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Multivariable generalizations of bivariate means via invariance

Pawe�l Pasteczka

Abstract. For a given p-variable mean M : Ip → I (I is a subinterval of R), following
(Horwitz in J Math Anal Appl 270(2):499–518, 2002) and (Lawson and Lim in Colloq
Math 113(2):191–221, 2008), we can define (under certain assumptions) its (p + 1)-variable
β-invariant extension as the unique solution K : Ip+1 → I of the functional equation

K
(
M(x2, . . . , xp+1), M(x1, x3, . . . , xp+1), . . . , M(x1, . . . , xp)

)

= K(x1, . . . , xp+1), for all x1, . . . , xp+1 ∈ I

in the family of means. Applying this procedure iteratively we can obtain a mean which
is defined for vectors of arbitrary lengths starting from the bivariate one. The aim of this
paper is to study the properties of such extensions.

Mathematics Subject Classification. 26E60, 39B12, 39B22.
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1. Introduction

The problem of the multi-variable generalization of bivariate means is very
natural. Regrettably, such extensions remain unknown for many families of
means. For example, in the family of generalized logarithmic means Es : R2

+ →
R+ (s ∈ R\{−1, 0}) defined as

Es(x, y) :=
( xs+1 − ys+1

(s + 1)(x − y)

)1/s

,

Stolarsky means, the Heronian mean, several means related to the Pythagorean
one, etc. (see for example [8] for their definitions).

The purpose of this note is to provide a broad approach to this problem.
Namely, we extend some ideas of Aumann [1,2], Horwitz [21] and Lawson
and Lim [26] to generalize bivariate means to the multivariable setting. More
precisely, for a given k-variable symmetric, continuous, and strict mean on an
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interval, we can apply the so-called barycentric operator to generate the (k+1)-
variable mean on the same interval. Then we use this procedure iteratively in
order to get the desired extension.

At the very beginning, let us introduce the family of Gini means, which
will be very helpful in illustrating the problem. Namely, in 1938, Gini [17]
introduced the generalization of power means. For r, s ∈ R, the Gini mean
Gr,s of positive variables x1, . . . , xn (n ∈ N) is defined as follows:

Gr,s(x1, . . . , xn) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
xr
1 + · · · + xr

n

xs
1 + · · · + xs

n

) 1
r−s

if r �= s,

exp
(

xr
1 ln(x1) + · · · + xr

n ln(xn)
xr
1 + · · · + xr

n

)
if r = s.

Clearly, in the particular case s = 0, the mean Gr,0 becomes the rth Power
mean Pr. It is also obvious that Gs,r = Gr,s.

It can be easily shown that for all r ∈ R and x, y ∈ R+ we have Gr,−r(x, y) =√
xy. This equality, however, fails to be valid for more than two arguments.

Thus (a priori) it could happen that two different means coincide in the bi-
variate setting. As a consequence, we cannot recover the multi-variable mean
based only on its two-variable restriction.

On the other hand, if f : I → R (I is an interval) is a continuous, strictly
monotone function and M = A[f ] :

⋃∞
n=1 In → I is a quasiarithmetic mean

(see Sect. 5.1 a for definition) then it solves the functional equation

M(x1, . . . , xk+1) = M
(
M(x2, . . . , xk+1),M(x1, x3, . . . , xk+1), . . . ,

M(x1, . . . , xk)
)

for all k ≥ 2 and x1 . . . , xk+1 ∈ I.
(1.1)

Moreover, one can show that M = A[f ] is the only mean which solves this
equation and such that M(x1, x2) = A[f ](x1, x2) for all x1, x2 ∈ I. As a conse-
quence, we can utilize (1.1) to calculate the value of a quasiarithmetic mean
for a vector of arbitrary length based only on its bivariate restriction. The aim
of this paper is to generalize the procedure above, to extend other bivariate
means to vectors of arbitrary length.

1.1. General framework

Formally, a mean of order k, or k-mean for short, on a set X is a function
μ : Xk → X satisfying μ(x, . . . , x) = x for all x ∈ X. In the twentieth century,
the theory of topological means, that is, symmetric means on topological spaces
for which the mean operation is continuous, was of great interest. This work
was pioneered by Aumann [1], who showed, among other things, that no sphere
admits such a mean [2].

Now we proceed to the notion of β-invariant extension introduced by Hor-
witz [21]. Given a set X and a k-mean μ : Xk → X, the barycentric operator
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β = βμ : Xk+1 → Xk+1 is defined by

βμ(x) := (μ(x∨1), . . . , μ(x∨(k+1))),

where x∨j is a vector which is obtained by removing the j-th coordinate in
the vector x, that is x∨j = (xi)i�=j . For a topological k-mean, we say that
the barycentric map β is power convergent if for each x ∈ Xk+1, we have
limn→∞ βn(x) = (x∗, . . . , x∗) for some x∗ ∈ X.

A mean ν : Xk+1 → X is a β-invariant extension of μ : Xk → X if ν◦βμ = ν,
that is

ν(μ(x∨1), . . . , μ(x∨(p+1))) = ν(x), x ∈ Xk+1.

Let us now recall an important result by Lawson and Lim [26].

Proposition 1.1. ([26], Proposition 2.4) Assume that μ : Xk → X is a topologi-
cal k-mean and that the corresponding barycentric operator βμ is power conver-
gent. Define μ̃ : Xk+1 → X by μ̃(x) = x∗, where limn→∞ βn

μ(x) = (x∗, . . . , x∗).
Then

(i) μ̃ : Xk+1 → X is a (k + 1)-mean on X that is a β-invariant extension of
μ.

