gives

v(m,n) = y(n) for m,n ∈ Z.

Claim: We have v ∈ F p .

Proof of the claim. The statement is clear for p = ∞. When p < +∞ we note
that

vk
m(s) = v(m + s, k + s) =

y(k + s)
1 + (m − k)2/p

=
yk(s)

1 + (m − k)2/p
(36)

for s ∈ Ir, and so

vk
m =

yk

1 + (m − k)2/p
.

This gives
(‖v‖′

p

)p =
∑

m,k∈Z

‖vk
m‖p =

∑

m,k∈Z

‖yk‖p

(1 + (m − k)2/p)p

=
∑

k∈Z

(
‖yk‖p

∑

m∈Z

1
(1 + (m − k)2/p)p

)

=
∑

k∈Z

‖yk‖p
∑

m∈Z

1
(1 + m2/p)p

= (‖y‖′
p)

p
∑

m∈Z

1
(1 + m2/p)p

< +∞

(37)

and thus v ∈ F p. �
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Hence, by property (ii) there exists a unique u ∈ F p satisfying equation (8).
In view of Lemma 1, for each ι ∈ Z the function x[ι] in (28) satisfies the
equation

x[ι](m + 1) = Lmx[ι]
m + y[ι](m + 1) form ∈ Z. (38)

Note that

y[ι](k) = v(ι + k, k) =
y(k)

1 + ι2/p

and so it follows from (38) that

x̂[ι] := (1 + ι2/p)x[ι]

is a solution of the equation

x̂[ι](m + 1) = Lmx̂[ι]
m + y(m + 1) for m ∈ Z. (39)

Claim: We have x[ι] ∈ Ep for each ι ∈ Z.

Proof of the claim. When p = ∞ it follows readily from the definition in (28)
that x[ι] ∈ E∞ for each ι ∈ Z. On the other hand, when p < +∞ it follows as
in (35) that

(‖u‖′
p

)p =
∑

ι∈Z

(‖x[ι]‖′
p

)p
< +∞

and so x[ι] ∈ Ep for each ι ∈ Z. �

It follows readily from the claim that the solutions x̂[ι] of equation (39)
belongs to Ep for all ι ∈ Z. Moreover, there are no other solutions of equa-
tion (39) (or equivalently of equation (7)). Indeed, otherwise one could use
(33) to obtain a different solution u of equation (8), which contradicts the
uniqueness of the solution. Hence, to complete the proof it remains to show
that x̂[ι] is independent of ι.

Claim: The function x̂[ι] = (1 + ι2/p)x[ι] is independent of ι.

Proof of the claim. When p = ∞ we first show that the sequence (u(m))m∈Z

is constant. Note that

v(m)(n) = v(m,n) = y(n)

and so v(m) = y for all m ∈ Z. Therefore, equation (8) takes the form

u(m + 1) = Lum + y for m ∈ Z. (40)

Now we define a new function ū ∈ F∞ by requiring that ū(m) = u(m + 1) for
each m ∈ Z. By (40) we have

ū(m + 1) = Lūm + y for m ∈ Z,



L. Barreira, C. Valls AEM

and it follows from the uniqueness in property (ii) that ū = u. This read-
ily implies that (u(m))m∈Z is constant and so u(m,n) is independent of m.
Therefore, x̂[ι] = x[ι](k) = u(ι + k, k) is independent of ι.

When p < +∞ we fix q ∈ Z and we consider the function ū : Z2 → X
defined by

ū(m,n) =
1 + q2/p

1 + (m − n)2/p
x[q](n)

for m,n ∈ Z. Note that

ūk
m(s) = ū(m + s, k + s) =

1 + q2/p

1 + (m − k)2/p
x
[q]
k (s)

and so, in a similar manner to that in (37), we have

(‖ū‖′
p)

p =
∑

m,k∈Z

‖ūk
m‖p

= (1 + q2/p)p
∑

m,k∈Z

‖x
[q]
k ‖p

(1 + (m − k)2/p)p

= (1 + q2/p)p(‖x[q]‖′
p)

p
∑

m∈Z

1
(1 + m2/p)p

< +∞.

