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Set-valued dynamics related to convex-valued m-mappings

Hamid Khodaei

Abstract. In this article, we study the set-valued dynamics related to some Euler-Lagrange
type functional equations of convex-valued m-mappings. We deal with perturbations of these
equations. In order to do this, we use the Banach contraction principle and the Hausdorff
distance. Several outcomes on approximate solutions of a few important classic equations
are discussed and some applications are given.

Mathematics Subject Classification. 47H04, 39B82, 47H10.

Keywords. Set-valued dynamics, m-mapping, Banach contraction principle, Approximate

solution.

1. Introduction

Let X be a normed space, Y a Banach space and ε > 0. Smajdor [28] and
Gajda and Ger [10] observed that if a mapping f : X → Y satisfies

f(x + y) − f(x) − f(y) ∈ B(0, ε), x, y ∈ X,

where B(0, ε) is the closed ball of radius ε centered at 0, then the set-valued
mapping

F (x) = f(x) + B(0, ε), x ∈ X,

is subadditive (i.e., F (x + y) ⊆ F (x) + F (y) for x, y ∈ X) and the mapping
g : X → Y , which satisfies

f(x) − g(x) ∈ B(0, ε), x ∈ X,

is an additive selection of F (i.e., g(x) ∈ F (x) and g(x + y) = g(x) + g(y) for
x, y ∈ X).

There arises the natural question under what conditions a subadditive set-
valed function admits an additive selection. An answer to this question can be
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found in Gajda and Ger [10]. In fact, they proved that if (S,+) is a commu-
tative semigroup with zero element, Y is a Banach space and F : S → P(Y )
is a subadditive mapping with bounded diameter and nonempty, convex and
closed values, then F admits a unique additive selection.

It is interesting that, once we have obtained a result of Gajda-Ger type,
we can prove the stability of the functional equations corresponding to the
functional inclusions considered. For more information, see, e.g., [3–6,9,16–
18,21–26].

Let f be a mapping between two vector spaces and a �= ±1 be a fixed
nonzero integer. For m = 1, 2, 3, 4, the functional equation

f(ax + y) + f(ax − y) = am−2[f(x + y) + f(x − y)]

+ 2(a2 − 1)[am−2f(x) +
(m − 2)(1 − (m − 2)2)

6
f(y)],

(1.1)

is equivalent to the additive, quadratic, cubic and quartic functional equa-
tions, respectively. For convenience, a solution of the functional equation (1.1)
is said to be an m-mapping; see, e.g., [11,12,29].

Let n > 1 be an integer, M = {1, . . . , n} and W = {I ⊆ M : 1 ∈ I}. Denote
M \I by Ic for I ∈ W. In this paper, we consider the following Euler-Lagrange
type functional equations

∑

I∈W
f
( ∑

i∈I

aixi −
∑

i∈Ic

aixi

)
= 2n−2am−2

1

n∑

i=2

a2
i [f(x1 + xi) + f(x1 − xi)]

+ 2n−1am−2
1

(
a2
1 −

n∑

i=2

a2
i

)
f(x1),

(1.2)

∑

I∈W
f
( ∑

i∈I

aixi −
∑

i∈Ic

aixi

)
= 2n−2

∑

1≤i<j≤n

a2
i a

2
j [f(xi + xj) + f(xi − xj)]

+ 2n−1
n∑

i=1

a2
i

(
a2

i −
n∑

j=1,j �=i

a2
j

)
f(xi),

(1.3)

where m ∈ {1, 2, 3}, f is a mapping between two vector spaces and a1, . . . , an

are fixed nonzero integers with a1 �= ±1 and an = 1. Using the Banach con-
traction principle and the Hausdorff distance, we deal with perturbations of
set-valued versions of the functional equations (1.2) and (1.3). Some partic-
ular cases of our results are discussed. More importantly, the corresponding
single-valued functional equations acting as special cases will be included in
our results.

Note that if f satisfies (1.3), then f is quartic, see [14, Theorem 2.2] (the
single-valued and set-valued versions of (1.3) with n = 2, a1 = 2 and a2 = 1
were studied in [20,24]). If f satisfies (1.2) with m = 3, then f is cubic, see [13,
Theorem 2.2] (the single-valued and set-valued versions of (1.2) with m = 3,
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n = 2, a1 = 2 and a2 = 1 were studied in [15,24,25]). It is easy to verify from
[19, Lemma 3.2] that if f satisfies (1.2) with m = 2, then f is quadratic (the
equation (1.2) with m = 2, n = 2, a1 = 2 and a2 = 1 was studied in [7]). Also,
it is easy to verify from [12, Theorem 2.1] that if f satisfies (1.2) with m = 1,
then f is additive (the equation (1.2) with m = 1, n = 2, a1 = 2 and a2 = 1
was studied in [1]).