(ii) Any continuous mean on Xk+1 that is a β-invariant extension of μ must
equal μ̃.

(iii) If μ is symmetric, so is μ̃.

1.2. Properties of means on the interval

For the sake of completeness, let us introduce formally N := {1, . . . }, and
Np := {1, . . . , p} (where p ∈ N).

Throughout this note, I is a subinterval of R. For a given p ∈ N, a function
M : Ip → I is a p-variable mean on I if

min(x) ≤ M(x) ≤ max(x) for every x ∈ Ip.

We can define some natural properties such as symmetry, continuity, convexity,
etc. which refer to properties of M as a p-variable function. A mean M is called
strict if min(x) < M(x) < max(x) for every non-constant vector x ∈ Ip.

Now, define the order ≺ on vectors of real numbers of the same lengths by

x ≺ y : ⇐⇒ (
xi ≤ yi for every i

)
.

Then, a mean M : Ip → I is monotone if M(x) ≤ M(y) for all x, y ∈ Ip with
x ≺ y.

A function M :
⋃∞

p=1 Ip → I is a mean if all its p-variable restrictions
M�p:= M |Ip are means for all p ≥ 1. Such a mean is called symmetric (resp.
continuous, etc.) if all M�p-s admit this property.
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1.3. Invariance in a family of means

For p ∈ N a selfmapping M : Ip → Ip is called a mean-type mapping if M =
(M1, . . . ,Mp) for some p-variable means M1, . . . ,Mp on I. A mean K : Ip → I
is called M-invariant if K ◦ M = K.

The most classical result by Borwein-Borwein [7] states that if all means
Mi are continuous and strict, then there exists exactly one M-invariant mean.
This result has several generalisations (see, for example, Matkowski [33], and
Matkowski-Pasteczka [35]). For details we refer the reader to the rich literature
on the subject, the classical ones being Lagrange [25], Gauss [16], Foster-Philips
[15], Lehmer [27], Schoenberg [44] as well as the more recent ones Baják–Páles
[3–6], Daróczy–Páles [9,11,12], Deregowska–Pasteczka [14], G�lazowska [18,19],
Jarczyk–Jarczyk [22], Matkowski [30–33], Matkowski–Páles [36], Matkowski–
Pasteczka [34,35] and Pasteczka [38,39,41,42].

In the next section, we will only recall results from [42], as they are the
most suitable ones for our purposes.

In this restricted (interval) setting, we know that a β-invariant extension
is uniquely defined (in the family of means) if and only if the barycentric
operator is power convergent (see [35, Theorem 1]). Moreover, the barycentric
operator is a special case of a mean-type mapping consisting of extended means
(see [42]). Therefore, in what follows, we deliver a short introduction to these
objects.

2. Extended means

Observe that for d, p ∈ N and a d-variable mean M : Id → I we can construct
a p-variable mean by choosing d indexes and applying the mean M to the
so-obtained vector of length d. Formally, for d, p ∈ N and a vector α ∈ N

d
p we

define a p-variable mean M (p;α) : Ip → I by

M (p;α)(x1, . . . , xp) := M(xα1 , . . . , xαd
) for all (x1, . . . , xp) ∈ Ip. (2.1)

Let us emphasize, that for α = (1, . . . , p) ∈ N
p
p, we have M (p;α) = M , thus

(purely formally) each mean is an extended mean. However, this approach al-
lowed us to establish several interesting results related to mean-type mappings
consisting of such means. We are going to recall them in the following section.

In a simple case, if A : R2 → R is a bivariate arithmetic mean, p ≥ 3 and
α = (2, 3) then A(p;α) : Ip → I is given by

A(p;α)(x1, . . . , xp) = A(p;2,3)(x1, . . . , xp) = x2+x3
2 for all (x1, . . . , xp) ∈ Ip.



Multivariable generalizations of bivariate

2.1. Invariance of extended means

Before we proceed to discuss the invariance, we need to build a mean-type
mapping. The idea is to use an extended mean at each coordinate. Therefore,
in some sense, we need to vectorise the previous approach.

For p ∈ N and a vector d = (d1, . . . , dp) ∈ N
p, let N

d
p := N

d1
p × · · · × N

dp
p .

Using this notations, a sequence of means M = (M1, . . . ,Mp) is called a d-
averaging mapping on I if each Mi is a di-variable mean on I.

In the next step, for a d-averaging mapping M and a vector of indexes
α = (α1, . . . , αp) ∈ N

d1
p × · · · × N

dp
p = N

d
p let us define a mean-type mapping

Mα : Ip → Ip by

Mα :=
(
M

(p;α1)
1 , . . . ,M (p;αp)

p

)
,

where M
(p,αi)
i -s are defined by (2.1).

Observe that α is a p-tuple of sequences of elements in Np. Such an object
can be represented as a directed graph. Therefore for a given p ∈ N, d =
(d1, . . . , dp) ∈ N

p, and α ∈ N
d
p , we define the α-incidence graph Gα = (Vα, Eα)

as follows:

Vα := Np and Eα :=
{
(αi,j , i) : i ∈ Np and j ∈ Ndi

}
.

Since the graph Gα plays a very important role in the invariance of Mα,
let us recall some elementary definitions from graph theory.

A sequence (v0, . . . , vn) of elements in V such that (vi−1, vi) ∈ E for all
i ∈ {1, . . . , n} is called a walk from v0 to vn. The number n is the length
of the walk. If for all v, w ∈ V there exists a walk from v to w, then G is
called irreducible. A cycle is a non-empty walk in which only the first and last
vertices are equal. A directed graph is said to be aperiodic if no integer k > 1
divides the length of every cycle of the graph. A graph is called ergodic if it is
simultaneously irreducible and aperiodic.