This shows that ū ∈ F p. Note that

x̄[ι](k) := ū(ι + k, k) =
1 + q2/p

1 + ι2/p
x[q](k) =

x̂[q](k)
1 + ι2/p

and so it follows from (39) with ι replaced by q that

x̄[ι](m + 1) = Lmx̄[ι]
m + y[ι](m + 1) form ∈ Z.

Hence, by Lemma 1, ū is a solution of equation (8) and it follows from the
uniqueness of the solution that ū = u. Therefore,

x[ι](k) = u(ι + k, k) = ū(ι + k, k) =
1 + q2/p

1 + ι2/p
x[q](k)

for all k, ι ∈ Z. In other words,

x̂[ι](k) = (1 + ι2/p)x[ι] = (1 + q2/p)x[q] = x̂[q](k)

for all k, ι ∈ Z, which shows that x̂[ι] is independent of ι (since q is fixed). �

Thus, property (i) holds, which completes the proof of the theorem. �
We emphasize that Theorem 3 does not require the boundedness of the

sequence Lm in (1). On the other hand, if property (1) holds, then the operator
Rp defined by (34) has domain D(Rp) = Ep and it is automatically bounded
(since it is closed). For a direct argument, note that if property (1) holds, then

|(Rpx)(m + 1)| ≤ |x(m + 1)| + ‖Lm‖ · ‖xm‖.
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and so
‖(Rpx)m+1‖ ≤ ‖xm+1‖ + cmax

s∈Ir
‖xm+s‖

≤ ‖xm+1‖ + cmax
s∈Ir

max{1, c}s+r‖xm−r‖.

In particular, Rpx ∈ Ep when x ∈ Ep, with

‖Rp‖ ≤ 1 + cmax{1, c}r.

5. Ulam–Hyers stability

In this section we consider the Ulam–Hyers stability property. We show that it
is a consequence of hyperbolicity, and that this property or, more precisely, the
stronger property of uniform Ulam–Hyers stability, is equivalent for equations
(2) and (16).

Given p ∈ [1,+∞], let L̄ : Ep → XZ be the operator defined by

(L̄x)(m) = Lm−1xm−1 for m ∈ Z

and let L̄ : F p → XZ
2

be the operator defined by

(L̄u)(m) = Lum−1 for m ∈ Z

Note that

(L̄u)(m, k) = (L̄u)(m)(k) = (L̄um−1)(k) = Lk−1u
k−1
m−1

for m, k ∈ Z. Moreover, if the operators Lm : Y → X satisfy (1), then clearly
L̄(Ep) ⊂ Ep and L̄(F p) ⊂ F p.

For each p ∈ [1,+∞], we say that equation (2) is uniformly Ulam–Hyers
stable with respect to Ep if there exists κ > 0 such that for each ε > 0 and
x, y ∈ Ep satisfying

‖x − L̄x − y‖′
p < ε (41)

there exists z ∈ Ep satisfying

z = L̄z + y and ‖x − z‖′
p < κε.

Analogously, we say that equation (16) is uniformly Ulam–Hyers stable with
respect to F p if there exists κ > 0 such that for each ε > 0 and u, v ∈ F p

satisfying

‖u − L̄u − v‖′
p < ε

there exists w ∈ F p satisfying

w = L̄w + v and ‖u − w‖′
p < κε.

Theorem 4. Let Lm : Y → X, for m ∈ Z, be bounded linear operators satisfy-
ing (1). Then for each p ∈ [1,+∞] the following properties hold:
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(i) if the pair (Ep, Ep) is admissible, then equation (2) is uniformly Ulam–
Hyers stable with respect to Ep;

(ii) if the pair (F p, F p) is admissible, then equation (16) is uniformly Ulam–
Hyers stable with respect to F p.

