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Spherical and hyperbolic bicentric polygons
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Abstract. Relations of circumradius, inradius and the distance between the circumcenter
and incenter of Euclidean bicentric polygons are generalized into spherical geometry and
hyperbolic geometry. The asymptotic behavior of these generalized formulas with small
circumradius are studied. Relations for hyperbolic hyper-ideal bicentric polygons are derived.
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1. Introduction

1.1. Euclidean bicentric polygons

Given a Euclidean triangle, its circumradius R, inradius r, and the distance d
between its circumcenter and incenter satisfy the relation

d2 = R2 − 2rR.

This formula was discovered by William Chapple in 1746 [1] and by Leonhard
Euler in 1765 [2,3].

A bicentric polygon is a polygon with all vertices on a circle, called the
circumcircle, and all sides tangent to another circle, called the incircle.

Given a Euclidean bicentric quadrilateral, its circumradius R, inradius r,
and the distance d between its circumcenter and incenter satisfy the relation

(R2 − d2)2 = 2r2(R2 + d2).

This formula was discovered by Nicolaus Fuss in 1797 [4].
Given a Euclidean bicentric convex pentagon, its circumradius R, inradius

r, and the distance d between its circumcenter and incenter satisfy the relation
[5,6]
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8d2Rr3 + 4R2r2(R2 − d2) − 2Rr(R2 − d2)2 − (R2 − d2)3 = 0.

Equivalent forms of this formula were discovered by Nicolaus Fuss in 1802 [7]
and Jakob Steiner in 1827 [8].

For a self-intersecting bicentric pentagon, the relation ((3.15) in [9]) is

8d2Rr3 − 4R2r2(R2 − d2) − 2Rr(R2 − d2)2 + (R2 − d2)3 = 0.

More about the history of these formulas and their relation with Poncelet’s
closure theorem [10] can be found in [11–16].

1.2. Hyperbolic bicentric polygons

Alabdullatif [17] generalized Chapple’s formula and Fuss’ formula into hyper-
bolic geometry. Given a hyperbolic triangle, its circumradius R, inradius r,
and the distance d between its circumcenter and incenter satisfy the relation

tanh r =
tanh(R + d)(cosh2 R sinh2 r − cosh2 R + cosh2(r + d))

cosh2(r + d) − cosh2 R cosh2 r
.

Given a hyperbolic bicentric quadrilateral, its circumradius R, inradius r,
and the distance d between its circumcenter and incenter satisfy the relation

tanh4 r

=
(s2(R − d) − s2(r))2(s2(R + d) − s2(r))2

c4(r)((c4(R) + s4(d))(s2(R − d) − s2(r))(s2(R + d) − s2(r)) − s4(r)c4(R)s4(d))

where s(x) = sinhx and c(x) = cosh x.
The two formulas are derived by using Poncelet’s closure theorem in hyper-

bolic geometry which is established in [17]. Poncelet’s closure theorem for the
hyperbolic plane (and general hyperbolic space) was first established in [18].

For a hyperbolic bicentric n-gon, the relation between its circumradius R,
inradius r, and the distance d between its circumcenter and incenter is also
derived in [17] using hyperbolic trigonometry.

After checking that, when R approaches 0, Chapple’s formula (or Fuss’ for-
mula) appears as a factor of the lowest order terms of its hyperbolic analogue,
Alabdullatif [17] conjectured that this holds for any bicentric n-gon.

Conjecture 1. (Alabdullatif, 2016) Let C and D be two disjoint circles in the
hyperbolic plane, with D inside C. Let R denote the radius of C, r denote the
radius of D and d denote the distance between the two circles’ centres. Assume
that there is a bicentric embedded n-gon between them, then, we can write
the hyperbolic general formula as fn(R, r, d) = 0, by using the expressions

cosh(x) � 1 +
x2

2
sinh(x) � x
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for R small, x = R, r, d,R + d, ..., R + d + r, such that

fn(R, r, d) = Σk
i=1gi(R, r, d)

where gi(R, r, d) is homogeneous of order i, then the lowest order non zero gi
has the Euclidean version as a factor.