Now we are ready to recall the main theorem from the paper [42]. It turns
out that the natural assumption to guarantee that an Mα-invariant mean is
uniquely determined, is that Gα is ergodic.

Proposition 2.1. ([42], Theorem 2) Given an interval I ⊂ R, parameters p ∈
N, d ∈ N

p, and a d-averaging mapping M = (M1, . . . ,Mp) on I such that all
Mi-s are strict. For all α ∈ N

d
p such that Gα is ergodic:

(a) there exists a unique Mα-invariant mean Kα : Ip → I;
(b) Kα is continuous;
(c) Kα is strict;
(d) Mn

α converges, uniformly on compact subsets of Ip, to the mean-type
mapping Kα : Ip → Ip, Kα = (Kα, . . . ,Kα);

(e) Kα : Ip → Ip is Mα-invariant, that is Kα = Kα ◦ Mα;
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Figure 1. Graph Gα related to Example 1

(f) if M1, . . . ,Mp are nondecreasing with respect to each variable then so is
Kα;

(g) if I = (0,+∞) and M1, . . . ,Mp are positively homogeneous, then every
iterate of Mα and Kα are positively homogeneous.

At this stage, let us recall a straightforward application of this result.

Example 1. ([42], Example 2) Let M : R4
+ → R

4
+ be given by

M(x, y, z, t) :=
(

2xy

x + y
,
√

yz,
z + t

2
,

√
t2 + x2

2

)
. (2.2)

We show that there exists a unique M-invariant mean K : R4
+ → R+. Addi-

tionally, K is continuous and strict (Fig. 1).
Indeed, in the framework of d-averaging mappings, we express M defined

in (2.2) as M̄α, where M̄ consists of bivariate power means, that is

M̄ = (P−1,P0,P1,P2), and α =
(
(1, 2), (2, 3), (3, 4), (4, 1)

)
.

The vector d contains the lengths of the elements in α (since α ∈ N
d
4 ), thus

d = (2, 2, 2, 2). Obviously all means in M̄, being power means, are continuous
and strict. Moreover, the α-incidence graph (see Fig. 1) is aperiodic (since
every vertex has a loop) and irreducible (since (4321) is its Hamiltonian cycle).
Consequently the α-incidence graph is ergodic.

Thus, in view of Proposition 2.1, there exists exactly one M-invariant mean
K : R4

+ → R+. Moreover, by the same theorem, we know that it is continuous
and strict.

3. Results

3.1. Auxiliary results

In what follows we show two results. The second one shall be considered a
direct application of Proposition 2.1. It is preceded by a simple (and purely
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technical) lemma, which shows that a key assumption of this proposition is
satisfied.

Lemma 3.1. For every p ≥ 3 the graph Qp :=
(
Np, {(i, j) ∈ N

2
p : i �= j}) is

ergodic.

Indeed, we can observe that Qp is a full directed graph (without loops),
and hence it is ergodic. Based on this lemma, in view of Proposition 2.1, part
(a) the following proposition immediately follows.

Proposition 3.2. Let p ∈ N with p ≥ 2, and M : Ip → I be a symmetric, con-
tinuous, and strict mean. Then there exists a unique βM -invariant extension.
Equivalently, the functional equation

K(M(x∨1), . . . , M(x∨(p+1))) = K(x), x ∈ Ip+1 (3.1)

has exactly one solution in the family of means K : Ip+1 → I.

Proof. Let α ∈ N
(p+1)×p
p+1 be given by

α =
(
Np+1 \ {1},Np+1 \ {2}, . . . ,Np+1 \ {p + 1}). (3.2)

Then Gα = Qp+1 and, by Lemma 3.1, it is ergodic. Thus, applying Proposi-
tion 2.1 part (a) to the d-averaging mapping M, where

d := ( p, . . . , p
︸ ︷︷ ︸

(p+1) times

) and M := (M, . . . , M
︸ ︷︷ ︸
(p+1) times

), (3.3)

we get that there exists a unique Mα-invariant mean. In other words, the
functional equation K ◦ Mα = K has exactly one solution in the family of
means K : Ip+1 → I. However, in this setup,

Mα(x) =
(
M (p,α1)(x), . . . , M (p,αp+1)(x)

)

=
(
M

(
(xi)i∈Np+1\{1}

)
, . . . ,M

(
(xi)i∈Np+1\{p+1}

))

= (M(x∨1), . . . ,M(x∨(p+1))),

thus the proof is complete. �
Remark 1. Observe that in the case when p ≥ 2 and M := Ap is the p-variable
arithmetic mean (on R) then equality (3.1) takes the form

K
(x2 + · · · + xp+1

p
,
x1 + x3 · · · + xp+1

p
, . . . ,

x1 + · · · + xp

p

)
= K(x).

If we define m := Ap+1(x1, . . . , xp+1) := x1+···+xp+1
p+1 then we can rewrite this

equality in a simpler form

K
( (p + 1)m − x1

p
,
(p + 1)m − x2

p
, . . . ,

(p + 1)m − xp

p

)
= K(x).

Clearly K = Ap+1 is a solution of this equation. Moreover, by Proposition 3.2,
this solution is unique.
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3.2. Main result

In view of Proposition 3.2, for every symmetric, continuous, and strict mean
M : Ip → I, we define its β-invariant extension M̃ : Ip+1 → I (denoted also
as M∼) as the unique solution K of equation (3.1) in the family of means.