Proof. Take ε > 0 and x, y ∈ Ep satisfying (41). Consider the sequence ȳ
= (ȳ(m))m∈Z defined by

ȳ(m) = (x − L̄x − y)(m) = x(m) − Lm−1xm−1 − y(m)

for m ∈ Z. Clearly, ȳ ∈ Ep because x, y ∈ Ep and the operators Lm satisfy (1).
Since (Ep, Ep) is admissible, there exists a unique sequence x̄ ∈ Ep such that

x̄(m + 1) − Lmx̄m = ȳ(m + 1) = x(m + 1) − Lmxm − y(m + 1)

for m ∈ Z. On the other hand, using the linear operator Rp : D(Rp) → Ep

in (34) we obtain

‖x̄‖′
p ≤ ‖R−1

p ‖ · ‖ȳ‖′
p < ‖R−1

p ‖ε.

Moreover, setting z = x − x̄ we have
z(m + 1) = x(m + 1) − x̄(m + 1)

= Lmxm − Lmx̄m + y(m + 1) = Lmzm + y(m + 1),

and so

‖x − z‖′
p = ‖x̄‖′

p < κε,

where κ = ‖R−1
p ‖. This concludes the proof of statement 1.

The proof of statement 2 can be obtained in the same manner. Note that
since the operators Lm satisfy (1), by construction we have L̄u ∈ F p for
u ∈ F p. This completes the proof of the theorem. �

Finally, we show that equation (2) is uniformly Ulam–Hyers stable if and
only if the same happens to equation (16).

Theorem 5. Let Lm : Y → X, for m ∈ Z, be bounded linear operators. Then
for each p ∈ [1,+∞] the following properties are equivalent:

(i) equation (2) is uniformly Ulam–Hyers stable with respect to Ep;
(ii) equation (16) is uniformly Ulam–Hyers stable with respect to F p.

Proof. We first assume that property (i) holds and we show that property
(ii) holds. Take p = ∞. Given ε > 0, let u, v ∈ F p be such that

sup
m∈Z

‖u(m + 1) − Lum − v(m + 1)‖∞ < ε. (42)

For each ι ∈ Z we consider the sequences x[ι] and y[ι] defined in (28). Proceed-
ing as in the proof of Lemma 1, it follows from (42) that

sup
m∈Z

‖x[ι](m + 1) − Lmx[ι]
m − y[ι](m + 1)‖ < ε.
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By property (i) there exist κ > 0 (independent of ε and ι) and z[ι] ∈ E∞

satisfying

z[ι](m + 1) = Lmz[ι]m + y[ι](m + 1) for m ∈ Z (43)

such that

sup
m∈Z

‖x[ι](m) − z[ι](m)‖ < κε. (44)

Define w(m,n) = z[n−m](n). By (28) we have v(m,n) = y[n−m](n) and so it
follows from (43) and Lemma 1 that

w(m + 1) = Lwm + v(m + 1) for m ∈ Z. (45)

Moreover, by (44) we get

sup
m∈Z

‖u(m) − w(m)‖∞ = sup
m∈Z

sup
n∈Z

‖x[n−m](n) − z[n−m](n)‖ ≤ κε.

This proves property (ii) for p = ∞.
Now take p < +∞. Given ε > 0, let u, v ∈ F p be such that

(‖u − L̄u − v‖′
p)

p =
∑

m,k∈Z

‖uk
m − (L̄u)k

m − vk
m‖p < εp. (46)

We continue to consider the sequences x[ι] and y[ι] defined in (28). By (46)
together with the fact that

(L̄u)(ι + k, k) = (Luι+k−1)(k) = Lk−1u
k−1
ι+k−1 = Lk−1x

[ι]
k−1 = (L̄x[ι])(k),

it follows as in (31) that
∑

ι∈Z

(‖x[ι] − L̄x[ι] − y[ι]‖′
p

)p =
(‖u − L̄u − v‖′

p

)p
< εp.

Take positive numbers αι for ι ∈ Z such that
∑

ι∈Z

αp
ι < εp and ‖x[ι] − L̄x[ι] − y[ι]‖′

p < αι for all ι ∈ Z. (47)

By property (i) there exist κ > 0 (independent of ε and ι) and z[ι] ∈ Ep

satisfying (43) such that

‖x[ι] − z[ι]‖′
p < και.