1.3. Spherical and hyperbolic triangles

Cho and Naranjo [19] generalized Chapple’s formula into spherical geometry
and hyperbolic geometry and derived a unified formula for the three geome-
tries.

d2 = (R − r)2 − r2, in Euclidean geometry,

sin2 d = sin2(R − r) − sin2 r cos2 R, in spherical geometry,

sinh2 d = sinh2(R − r) − sinh2 r cosh2 R, in hyperbolic geometry.

The three equations can be unified as

s(2d)2 = s(2R − 2r)2 − s(2r)2(1 − Ks(2R)2)

where

s(x) =

⎧
⎨

⎩

x
2 for Euclidean geometry
sin x

2 for Spherical geometry
sinh x

2 for hyperbolic geometry.

as defined in [20].
And K is the curvature,

K =

⎧
⎨

⎩

0 for Euclidean geometry
1 for Spherical geometry
−1 for hyperbolic geometry.

1.4. Main results

In this paper, given a spherical or hyperbolic bicentric polygon, a relation
between its circumradius R, inradius r, and the distance d between its cir-
cumcenter and incenter is derived. This relation is derived by using a different
method and expressed in a different form from [17].

Define

x∗ =

⎧
⎨

⎩

x for Euclidean geometry
tan x for Spherical geometry
tanhx for hyperbolic geometry.
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Theorem 2. In Euclidean, hyperbolic or spherical geometries, given two circles
with radius R and r, let d be the distance between the centers of the two circles.
Suppose R > r + d. There exists an n-gon inscribed in the circle with radius
R and circumscribed about the circle with radius r if and only if d∗, r∗ and R∗
satisfy the polynomial equation U

(K)
n (d∗, r∗, R∗) = 0.

Inspired by Alabdullatif’s conjecture, we study the behavior of U
(K)
n when

R is small.

Theorem 3. In hyperbolic or spherical geometry, when R approaches 0, using
x∗ � x for x = d, r,R, U

(±1)
n (d∗, r∗, R∗) is written in terms of d, r,R. Then

its homogeneous part with the lowest degree equals U
(0)
n (d, r,R).

Let l1, l2, ..., ln be n mutually disjoint geodesics in the hyperbolic plane.
For each pair {li, li+1} (where n + 1 ≡ 1), there is a unique geodesic segmen-
t Pi orthogonal to both li and li+1, and the length of the segment realizes
the distance between li and li+1. The region with finite area bounded by the
geodesics l1, l2, ..., ln and P1, P2, ..., Pn is a hyperbolic hyperideal polygon.

A hyperbolic hyperideal polygon is bicentric if there exists a hyperbolic
circle tangent to P1, P2, ..., Pn and a hyperbolic circle tangent to l1, l2, ..., ln.

Theorem 4. Given two hyperbolic circles with radius R and r respectively,
there exists a bicentric hyperbolic hyperideal n-gon whose sides are tangent
to the two circles if and only if U

(−1)
n (d∗, r∗, R−1

∗ ) = 0. And the polynomial
U

(−1)
n (d∗, r∗, R−1

∗ ) is symmetric in r and R.

1.5. Organization of the paper

In Sect. 2, the main tool, Cayley’s conditions, is recalled. In Sect. 3, Cayley’s
conditions are used to derive the unified formulas. In Sect. 4, the asymptotic
behavior of the formulas in hyperbolic and spherical geometries are studied
when R is small. In Sect. 5, formulas for bicentric hyperbolic hyperideal poly-
gons are derived.

2. Cayley’s conditions

Arthur Cayley first found in 1853 [21,22] explicit conditions determining, for
two given conics, the existence of an n-gon inscribed in one and circumscribed
about the second conic. These conditions were republished in 1861 [23,24] in
a more complete form. More about the history and modern proofs of Cayley’s
conditions can be found in [12–15,25].
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Theorem 5. [Cayley, 1861] Let C[x, y, z] = 0 and D[x, y, z] = 0 be the homoge-
neous quadratic equations in projective coordinates that define suitable conics
C and D.

Let Q(t)be the 3 × 3 symmetric matrix of the quadratic form tC[x, y, z] +
D[x, y, z] and let Ai be defined by

√
det Q(t) = A0 + A1t + A2t

2 + . . .