As we have already checked in Remark 1, Ãp = Ap+1 for all p ≥ 2. In other
words, the β-invariant extension of the p–variable arithmetic mean is simply
a (p + 1)–variable arithmetic mean. It turns out, see Lemma 5.3 below, that
this property remains valid also for quasiarithmetic means.

In the following result we prove that a mean shares several properties with
its β-invariant extension.

Theorem 1. Let p ∈ N with p ≥ 2, and M : Ip → I be a symmetric, continuous,
and strict mean. Then
(a) M̃ is continuous;
(b) M̃ is symmetric;
(c) M̃ is strict;
(d) if M is monotone, then so is M̃ ;
(e) if M is convex (concave) and monotone, then so is M̃ .
(f) if I = (0,+∞) and M is positively homogeneous, then so is M̃ ;

Proof. Set α, d, and M by equations (3.2), and (3.3). Then M̃ = Kα is the
unique Mα-invariant mean. By Lemma 3.1, we know that Gα is ergodic.

Therefore parts (a), (c), (d), (f), of this statement are implied by Propo-
sition 2.1 parts (b), (c), (f), (g), respectively. Now, we only need to prove
statements (b) and (e).

To show (b), observe that for every vector x ∈ Ip+1 and a permutation
σ : Np+1 → Np+1 we have

Mα(x ◦ σ) =
(
M((x ◦ σ)∨1), . . . ,M((x ◦ σ)∨(p+1))

)

=
(
M(x∨σ(1)), . . . ,M(x∨σ(p+1))

)

=
(
[Mα(x)]σ(1), . . . , [Mα(x)]σ(p+1)

)
= Mα(x) ◦ σ.

Therefore, by Proposition 2.1 part (d), for every x ∈ Ip+1 we have

Kα(x ◦ σ) = lim
n→∞Mn

α(x ◦ σ) =
(

lim
n→∞Mn

α(x)
) ◦ σ = Kα(x) ◦ σ,

thus, since Kα is an(y) entry in Kα, we get Kα(x ◦ σ) = Kα(x), which proves
that Kα is symmetric.

Finally, to prove part (e) assume that M is convex and monotone and fix
two vectors x, y ∈ Ip and t ∈ (0, 1). As the intermediate step shows that, for
all n ≥ 0,

[
Mn

α(tx + (1 − t)y)
]
k

≤ t
[
Mn

α(x)
]
k

+ (1 − t)
[
Mn

α(y)
]
k

for all k ∈ Np+1.
(3.4)
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For n = 0 inequality (3.4) obviously holds (even with equality). Now assume
that (3.4) is valid for some n ≥ 0. Then, for every k0 ∈ Np+1, we have

[
Mn+1

α (tx + (1 − t)y)
]
k0

= M
((

Mn
α(tx + (1 − t)y)

)∨k0
)

≤ M
(
tMn

α(x)∨k0 + (1 − t)Mn
α(y)∨k0

)

≤ tM
(
Mn

α(x)∨k0
)

+ (1 − t)M
(
Mn

α(y)∨k0
)

= t
[
Mn+1

α (x)
]
k0

+ (1 − t)
[
Mn+1

α (y)
]
k0

.

Since k0 is an arbitrary element in Np+1 we obtain (3.4) with n replaced by
n + 1. Consequently (3.4) is valid for all n ≥ 0. In the limit case as n → ∞, in
view of Proposition 2.1 part (d), we get

Kα(tx + (1 − t)y) ≤ tKα(x) + (1 − t)Kα(y),

which shows that M̃ = Kα is convex and, by the already proved part (d),
monotone. The case when M is concave and monotone is analogous. This
completes part (e) of the proof. �

In the following proposition, we show that this extension preserves the
comparability of means.

Proposition 3.3. Let p ∈ N with p ≥ 2, and M,N : Ip → I be symmetric,
continuous, monotone, and strict means. Then M ≤ N yields M̃ ≤ Ñ .

Proof. Let α, d, and M be like in equations (3.2), and (3.3). Additionally,
define N : (Ip)p+1 → Ip+1 by N := (N, . . . , N). However, x∨k ≺ y∨k for every
x, y ∈ Ip+1 with x ≺ y and k ∈ Np+1. Therefore, since M is monotone, we
obtain

M(x∨k) ≤ M(y∨k) ≤ N(y∨k) for every k ∈ Np+1,

which can be rewritten in a compact form as Mα(x) ≺ Nα(y). Thus, by simple
induction, x ≺ y implies Mn

α(x) ≺ Nn
α(y) for every n ∈ N. In the limit case as

n → ∞, by Proposition 2.1 part (d), we obtain that M̃(x) ≤ Ñ(y) for every
x, y ∈ Ip with x ≺ y.

Finally, for every x ∈ Ip, we have x ≺ x. Therefore, we obtain the desired
inequality M̃(x) ≤ Ñ(x). �

4. Multivariable generalization of bivariate means

Let M : I2 → I be a symmetric, continuous, and strict mean on an interval I.
Then its iterative β-invariant extension is a mean Me :

⋃∞
p=1 Ip → I defined
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by

Me(x1, . . . , xp) =

⎧
⎪⎨

⎪⎩

x1 for p = 1;
M(x1, x2) for p = 2;
M∼(p−2)(x1, . . . , xp) for p > 2,

(4.1)

where M∼p is the p-th iteration of the β-invariant extension operator, that is

M∼1 = M∼ = M̃ and M∼p = (M∼(p−1))∼ for p ≥ 2.