2. Set-valued dynamics related to functional equations (1.2) and (1.3)

The Banach fixed point theorem [2] (also known as the Banach contraction
principle) is an important tool in the theory of metric spaces because it guar-
antees the existence and uniqueness of fixed points of certain self mappings of
metric spaces and provides a constructive method to find those fixed points.

Theorem 2.1. (The Banach contraction principle). Let (X, d) be a complete
metric space, and consider a mapping Λ : X → X, which is strictly contractive,
i.e., d(Λx,Λy) ≤ Ld(x, y) for all x, y ∈ X and some (Lipschitz constant)
L ∈ (0, 1). Then:

(i) The mapping Λ has one and only one, fixed point e = Λ(e),
(ii) The fixed point e is globally attractive, i.e., limn→∞ Λnx = e for any

starting point x ∈ X,
(iii) The estimation inequality d(x, e) ≤ 1

1−L d (x,Λx) holds for all x ∈ X.

Let Y be a Banach space. We denote the set of all nonempty subsets of
Y by P0(Y ) and the set of all convex closed bounded members of P0(Y ) by
Cclb(Y ). The number

diam(A) = sup{‖x − y‖ : x, y ∈ A}
is said to be the diameter of A ∈ P0(Y ).

For A,B ∈ P0(Y ) and λ, η ∈ R, we write A + B = {x + y : x ∈ A, y ∈ B}
and λA = {λx : x ∈ A} ; it is well known that λ(A + B) = λA + λB and
(λ + η)A ⊆ λA + ηA. Furthermore, when A is convex and λη ≥ 0, we obtain
(λ + η)A = λA + ηA.

For convex closed elements A1, . . . , An ∈ P0(Y ), we define
n⊕

i=1

Ai = A1 ⊕ · · · ⊕ An = A1 + · · · + An,

where A1 + · · · + An denotes the closure of A1 + · · · + An.
For any closed bounded elements A,A′ ∈ P0(Y ), the Hausdorff distance h

between A and A′ is defined by

h(A,A′) = inf{λ ≥ 0 : A ⊆ A′ + λBY , A′ ⊆ A + BY },

where BY is the closed unit ball in Y . The following result is proved from the
definition of the Hausdorff distance and can be found in [8].
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Proposition 2.2. Let A,A′, B,B′, C ∈ Cclb(Y ) and λ > 0. Then

(i) h(A ⊕ A′, B ⊕ B′) ≤ h(A,B) + h(A′, B′);
(ii) h(λA, λB) = λh(A,B);
(iii) h(A ⊕ C,B ⊕ C) = h(A,B).

Let (Cclb(Y ),⊕, h) be endowed with the Hausdorff distance h. In [8, Chap-
ter II], it was proved that (Cclb(Y ),⊕, h) is a complete metric semigroup.
R̊adström proved that (Cclb(Y ),⊕, h) is isometrically embedded in a Banach
space, see [27, Theorem 2].

From now on, unless otherwise specified, let n > 1 be an integer, V be a
vector space, Y be a Banach space, R+ = (0,∞), M = {1, . . . , n}, W = {I ⊆
M : 1 ∈ I}, Ic = M\I for I ∈ W, a1, . . . , an be fixed positive integers with
a1 �= 1 and an = 1, m ∈ {1, 2, 3} be fixed and ξ ∈ {−1, 1} be fixed.

Let us now consider the following set-valued functional equations related
to the Euler-Lagrange type functional equations (1.2) and (1.3).

Let f from V to Cclb(Y ) be a set-valued mapping. For m = 1, 2 and 3, f is
called convex-valued additive, quadratic and cubic, respectively, if it satisfies
the following set-valued functional equation

⊕

I∈W
f
( ∑

i∈I

aixi −
∑

i∈Ic

aixi

)
⊕ 2n−1am−2

1

( n∑

i=2

a2
i

)
f(x1)

= 2n−2am−2
1

n⊕

i=2

a2
i [f(x1 + xi) ⊕ f(x1 − xi)] ⊕ 2n−1am

1 f(x1)

(2.1)

for x1, . . . , xn ∈ V . For convenience, a solution of (2.1) is said to be a convex-
valued m-mapping. Also, f is called convex-valued quartic if it satisfies the
following set-valued functional equation

⊕

I∈W
f
(∑

i∈I

aixi −
∑

i∈Ic

aixi

)
⊕ 2n−1

n⊕

i=1

a2
i

( n∑

j=1,j �=i

a2
j

)
f(xi)

= 2n−2
⊕

1≤i<j≤n

a2
i a

2
j [f(xi + xj) ⊕ f(xi − xj)] ⊕ 2n−1

n⊕

i=1

a4
i f(xi)

(2.2)

for x1, . . . , xn ∈ V .