Let n ≥ 3. There exists an n-gon inscribed in C and circumscribed about D if
and only if

det

⎛

⎝
A2 . . . Am+1

. . .
Am+1 . . . A2m

⎞

⎠ = 0 for n = 2m + 1;

det

⎛

⎝
A3 . . . Am+1

. . .
Am+1 . . . A2m−1

⎞

⎠ = 0 for n = 2m.

2.1. Examples [5,6]

Let

x2 + y2 = R2,

x2 + (y − d)2 = r2

be two circles in the Euclidean plane.
The corresponding homogeneous polynomials are

x2 + y2 − R2z2 = 0,

x2 + y2 − 2dyz + (d2 − r2)z2 = 0.

Then

Q(t) = t

⎛

⎝
1 0 0
0 1 0
0 0 −R2

⎞

⎠ +

⎛

⎝
1 0 0
0 1 −d
0 −d d2 − r2

⎞

⎠

=

⎛

⎝
t + 1 0 0

0 t + 1 −d
0 −d −tR2 + d2 − r2

⎞

⎠ .
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Now let En, n ≥ 0, denote the coefficients in the case of Euclidean geometry,
i.e.,

E0 + E1t + E2t
2 + E3t

3 + E4t
4 + . . .

=
√

det Q(t)

=
√

−(1 + t)(r2 + (r2 + R2 − d2)t + R2t2)

=ir

√

(1 + t)
(

1 +
r2 + R2 − d2

r2
t +

R2

r2
t2

)

.

Then En, n ≥ 0, can be determined. For example,

E0 = ir

E1 = ir · 2r
2 +R2 − d2

2r2

E2 = ir · 4r
2R2 − (R2 − d2)2

8r4

E3 = ir · −2r2(R2 − d2)(R2 + d2) + (R2 − d2)3

16r6

E4 = ir · −16d4r4 + 8r2(R2 − d2)2(R2 + 2d2) − 5(R2 − d2)4

128r8

E5=ir · 32d
4r6+48r4d4(R2 − d2)−10r2(R2 − d2)3(R2 + 3d2)+7(R2 − d2)5

256r10

In general, each

En(d, r,R) = ir · Tn(d, r,R)
tnr2n

(1)

where tn is a power of 2 and Tn(d, r,R) is a homogeneous polynomial of degree
2n in terms of d, r and R.

Cayley’s condition for the existence of a triangle inscribed in the first circle
and circumscribed about the second circle is E2 = 0 which is equivalent to
Chapple’s formula R2 − d2 = 2rR.

Cayley’s condition for the existence of a bicentric quadrilateral inscribed
in the first circle and circumscribed about the second circle is E3 = 0 which is
equivalent to Fuss’ formula (R2 − d2)2 = 2r2(R2 + d2).

Cayley’s condition for the existence of a bicentric pentagon inscribed in the
first circle and circumscribed about the second circle is E2E4 = E2

3 which is
equivalent to

(8d2Rr3 + 4R2r2(R2 − d2) − 2Rr(R2 − d2)2 − (R2 − d2)3)·
(8d2Rr3 − 4R2r2(R2 − d2) − 2Rr(R2 − d2)2 + (R2 − d2)3) = 0.

which contains Fuss and Steiner’s formula for a convex bicentric pentagon and
the formula for a self-intersecting bicentric pentagon.
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3. Unified formulas

Cayley’s type conditions corresponding to Poncelet’s closure theorem for the
hyperbolic plane (and general hyperbolic space) were derived in [18]. The fol-
lowing proof investigates some concrete examples of the general theory in [18].

Proof of Theorem 2. Step 1. In the unit sphere S
2 ⊂ R

3 defined by x2 + y2 +
z2 = 1, consider the first circle in S

2 with center (0, 0, 1) and radius R (mea-
sured by the spherical metric). It is the intersection of S2 with the cone in R

3

defined by

x2 + y2 = z2 tan2 R.

Consider the second circle in S
2 with center (0, sin d, cos d) and radius r. It

is the intersection of S2 with the cone defined as follows.
Let (x, y, z) be a point on the cone. It also denotes the vector from (0, 0, 0) to

this point. The angle between the vector (x, y, z) and the vector (0, sin d, cos d)
is r. Then

(x, y, z) · (0, sin d, cos d) = |(x, y, z)| |(0, sin d, cos d)| cos r.