Now we adapt the result for β-invariant extensions to the iterative setting.

Proposition 4.1. Let M : I2 → I be a symmetric, continuous, and strict mean.
Then

(a) Me is continuous;
(b) Me is symmetric;
(c) Me is strict;
(d) if M is monotone, then so is Me;
(e) if M is convex (concave) and monotone then so is M̃ ;
(f) if I = (0,+∞) and M is positively homogeneous, then so is M̃ .

Proof. To show that Me is continuous recall that, in view of Theorem 1 part
(a), the β-invariant extension operator preserves continuity. Therefore, once we
know that Me�p is continuous for certain p ≥ 2, then so is Me�p+1= (Me�p)∼.
Thus, since Me�2= M is continuous, by simple induction we find that Me�p

is continuous for all p ≥ 2 which is equivalent to the continuity of Me and
completes part (a) of the proof.

Analogously, applying other parts of Theorem 1, we can show all the re-
maining parts of this statement. �

Next, we show that this operator is monotone with respect to the ordering
of means.

Proposition 4.2. Let M, N : I2 → I be symmetric, continuous, monotone, and
strict means. Then M ≤ N if and only if Me ≤ Ne.

Proof. First observe that, by Theorem 1 parts (a)–(d), all iterates M∼p and
N∼p (p ∈ N) are symmetric, continuous, monotone, and strict.

If M ≤ N then, by Proposition 3.3, one can (inductively) show that M∼p ≤
N∼p for all p ≥ 1, which is equivalent to the inequality Me ≤ Ne.

Conversely, if Me ≤ Ne then M = Me�2≤ Ne�2= N . �
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4.1. Conjugacy of means

For n ∈ N, a mean M : Ip → I and a continuous, monotone function ϕ : J → I
we define a conjugated mean M [ϕ] : Jp → J by

M [ϕ](x1, . . . , xp) := ϕ−1 ◦ M
(
ϕ(x1), . . . , ϕ(xp)

)
.

Conjugacy of means is a generalization of the concept of quasiarithmetic
means. As a matter of fact, one can easily check that quasiarithmetic means
are simply conjugates of the arithmetic mean. In the next statement, we prove
that iterative β-invariant extensions commute with conjugacy.

Proposition 4.3. Let I, J ⊂ R be intervals and M : I2 → I be a symmetric,
continuous, monotone, strict mean, and ϕ : J → I be a continuous and strictly
monotone function. Then (Me)[ϕ] = (M [ϕ])e.

Proof. First, we show that the β-invariant extension commutes with conju-
gates. More precisely for every symmetric, continuous and monotone mean
N : Ip → I we have

(Ñ)[ϕ] = (N [ϕ])∼. (4.2)

Indeed, define the mappings

M : Ip+1 � x �→ (
N(x∨1), . . . , N(x∨(p+1))

) ∈ Ip+1;

P : Jp+1 � y �→ (
N [ϕ](y∨1), . . . , N [ϕ](y∨(p+1))

) ∈ Jp+1;

Φ: Ip+1 � x �→ (
ϕ(x1), . . . , ϕ(xp+1)

) ∈ Jp+1.

Then, for all y ∈ Jp+1, we have

Φ ◦ P(y) = Φ
(
N [ϕ](y∨1), . . . , N [ϕ](y∨(p+1))

)

=
(
N(Φ(y)∨1), . . . N(Φ(y)∨(p+1))

)
= M ◦ Φ(y).

Therefore P = Φ−1 ◦ M ◦ Φ, and whence

Pn = Φ−1 ◦ Mn ◦ Φ for all n ≥ 1. (4.3)

By Proposition 2.1 part (d) we know that the sequence of iterates (Mn)∞
n=1

converges to Ñ in each coordinate while (Pn)∞
n=1 converges to (N [ϕ])∼ in

each coordinate. Whence, if we take the limit n → ∞, equality (4.3) implies
(N [ϕ])∼ = ϕ−1 ◦ Ñ ◦ Φ = (Ñ)[ϕ]. Therefore (4.2) holds.

By (4.2) we easily obtain (M∼p)[ϕ] = (M [ϕ])∼p for all p ≥ 1, which implies
(Me)[ϕ] = (M [ϕ])e. �
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5. Applications to classical families of means

5.1. Quasiarithmetic envelopes

Quasiarithmetic means were introduced as a generalization of Power Means
in the 1920s/30 s in a series of nearly simultaneous papers by de Finetti [13],
Knopp [23], Kolmogorov [24], and Nagumo [37]. For an interval I and a contin-
uous and strictly monotone function f : I → R (from now on CM(I) is a family
of continuous, strictly monotone functions on I) we define the quasiarithmetic
mean A[f ] :

⋃∞
n=1 In → I by

A[f ](x1, . . . , xn) := f−1

(
f(x1) + f(x2) + · · · + f(xn)

n

)
,

where n ∈ N and x1, . . . , xn ∈ I. The function f is called a generator of the
quasiarithmetic mean.

It is well known that for I = R+, πr(t) := tr for r �= 0 and π0(t) := ln t,
the mean A[πr] coincides with the r-th power mean (this fact had already been
noticed by Knopp [23]).

There were a number of results related to quasiarithmetic means. For ex-
ample (see [20]) A[f ] = A[g] if and only if their generators are affine transfor-
mations of each other, i.e. there exist α, β ∈ R such that g = αf + β.