Define w(m,n) = z[n−m](n). Then (45) holds. Moreover, proceeding as in (31),
it follows from (47) that

(‖u − v‖′
p)

p =
∑

m,n∈Z

‖x[n−m]
n − z[n−m]

n ‖p

=
∑

ι∈Z

(‖x[ι] − z[ι]‖′
p

)p
< κpεp.

This proves property (ii) for p < +∞.
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Now we assume that property (ii) holds and we show that property (i)
holds. Take p = ∞. Given ε > 0, let x, y ∈ E∞ be such that

sup
m∈Z

‖x(m + 1) − Lmxm − y(m + 1)‖ < ε.

Define

u(m,n) = x(n) and v(m,n) = y(n).

Note that
u(m)(n) − (Lum−1)(n) − v(m)(n) = u(m,n) − Ln−1u

n−1
m−1 − v(m,n)

= x(n) − Ln−1xn−1 − y(n)

since un−1
m−1 = xn−1. Hence,

sup
m∈Z

‖u(m) − Lum−1 − v(m)‖∞ = sup
m,n∈Z

‖u(m,n) − (Lum−1)(n) − v(m)(n)‖

= sup
n∈Z

‖x(n) − Ln−1xn−1 − y(n)‖ < ε.

By property (ii), there exist κ > 0 (independent of ε) and w ∈ F∞ satisfying

w(m + 1) = Lwm + v(m + 1) for m ∈ Z (48)

such that

sup
m∈Z

‖u(m) − w(m)‖∞ < κε.

By Lemma 1, for each ι ∈ Z, setting z[ι](k) = w(ι + k, k) we have that

z[ι](m + 1) = Lmz[ι]m + y(m + 1) for m ∈ Z,

since y[ι](k) = v(ι + k, k) = y(k). Moreover,

sup
m∈Z

‖x(m) − z[ι](m)| = sup
m∈Z

‖u(ι + m,m) − w(ι + m,m)‖ < κε.

Taking any ι property (i) follows for p = ∞.
Now take p < +∞. Given ε > 0, let x, y ∈ Ep be such that

‖x − L̄x − y‖′
p < ε.

Define

u(m,n) =
x(n)

1 + (m − n)2
and v(m,n) =

y(n)
1 + (m − n)2

.

Note that
u(m)(n) − (Lum−1)(n) − v(m)(n) = u(m,n) − Ln−1u

n−1
m−1 − v(m,n)

=
x(n) − Ln−1xn−1 − y(n)

1 + (m − n)2
,

since in a similar manner to that in (36), we have

un−1
m−1 =

xn−1

1 + (m − n)2
.
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Hence, proceeding as in (37) we get

(‖u − L̄u − v‖′
p)

p = (‖x − L̄x − y‖′
p)

p
∑

m∈Z

1
(1 + m2)p

< εp
∑

m∈Z

1
(1 + m2)p

.

By property (ii), there exists κ > 0 (independent of ε) and w ∈ F p satisfy-
ing (48) such that

‖u − w‖′
p < κε

(
∑

m∈Z

1
(1 + m2)p

)1/p

. (49)

By Lemma 1, for each ι ∈ Z, setting z[ι](k) = w(ι + k, k) we have that

z[ι](m + 1) = Lmz[ι]m + y[ι](m + 1) for m ∈ Z,

with

y[ι](k) = v(ι + k, k) = y(k)/(1 + ι2).

Now take q[ι](k) = (1 + ι2)z[ι](k). Clearly,

q[ι](m + 1) = Lmq[ι]m + y(m + 1) for m ∈ Z.

Taking ι = 0 and using (49) we obtain

‖x − q[0]‖′
p = ‖x[0] − z[0]‖′

p ≤
(

∑

ι∈Z

(‖x[ι] − z[ι]‖′
p)

p

)1/p

= ‖u − v‖′
p < κε

(
∑

m∈Z

1
(1 + m2)p

)1/p

.

This completes the proof of the theorem. �
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[18] Massera, J., Schäffer, J.: Linear Differential Equations and Function Spaces, Pure and
Applied Mathematics, vol. 21. Academic Press, New York-London (1966)

[19] Ob�loza, M.: Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt.
Prace Mat. 13, 259–270 (1993)
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