⇐⇒ y sin d + z cos d =
√

x2 + y2 + z2 cos r

⇐⇒ (y sin d + z cos d)2 =
x2 + y2 + z2

1 + tan2 r

⇐⇒ (1 + tan2 d)x2 + (y − z tan d)2 = tan2 r(y tan d + z)2.

Step 2. Let (x1, y1, z1) and (x2, y2, z2) be two vectors in R
3. The Lorentzian

inner product is defined as

(x1, y1, z1) ◦ (x2, y2, z2) = x1x2 + y1y2 − z1z2.

The Lorentzian norm of (x, y, z) is

||(x, y, z)|| =
√

x2 + y2 − z2.

The hyperboloid model of the hyperbolic plane is

H
2 = {(x, y, z) ∈ R3 : ||(x, y, z)||2 = −1, z > 0}.

Consider the first circle in H
2 with center (0, 0, 1) and radius R (measured

by the hyperbolic metric). It is the intersection of H2 with the cone defined as
follows [26].

(x, y, z) ◦ (0, 0, 1) = ||(x, y, z)|| ||(0, 0, 1)|| cosh R

⇐⇒ −z =
√

x2 + y2 − z2
√−1 cosh R

⇐⇒ x2 + y2 = z2 tanh2 R.
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Consider the second circle in H
2 with center (0, sinh d, cosh d) and radius

r. It is the intersection of H2 with the cone defined as follows.

(x, y, z) ◦ (0, sinh d, cosh d) = ||(x, y, z)|| ||(0, sinh d, cosh d)|| cosh r
⇐⇒ y sinh d − z cosh d =

√
x2 + y2 − z2

√−1 cosh r

⇐⇒ (y sinh d − z cosh d)2 =
z2 − x2 − y2

1 − tanh2 r

⇐⇒ (1 − tanh2 d)x2 + (y − z tanh d)2 = tanh2 r(z − y tanh d)2

Step 3. A unified formula is derived in terms of the function x∗ and the
curvature K.

In spherical, Euclidean or hyperbolic geometries, consider the two circles
with radius R and r and the distance between their centers is d. The corre-
sponding cones are

x2 + y2 = z2R2
∗

(1 + Kd2∗)x
2 + (y − zd∗)2 = r2∗(z + yKd∗)2.

The second one is equivalent to

(1 + Kd2∗)x
2 + (1 − K2r2∗d2∗)y

2 − 2d∗(1 + Kr2∗)yz + (d2∗ − r2∗)z2 = 0.

Then by Cayley’s conditions,

Q(t) = t

⎛

⎝
1 0 0
0 1 0
0 0 −R2

∗

⎞

⎠ +

⎛

⎝
1 + Kd2∗ 0 0

0 1 − K2r2∗d2∗ −d∗(1 + Kr2∗)
0 −d∗(1 + Kr2∗) d2∗ − r2∗

⎞

⎠

=

⎛

⎝
t + 1 + Kd2∗ 0 0

0 t + 1 − K2r2∗d2∗ −d∗(1 + Kr2∗)
0 −d∗(1 + Kr2∗) −tR2

∗ + d2∗ − r2∗

⎞

⎠ .

Now

(A0 + A1t + A2t
2 + A3t

3 + A4t
4 + . . . )2

= det Q(t)

= − (t + 1 + Kd2∗)(R
2
∗t

2 + (r2∗ + R2
∗ − d2∗ − K2d2∗r

2
∗R2

∗)t + r2∗(1 + Kd2∗)
2)

= − R2
∗t

3 + (d2∗ − r2∗ − 2R2
∗ − Kd2∗R

2
∗ + K2d2∗r

2
∗R2

∗)t
2

+ (1 + Kd2∗)(d
2
∗ − 2r2∗ − R2

∗ − Kd2∗r
2
∗ + K2d2∗r

2
∗R2

∗)t − r2∗(1 + Kd2∗)
3

where

An =

⎧
⎨

⎩

En for Euclidean geometry
Sn for Spherical geometry
Hn for hyperbolic geometry.