Theorem 2.3. Let ωm : V n → R+ be a function such that

aξm
1 ωm (x1, . . . , xn) ≤ Lωm

(
aξ
1x1, . . . , a

ξ
1xn

)
, (x1, . . . , xn) ∈ V n (2.3)



Set-valued dynamics related to convex-valued m-mappings

for an L ∈ (0, 1). If f : V → (Cclb(Y ),⊕, h) is a set-valued mapping satisfying

h

(
⊕

I∈W
f
( ∑

i∈I

aixi −
∑

i∈Ic

aixi

)
⊕ 2n−1am−2

1

( n∑

i=2

a2
i

)
f(x1),

2n−2am−2
1

n⊕

i=2

a2
i [f(x1 + xi) ⊕ f(x1 − xi)] ⊕ 2n−1am

1 f(x1)

)

≤ ωm(x1, . . . , xn), (x1, . . . , xn) ∈ V n,

(2.4)

then there exists a unique convex-valued m-mapping c∗
m : V → (Cclb(Y ),⊕, h)

such that

h(f(x), c∗
m(x)) ≤ L

1+ξ
2

2n−1am
1 (1 − L)

ωm(x, 0, . . . , 0), x ∈ V. (2.5)

Moreover, if V is a normed space and t, π are positive real numbers such that
ξm < ξt and

diam (f(x)) ≤ π‖x‖t, x ∈ V, (2.6)

then c∗
m is single-valued.

Proof. From (2.4) with (x1, . . . , xn) = (x, 0, . . . , 0), we obtain

h

(
f(a1x) ⊕ · · · ⊕ f(a1x)︸ ︷︷ ︸

2n−1 times

⊕2n−1am−2
1

( n∑

i=2

a2
i

)
f(x),

2n−2am−2
1

n⊕

i=2

a2
i [f(x) ⊕ f(x)] ⊕ 2n−1am

1 f(x)

)

≤ ωm(x, 0, . . . , 0), x ∈ V.

Since the range of f is convex, it follows from the last inequality, (2.3) and
Proposition 2.2 that

h
(
a−m
1 f (a1x) , f(x)

) ≤ 1
2n−1am

1

ωm(x, 0, . . . , 0), x ∈ V,

and

h
(
am
1 f

(
a−1
1 x

)
, f(x)

) ≤ L

2n−1am
1

ωm(x, 0, . . . , 0), x ∈ V.

Hence

h
(
aξm
1 f

(
a−ξ
1 x

)
, f(x)

)
≤ L

1+ξ
2

2n−1am
1

ωm(x, 0, . . . , 0), x ∈ V, (2.7)

where ξ ∈ {−1, 1} is fixed.
Let us consider a complete generalized metric space (Υ, d), where

Υ = {g | g : V → Cclb(Y )}
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and

d(g, g′) = sup
x∈X

h
(
g(x), g′(x)

)

ωm(x, 0, . . . , 0)
< ∞, g, g′ ∈ Υ.

Put also

Γg(x) = aξm
1 g

(
a−ξ
1 x

)
, x ∈ V, g ∈ Υ.

We show that Γ : Υ → Υ is a strictly contractive operator with the Lipschitz
constant L. To do this, fix g, g′ ∈ Υ, x ∈ V and Cg,g′ ∈ [0,∞) with d(g, g′) ≤
Cg,g′ . Then

h
(
(Γg)(x), (Γg′)(x)

)

ωm(x, 0, . . . , 0)
=

aξm
1 h

(
g

(
a−ξ
1 x

)
, g′

(
a−ξ
1 x

))

ωm(x, 0, . . . , 0)

≤
Lh

(
g

(
a−ξ
1 x

)
, g′

(
a−ξ
1 x

))

ωm

(
a−ξ
1 x, 0, . . . , 0

) ≤ LCg,g′ ,

and consequently d(Γg,Γg′) ≤ Ld(g, g′) for g, g′ ∈ Υ, as claimed.
We deduce from (2.7) that

d(f,Γf) ≤ L
1+ξ
2

2n−1am
1

.