Generalizing the approach from the paper [40], we are going to introduce
quasiarithmetic envelopes. First, for a given mean M : Ip → I we define sets
of quasiarithmetic means which are below and above M . More precisely let

F−(M) := {f ∈ CM(I) : A[f ](x) ≤ M(x) for all x ∈ Ip};

F+(M) := {f ∈ CM(I) : A[f ](x) ≥ M(x) for all x ∈ Ip}.

Now, for a given mean M : Ip → I, we define local lower and upper quasiarith-
metic envelopes LM , UM : Ip → I by

LM (x) :=

{
sup{A[f ](x) : f ∈ F−(M)} if F−(M) �= ∅,

min(x) otherwise;

UM (x) :=

{
inf{A[f ](x) : f ∈ F+(M)} if F+(M) �= ∅,

max(x) otherwise.
,

for all x ∈ Ip.
In the case M :

⋃∞
p=1 Ip → I we have two approaches to this problem. First,

similarly to the previous case, we define two pairs LM , UM :
⋃∞

p=1 Ip → I by

LM (x1, . . . , xp) := LM�p
(x1, . . . , xp),

UM (x1, . . . , xp) := UM�p
(x1, . . . , xp),

where p ∈ N is arbitrary and x1, . . . , xp ∈ I.
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On the other hand, we can repeat the previous setting from the beginning
and define

G−(M) := {f ∈ CM(I) : A[f ](x) ≤ M(x) for all x ∈
∞⋃

p=1

Ip};

G+(M) := {f ∈ CM(I) : A[f ](x) ≥ M(x) for all x ∈
∞⋃

p=1

Ip}.

Then we set (global) lower and upper quasiarithmetic envelopes as follows.
Let LM ,UM :

⋃∞
p=1 Ip → I be given by

LM (x) :=

{
sup{A[f ](x) : f ∈ G−(M)} if G−(M) �= ∅,

min(x) otherwise;

UM (x) :=

{
inf{A[f ](x) : f ∈ G+(M)} if G+(M) �= ∅,

max(x) otherwise.
,

for all x ∈ ⋃∞
p=1 Ip.

Before we proceed, let us illustrate these concepts with a simple example.

Example 2. Define M :
⋃∞

p=1 R
p
+ → R+ by

M(x1, . . . , xp) :=
(

x
1/p
1 + · · · + x

1/p
p

p

)p

p ∈ N and x1, . . . , xp ∈ R+.

Then, since the restriction of M to a given (fixed) number of parameters is a
power mean (and therefore a quasiarithmetic mean), we get LM = UM = M .
Meanwhile, global quasiarithmetic envelopes bound M for a vector of param-
eters of arbitrary length. Using the fact that power means are ordered, we get
LM = P0 and UM = P1.

Now we are going to show a few basic properties of operators L, U and L,
U . We bind them into two propositions. The first one, refers to L and U , while
the second to L and U .

Proposition 5.1. The following properties are valid:
(i) For every mean M : Ip → I we have LM ≤ M ≤ UM .
(ii) Let M,N : Ip → I be two means with M ≤ N . Then LM ≤ LN and

UM ≤ UN .
(iii) For every ϕ ∈ CM(I) we have LA[ϕ] = UA[ϕ] = A[ϕ].
(iv) For every mean M : Ip → I and a monotone, continuous function ϕ : J →

I we have L
[ϕ]
M = LM [ϕ] and U

[ϕ]
M = UM [ϕ] .

Proof. We restrict the proof of this proposition to results concerning the lower
envelope. Parts concerning the upper envelope are analogous.
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To show (i), fix x ∈ Ip arbitrarily. If F−(M) = ∅ then

LM (x) = min(x) ≤ M(x).

Otherwise we have A[f ](x) ≤ M(x) for all f ∈ F−(M) which yields

LM (x) = sup{A[f ](x) : f ∈ F−(M)} ≤ M(x),

which validates the inequality LM ≤ M and completes the proof of part (i).
To prove part (ii), it is sufficient to observe that, under the assumption

M ≤ N , we have F−(M) ⊆ F−(N), which easily implies LM ≤ LN .
Next, for every ϕ ∈ CM(I) we have ϕ ∈ F−(A[ϕ]), which shows the in-

equality LA[ϕ] ≥ A[ϕ]. Therefore LA[ϕ] = A[ϕ], since the second inequality was
already proved in (i). Thus we get (iii).

Finally, in order to prove (iv) assume that ϕ is strictly increasing and note
that

F−(M [ϕ]) = {f ∈ CM(J) : A[f ](x) ≤ M [ϕ](x) for all x ∈ Jp}
= {f ∈ CM(J) : A[f◦ϕ−1](x) ≤ M(x) for all x ∈ Ip}
= {f ∈ CM(J) : f ◦ ϕ−1 ∈ F−(M)}
= {g ◦ ϕ ∈ CM(J) : g ∈ F−(M)}.

Therefore either F−(M [ϕ]) = F−(M) = ∅ and the equality is trivial or for
every x = (x1, . . . , xp) ∈ Ip we have

LM [ϕ](x) = sup{A[f ](x) : f ∈ F−(M [ϕ])}
= sup{A[g◦ϕ](x) : g ∈ F−(M)}
= sup

{
ϕ−1

(
A[g]

(
ϕ(x1), . . . , ϕ(xp)

))
: g ∈ F−(M)

}

= ϕ−1
(

sup
{
A[g]

(
ϕ(x1), . . . , ϕ(xp)

)
: g ∈ F−(M)

})
= L

[ϕ]
M (x),

and we get (iv), which was the last unproved part of this statement. �

In the same spirit, we can establish the analogous result for global en-
velopes.