After finding An, n ≥ 0, Cayley’s conditions can produce unified formulas
in terms of d∗, r∗, R∗ and K. Corresponding to K = 0, the relations are exactly
the ones in Euclidean geometry. �
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For example, comparing the coefficients of tn, n = 0, 1, 2, 3, we have

A2
0 = −r2∗(1 + Kd2∗)

3

2A0A1 = (1 + Kd2∗)(d
2
∗ − 2r2∗ − R2

∗ − Kd2∗r
2
∗ + K2d2∗r

2
∗R2

∗)

A2
1 + 2A0A2 = d2∗ − r2∗ − 2R2

∗ − Kd2∗R
2
∗ + K2d2∗r

2
∗R2

∗
2A0A3 + 2A1A2 = −R2

∗.

Cayley’s condition for the existence of a triangle inscribed in the first circle
and circumscribed about the second circle is

A2 = 0

⇐⇒ (1 + Kd2)2(d2∗(1 − Kr∗R∗)2 + Kr2∗) − R2
∗ − 2r∗R∗)

(d2∗(1 + Kr∗R∗)2 + Kr2∗) − R2
∗ + 2r∗R∗) = 0

⇐⇒ d2∗ =
R2

∗ − 2r∗R∗
(1 + Kr∗R∗)2 + Kr2∗

⇐⇒
⎧
⎨

⎩

d2 = (R − r)2 − r2 in Euclidean geometry
sin2 d = sin2(R − r) − sin2 cos2 R in spherical geometry
sinh2 d = sinh2(R − r) − sinh2 cosh2 R in hyperbolic geometry.

Cayley’s condition for the existence of a bicentric quadrilateral inscribed in
the first circle and circumscribed about the second circle is

A3 = 0
⇐⇒
d4∗((1 − K2r2∗R2

∗)
2 − K2r4∗)

− 2d2∗((1 + K2r2∗R2
∗)(R

2
∗ + r2∗) + Kr2∗(r2∗ + 4R2

∗)) + R4
∗ − 2r2∗R2

∗ = 0.

In Euclidean geometry, it becomes

d4 − 2d2(R2 + r2) + R4 − 2r2R2 = 0

⇐⇒ (R2 − d2)2 = 2r2(R2 + d2).

4. Asymptotic behavior when R is small

Proof of Theorem 3. In the case of hyperbolic geometry, where K = −1,
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H0 + H1t + H2t
2 + H3t

3 + H4t
4 + . . .

=
√

det Q(t)

= ir∗(1 + Kd2∗)
3
2

√

1 +
1

1 + Kd2∗
t

√

1 +
r2∗ + R2∗ − d2∗ − K2d2∗r2∗R2∗

r2∗(1 + Kd2∗)2
t +

R2∗
r2∗(1 + Kd2∗)2

t2.

Comparing with the expansion in the case of Euclidean geometry, we have

H0 = ir∗(1 + Kd2∗)
3
2

H1 = ir∗(1 + Kd2∗)
3
2 · T1(d∗, r∗, R∗) + λ1

r2∗(1 + Kd2∗)3

H2 = ir∗(1 + Kd2∗)
3
2 · T2(d∗, r∗, R∗) + λ2

8r4∗(1 + Kd2∗)6

H3 = ir∗(1 + Kd2∗)
3
2 · T3(d∗, r∗, R∗) + λ3

16r6∗(1 + Kd2∗)9

· · ·

Hn = ir∗(1 + Kd2∗)
3
2 · Tn(d∗, r∗, R∗) + λn

tnr2n∗ (1 + Kd2∗)3n

where Tn is the homogeneous polynomial in the formula (1) of En the coeffi-
cients in Euclidean geometry and λn is a polynomial in terms of d∗, r∗ and R∗
with the lowest degree 2n + 2, n ≥ 1.

When R is small, then r, d are small, therefore d∗, r∗, R∗ are small and
approximately equal to d, r,R respectively. By ignoring the term with degree
greater than 1, we have

Hn(d∗, r∗, R∗) = ir∗(1 + Kd2∗)
3
2 ·

(
Tn(d∗, r∗, R∗)

tnr2n∗
+

λn

tnr2n∗

)

· (1 + Kd2∗)
−3n

� ir∗ · Tn(d∗, r∗, R∗)
tnr2n∗

= En(d∗, r∗, R∗)

� En(d, r,R).