We can now apply Theorem 2.1 to deduce that the sequence {Γjf}jN is con-
vergent in (Υ, d) and its limit

c∗
m(x) = lim

j→∞
Γjf(x), x ∈ V, (2.8)

is a unique fixed point of Γ. Moreover,

d(f, c∗
m) ≤ 1

1 − L
d(f,Γf) ≤ L

1+ξ
2

2n−1am
1 (1 − L)

,

which proves (2.5).
It follows from (2.3), (2.4) and Proposition 2.2 that

h

(
⊕

I∈W
aξmn
1 f

(
a−ξn
1

∑

i∈I

aixi − a−ξn
1

∑

i∈Ic

aixi

)
⊕ 2n−1aξmn+m−2

1

( n∑

i=2

a2
i

)
f

(
a−ξn
1 x1

)
,

2n−2aξmn+m−2
1

n⊕

i=2

a2
i

[
f

(
a−ξn
1 x1 + a−ξn

1 xi

)
⊕ f

(
a−ξn
1 x1 − a−ξn

1 xi

)]

⊕ 2n−1aξmn+m
1 f

(
a−ξn
1 x1

) )

≤ aξmn
1 ωm

(
a−ξn
1 x1, . . . , a−ξn

1 xn

)
≤ Lnωm(x1, . . . , xn), (x1, . . . , xn) ∈ V n.
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Taking the limit as n → ∞, we observe that

h

(
⊕

I∈W
c∗
m

(∑

i∈I

aixi −
∑

i∈Ic

aixi

)
⊕ 2n−1am−2

1

( n∑

i=2

a2
i

)
c∗
m(x1),

2n−2am−2
1

n⊕

i=2

a2
i [c∗

m(x1 + xi) ⊕ c∗
m(x1 − xi)] ⊕ 2n−1am

1 c∗
m(x1)

)
= 0,

and thus c∗
m is a solution of (2.1).

Furthermore, by (2.6), we obtain

diam
(
aξmn
1 f(a−ξn

1 x)
)

≤ aξmn
1 π‖a−ξn

1 x‖t =
(
aξm−ξt
1

)n

π‖x‖t, x ∈ V,

taking the limit as n → ∞ and using (2.8), we observe that c∗
m is a singleton

set. This completes the proof of this theorem. �

Remark 2.4. Theorem 2.3 can be applied to ωm(x1, . . . , xn) := ζ
∑n

i=1 ‖xi‖p

for x1, . . . , xn ∈ V , where V is a normed space and ζ, p are positive real
numbers with ξm < ξp.

Theorem 2.5. Let 	 : V n → R+ be a function such that

a4ξ
1 	 (x1, . . . , xn) ≤ L	

(
aξ
1x1, . . . , a

ξ
1xn

)
, (x1, . . . , xn) ∈ V n (2.9)

for an L ∈ (0, 1). If f : V → (Cclb(Y ),⊕, h) is a set-valued mapping satisfying
f(0) = {0} and

h

⎛

⎝
⊕

I∈W
f
( ∑

i∈I

aixi −
∑

i∈Ic

aixi

)
⊕ 2n−1

n⊕

i=1

a2
i

( n∑

j=1,j �=i

a2
j

)
f(xi),

2n−2
⊕

1≤i<j≤n

a2
i a

2
j [f(xi + xj) ⊕ f(xi − xj)] ⊕ 2n−1

n⊕

i=1

a4
i f(xi)

⎞

⎠

≤ 	(x1, . . . , xn), (x1, . . . , xn) ∈ V n,

(2.10)

then there exists a unique convex-valued quartic mapping c∗ : V → (Cclb(Y ),⊕, h)
such that

h(f(x), c∗(x)) ≤ L
1+ξ
2

2n−1a4
1(1 − L)

	(x, 0, . . . , 0), x ∈ V.

Moreover, if V is a normed space and t, π are positive real numbers such that
4ξ < ξt and diam (f(x)) ≤ π‖x‖t for x ∈ V , then c∗ is single-valued.



Hamid Khodaei AEM

Proof. Setting (x1, . . . , xn) = (x, 0, . . . , 0) in (2.10) and using (2.9), the con-
vexity of the range of f and Proposition 2.2, we have

h
(
a4ξ
1 f

(
a−ξ
1 x

)
, f(x)

)
≤ L

1+ξ
2

2n−1a4
1

	(x, 0, . . . , 0), x ∈ V. (2.11)

Let us consider a complete generalized metric space (Υ, d), where

Υ = {g | g : V → Cclb(Y ), f(0) = {0}}
and

d(g, g′) = sup
x∈X

h
(
g(x), g′(x)

)

	(x, 0, . . . , 0)
< ∞, g, g′ ∈ Υ.

Put also

Λg(x) = a4ξ
1 g

(
a−ξ
1 x

)
, x ∈ V, g ∈ Υ.

We deduce from (2.11) that

d(f,Γf) ≤ L
1+ξ
2

2n−1a4
1

.

The rest of the proof is similar to the proof of Theorem 2.3. �

Remark 2.6. Theorem 2.5 can be applied to 	(x1, . . . , xn) := ζ
∑n

i=1 ‖xi‖p for
x1, . . . , xn ∈ V , where V is a normed space and ζ, p are positive real numbers
with 4ξ < ξp.
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