Proposition 5.2. The following properties are valid:

(i) For every mean M :
⋃∞

p=1 Ip → I we have LM ≤ M ≤ UM .
(ii) Let M,N :

⋃∞
p=1 Ip → I be symmetric, continuous and strict means with

M ≤ N . Then LM ≤ LN and UM ≤ UN .
(iii) For every ϕ ∈ CM(I) we have LA[ϕ] = UA[ϕ] = A[ϕ].
(iv) For every mean M : Ip → I and a monotone, continuous function ϕ : J →

I we have L[ϕ]
M = LM [ϕ] and U [ϕ]

M = UM [ϕ] .
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Its proof follows the lines of that of Proposition 5.1, but we need to replace
the set F−(M) by G−(M).

In the next lemma, we prove that the β-invariant extension of a bivari-
ate quasiaritmetic mean is the quasiarithmetic mean generated by the same
function.

Lemma 5.3. If ϕ ∈ CM(I) then
(
A[ϕ]�2

)e = A[ϕ].

Proof. Let ϕ ∈ CM(I) and denote briefly M := A[ϕ]�2. We prove by induction
that

Me�p= A[ϕ]�p (5.1)

for all p ≥ 1. For p = 1 and p = 2, this statement is trivial.
Now assume that (5.1) holds for some p = p0 ≥ 2. Then

Me�p0+1= M∼(p0−1) = (M∼(p0−2))∼ = (Me�p0)
∼ = (A[ϕ]�p0)

∼.

Consequently, for all x ∈ Ip0+1, we have

A[ϕ]
(
A[ϕ]

(
x∨1

)
, . . . , A[ϕ]

(
x∨(p0+1)

))

= A[ϕ]

(
ϕ−1

(ϕ(x1) + · · · + ϕ(xp0+1) − ϕ(x1)
p0

)
, . . . ,

ϕ−1
(ϕ(x1) + · · · + ϕ(xp0+1) − ϕ(xp0+1)

p0

))

= ϕ−1

(
1

p0 + 1

p0+1∑

k=1

ϕ(x1) + · · · + ϕ(xp0+1) − ϕ(xk)
p0

)

= ϕ−1

(
1

p0 + 1

p0+1∑

k=1

ϕ(xk)
)

= A[ϕ](x).

Thus Me �p0+1= (A[ϕ] �p0)
∼ = A[ϕ] �p0+1, i.e. (5.1) holds for p = p0 + 1.

By induction we obtain that (5.1) holds for all p ≥ 1, which is precisely the
equality (A[ϕ]�2)e = Me = A[ϕ]. �

Now we proceed to the discussion of comparability between envelopes. First,
we show that local envelopes approximate the mean better than global ones,
as expected.

Proposition 5.4. For every mean M :
⋃∞

p=1 Ip → I we have

LM ≤ LM ≤ M ≤ UM ≤ UM .

Proof. Take p ∈ N and x ∈ Ip arbitrarily. If G−(M) = ∅ then LM = min ≤ LM .
Otherwise, by G−(M) ⊆ F−(M), we have

LM (x) = sup{A[f ](x) : f ∈ G−(M)} ≤ sup{A[f ](x) : f ∈ F−(M)} = LM (x),
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which shows that

LM (x) ≤ LM (x).

Similarly we obtain that either F−(M) = ∅ and LM = min or A[f ](x) ≤
M(x) for all f ∈ F−(M), which yields

LM (x) = sup{A[f ](x) : f ∈ F−(M)} ≤ M(x),

which can be concluded as LM (x) ≤ M(x). Analogously we can prove the dual
inequalities M(x) ≤ UM (x) ≤ UM (x). �

In the next result, we show how the extension of a mean affects its envelopes.

Theorem 2. Let M : I2 → I be a symmetric, continuous, monotone, and strict
mean. Then
(a) G−(Me) = F−(M) and G+(Me) = F+(M);
(b) LMe = sup{A[f ] : f ∈ F−(M)} and UMe = inf{A[f ] : f ∈ F+(M)};
(c) LMe = LM and UMe = UM on I2;
(d) LMe ≤ (LM )e ≤ Me ≤ (UM )e ≤ UMe .

Proof. First, for all f ∈ CM(I), we have

f ∈ G−(Me) ⇐⇒ A[f ](x) ≤ Me(x) for all x ∈
∞⋃

p=1

Ip

⇐⇒ (A[f ])e(x) ≤ Me(x) for all x ∈
∞⋃

p=1

Ip

⇐⇒ A[f ](x) ≤ M(x) for all x ∈ I2

⇐⇒ f ∈ F−(M).

Thus G−(Me) = F−(M). The second equality is dual, thus we have proved
(a). In view of this, we trivially obtain (b).

To show (c) note that, in the case F−(M) �= ∅, we have

LMe(x) = sup{A[f ](x) : f ∈ F−(M)} = LM (x) for all x ∈ I2.

For F−(M) = ∅ we obviously have LMe = min = LM on I2. Similarly UMe =
UM on I2.

To prove (d), we focus on inequalities LMe ≤ (LM )e ≤ Me, since the
remaining ones are dual. Additionally one can assume that F−(M) �= ∅, since
the second case is trivial.

First, note that

LMe = sup{A[f ] : f ∈ F−(M)} = sup{(A[f ])e : f ∈ F−(M)}.

However, for all f ∈ F−(M) we have

(A[f ])e ≤ (
sup{A[g] : g ∈ F−(M)})e = (LM )e,
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thus LMe ≤ (LM )e. Finally, Proposition 4.2 implies (LM )e ≤ Me. �

5.2. Gini means

Let us recall two results characterizing the comparison in the family of Gini
means.