Therefore the lowest term in a relation of Hi’s determined by Cayley’s
conditions is a relation of Ei’s determined by the same conditions.

The same arguments work for spherical bicentric polygons. �
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5. Hyperideal

Proof of Theorem 4. Let (x, y, z) be a space-like vector in R
3, i.e., satisfying

||(x, y, z)|| > 0. Consider the set of all vectors in R
3 Lorentz orthogonal to

(x, y, z):

{(a, b, c) ∈ R
3 : (a, b, c) ◦ (x, y, z) = 0}

which is a plane passing through (0, 0, 0). Its intersection with the hyperboloid
model H2 is a geodesic P in H

2.
A cone is obtained by rotating the ray in the direction (x, y, z) about the

z-axis. The equation of the cone is

(x, y, z) ◦ (0, 0, 1) = ||(x, y, z)|| | ||(0, 0, 1)|| | sinhR

⇐⇒ −z =
√

x2 + y2 − z2 |√−1| sinhR

⇐⇒ x2 + y2 =
z2

tanh2 R

where R is the distance form the point (0, 0, 1) to the geodesic P (Theorem
3.2.12 in [26]).

As in the case of hyperbolic polygons, the circle in H
2 with center (0, sinh d,

cosh d) and radius r is the intersection of H2 with the cone defined by

(1 − tanh2 d)x2 + (y − z tanh d)2 = tanh2 r(z − y tanh d)2.

The intersections of the two cones with the plane defined by z = 1 are
a circle and an ellipse. For a fixed integer n ≥ 3, Cayley’s conditions are
satisfied if and only if there exists a Euclidean n-gon inscribed in the circle
and circumscribed about the ellipse. The i-th side of the Euclidean polygon
determines a plane Li passing through (0, 0, 0) and this side. The intersection
of Li with H

2 is a geodesic li tangent to the hyperbolic circle with center
(0, sinh d, cosh d) and radius r.

Let (xi, yi, zi) be the vector from (0, 0, 0) to the vertex of the Euclidean
polygon incident with the i-th side and (i+1)-th side (where n+1 ≡ 1). Then
(xi, yi, zi) is a space-like vector and it determines a geodesic Pi in H

2 whose
distance to the point (0, 0, 1) is R, and is therefore tangent to the hyperbolic
circle with center (0, 0, 1) and radius R. And Pi is orthogonal to the two
geodesics li and li+1. Then {l1, . . . , ln} together with {P1, · · · , Pn} bound a
hyperbolic hyperideal polygon.

Since each Pi is tangent to a hyperbolic circle and each li is tangent to
another hyperbolic circle, this hyperideal polygon is bicentric.

Comparing the two cones in this case with the two cones in the case of
hyperbolic polygons, we can see that once a relation of d, R and r of a hyper-
bolic bicentric polygon is obtained, a relation of d, R and r of a hyperbolic
hyperideal bicentric polygon can be derived by replacing tanhR, sinhR and
cosh R by tanh−1 R, i cosh R and i sinh R respectively.
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And the formula for a hyperbolic hyperideal polygon is symmetric in R and
r, because the difference between a circumcircle and an incircle does not exist
in this case. �

For example, from the relation for a hyperbolic triangle, we get the relation
for a hyperbolic hyperideal triangle:

d2∗ =
1 − 2r∗R∗

(R∗ − r∗)2 − r2∗R2∗
, where x∗ = tanhx

⇐⇒ sinh2 d = − cosh2(R − r) + sinh2 r sinh2 R.

The relation for a hyperbolic hyperideal bicentric quadrilateral is

d4∗((R
2
∗ − r2∗)2 − r4∗R4

∗)

− 2d2∗((R
2
∗ + r2∗)(1 + r2∗R2

∗) − r2∗R2
∗(r

2
∗R2

∗ + 4)) + 1 − 2r2∗R2
∗ = 0

where x∗ = tanh x.
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