Proposition 5.5. ([10]) Let p, q, r, s ∈ R. Then the following conditions are
equivalent:

• Gp,q(x) ≤ Gr,s(x) for all n ∈ N and x ∈ R
n;

• min(p, q) ≤ min(r, s), and max(p, q) ≤ max(r, s);
• (p, q, r, s) ∈ Δ∞, where

Δ∞ := {(p, q, r, s) ∈ R
4 : min(p, q) ≤ min(r, s) and

max(p, q) ≤ max(r, s)}.

Proposition 5.6. ([43], Theorem 3) Let p, q, r, s ∈ R. Then the following con-
ditions are equivalent:

• For all x, y > 0, Gp,q(x, y) ≤ Gr,s(x, y);
• p + q ≤ r + s, m(p, q) ≤ m(r, s), and μ(p, q) ≤ μ(r, s), where

m(p, q) :=

⎧
⎪⎨

⎪⎩

min(p, q) if p, q ≥ 0,

0 if pq < 0,

max(p, q) if p, q ≤ 0;
μ(p, q) :=

{ |p|−|q|
p−q if p �= q,

sign(p) if p = q;

• (p, q, r, s) ∈ Δ2, where

Δ2 := {(p, q, r, s) ∈ R
4 : p + q ≤ r + s, m(p, q) ≤ m(r, s),

μ(p, q) ≤ μ(r, s)}.

By [28,29] we know that Gp,q is monotone if and only if

(p, q) ∈ MonG := {(p, q) ∈ R
2 : pq ≤ 0} = m−1(0).

As a straightforward application of Proposition 4.2 we get.

Corollary 5.7. Let p, q, r, s ∈ R with (p, q), (r, s) ∈ MonG.
Then Ge

p,q(x) ≤ Ge
r,s(x) for all n ∈ N and x ∈ R

n
+ if and only if (p, q, r, s) ∈

Δ2.

This corollary shows that the equality Gp,q = Ge
p,q fails to be valid for a large

subclass of parameters (p, q). For example if (p, q, r, s) ∈ (Mon2
G ∩ Δ2)\Δ∞.

Then we have Ge
p,q(x) ≤ Ge

r,s(x) for all x ∈ ⋃∞
n=1 R

n
+ while there exists a vector

x̄ ∈ ⋃∞
n=1 R

n
+ such that Gp,q(x̄) > Gr,s(x̄). Consequently, at least one of the

equalities Gp,q = Ge
p,q or Gr,s = Ge

r,s is not valid.
Furthermore, for all p ∈ R and x, y ∈ R+ we have Gp,−p(x, y) =

√
xy =

P0(x, y) and therefore Ge
p,−p = Pe

0 = P0. However, in general, the equality
Gp,−p(x1, . . . , xn) = P0(x1, . . . , xn) is not valid for n > 2.
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6. Conclusions and further research

6.1. Conclusions

Let us now review the most important outcomes of this paper.
(C1) β-invariant extension is the tool to construct a (k + 1)-variable mean

based on a k-variable one. Then we applied the iterative approach to
generalize bivariate means to multivariable ones—operator (·)e.

(C2) Both of these operations are inner, in the sense that the only tools are
either taking the value of the mean or the limit. In particular, there are
no additional parameters in this process.

(C3) These operations are monotone and preserve the class of quasiarithmetic
means. It was used to show lower and upper bounds for the value of Me.

(C4) The way of calculating M∼k at this stage requires recursive application
of k infinite procesess. Therefore, it has the order-type complexity ωk.

6.2. Further research

Finally, since this is a new concept, there arise several possible ways of studying
this problem.
(R1) At this stage, the explicit value of the iterative β-invariant extension is

known only in the family of quasiaritmetic means. It is worth asking if
we can obtain an explicit form for some other families of means.

(R2) It is a natural question what the image of the β-invariant extension is.
More precisely, to characterize (p + 1)-variable means N : Ip+1 → I such
that N = M̃ for some p-variable mean M : Ip → I.

(R3) Once we know (C4), we can search for a single iteration process which
converges to M∼2 (or even M∼k) for a given mean M .

(R4) There appears a natural question to characterize those means M : I2 → I
so that Me is repetition invariant, that is the equality

Me(x1, . . . , x1︸ ︷︷ ︸
m-times

, . . ., xn, . . . , xn︸ ︷︷ ︸
m-times

) = Me(x1, . . . , xn)

holds for all n,m ∈ N and (x1, . . . , xn) ∈ In.
(R5) Motivated by Theorem 1 and Proposition 4.1, we can look for other con-

straints preserved by the extensions (for example differentiability and
higher order regularity assumptions).

(R6) One can ask about the stability properties of such an extension, that
is, the correspondence between ‖M − N‖ and ‖M∼ − N∼‖ (in a given
space).

(R7) The family of continuous, strict means M : Ip → I (I and p are fixed)
forms a convex subset of the space L∞(In). In this sense, the β-invariant
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extension maps a convex subset of L∞(In) to L∞(In+1). There appear
natural questions, for example if this mapping is one-to-one or continuous
(in a given sense, uniformly, pointwise, etc.).

(R8) Finally, it could happen that the β-invariant extension is not the most
suitable way of extending means. Finding an extension preserving a wider
class of means (not only quasiarithmetic ones) could be a great improve-
ment not only in this narrow field, but it might also provide a better
understanding of the theory of means.
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