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Semi-classical 2-dimensional Minkowski planes

Günter F. Steinke

Abstract. Semi-classical geometries have been investigated in the context of 2-dimensional
affine planes, projective planes, Möbius planes and Laguerre planes. Here we deal with the
case of 2-dimensional Minkowski planes. Semi-classical 2-dimensional Minkowski planes are
obtained by pasting together two halves of the classical real Minkowski plane along two circles
or parallel classes. By solving some functional equations for the functions that describe the
pasting we determine all semi-classical 2-dimensional Minkowski planes. In contrast to the
rich variety of other semi-classical planes there are only very few models of such Minkowski
planes.
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1. Introduction

The classical real Minkowski plane can be described as the geometry of the
graphs of fractional linear transformations of the 1-sphere S

1. Equivalently, it
is obtained as the geometry of plane sections of a non-degenerate ruled quadric
in a 3-dimensional projective space over the field R of real numbers. The point
space is homeomorphic to a torus S

1 × S
1. Close relatives of the classical

real Minkowski plane are the so-called 2-dimensional Minkowski planes where
the fractional linear transformations are replaced by a suitable collection of
homeomorphisms of S

1, see Sect. 2 for a more explicit definition. There are
various ways to characterize the classical real Minkowski plane among all 2-
dimensional Minkowski planes, see [6, Theorem 4.6.13]. In particular, it is
the only locally classical 2-dimensional Minkowski plane where each point has
a neighbourhood such that the induced geometry on it is isomorphic to a
subgeometry of the classical real Minkowski plane.

In this paper we investigate a different kind of 2-dimensional Minkowski
plane that is almost locally classical. These are the semi-classical 2-dimensional
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Minkowski planes. They can be imagined as two halves of the classical real
Minkowski plane being pasted together along some circles and/or parallel
classes, see Definition 2.1 for a more precise definition. Clearly, almost all
points have classical neighbourhoods except those points on circles or parallel
classes along which we paste.

Similar notions of semi-classical planes have been used in (topological, lo-
cally compact) 2-dimensional affine planes, projective planes, Möbius planes
and Laguerre planes, see [6, 2.7.2, 3.3.3 and 5.3.2]. Many different models were
obtained for each of these semi-classical planes.

Although there are many combinations of circles and parallel classes possi-
ble whose removal will disconnect the point space of the classical real Minkowski
plane, there are only a few proper (non-classical) semi-classical 2-dimensional
Minkowski planes. These are obtained by removing a set consisting of two par-
allel classes of the same type. We show that there is only one one-parameter
family of semi-classical 2-dimensional Minkowski planes.

MainTheorem. A 2-dimensional Minkowski plane is semi-classical if and only
if it is isomorphic to a Minkowski plane M(fk, id) where fk : R ∪ {∞} →
R ∪ {∞}, k > 0, is given by

fk(x) =

⎧
⎪⎨

⎪⎩

x, if x ≥ 0,

kx, if x < 0,

∞, if x = ∞,

see Remark 2.4 for a description of the Minkowski planes M(f, id). Further-
more, the planes M(fk, id), 0 < k ≤ 1, are pairwise non-isomorphic.

In Sect. 2 we give a summary of some basic geometric and topological
properties of 2-dimensional Minkowski planes and introduce semi-classical 2-
dimensional Minkowski planes. Furthermore, the first, and as it turns out only,
examples of proper (non-classical) semi-classical 2-dimensional Minkowski
planes are described. The following Sect. 3 deals with semi-classical 2-
dimensional Minkowski planes obtained by pasting along two disjoint parallel
classes and completely classifies those planes. In the last Sect. 4 semi-classical
2-dimensional Minkowski planes obtained by pasting along two circles are in-
vestigated. The cases where the circles intersect in two points, are tangent
or are disjoint are treated separately. In each case it is shown that only the
classical real Minkowski plane can arise.

2. Two-dimensional Minkowski planes

A Minkowski plane M = (P, C, {||+, ||−}) is an incidence structure consisting
of a point set P , a circle set C, elements of which are nonempty subsets of P ,
and two equivalence relations ||+ and ||− (parallelisms) defined on the point set
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such that three mutually non-parallel points can be joined by a unique circle,
such that the circles which touch a fixed circle K at p ∈ K partition P \ [p]
where [p] denotes the set of all points parallel to p, such that each parallel class
meets each circle in a unique point (parallel projection), such that each (+)-
parallel class and each (–)-parallel class intersect in a unique point, and such
that there is a circle that contains at least three points (richness); compare [2,
III.4], [7], [4] or [3]. It readily follows that for each point p of M the incidence
structure Ap = (Ap,Lp) whose point set Ap consists of all points of M that
are not parallel to p and whose line set Lp consists of all restrictions to Ap of
circles of M passing through p and of all parallel classes not passing through
p is an affine plane, called the derived affine plane at p.

In this paper we are only concerned with 2-dimensional Minkowski planes
whose common point set is the torus S

1 × S
1 (where S

1 usually is represented
as R ∪ {∞}), whose circles are graphs of homeomorphisms of S

1 and whose
parallel classes of points are the horizontals S

1 × {v} and verticals {u} × S
1

on the torus where u, v ∈ S
1. We say that M is in standard representation

if parallel classes and circles are represented as above. In this case we will
omit the two equivalence relations and simply write M = (S1 ×S

1, C). Parallel
classes are often called generators in the literature.

In 2-dimensional Minkowski planes the geometric operations of joining three
mutually non-parallel points by a circle, intersecting of two circles, and touch-
ing become continuous when the circle set is suitably topologised. Further-
more, 2-dimensional Minkowski planes are coherent, see [7, Satz 3.17]. In par-
ticular, touching is the limit of proper intersection. For more information on
2-dimensional Minkowski planes we refer to [7] and [6, Chapter 4].

In the following sections we represent, for easier visualization, the torus
S
1 × S

1 on the square Q = [−1, 1] × [−1, 1] where for each x ∈ [−1, 1] the
point (x,−1) is identified with (x, 1) and similarly, for each y ∈ [−1, 1] the
point (−1, y) is identified with (1, y). No other points are identified. This is
a well-known representation of the torus on the square, see for example [1,
§3.3]. The left edge of Q is identified with the right edge, and the top edge of
Q is identified with the bottom edge. This identification is indicated by the
single and double arrows, which also indicate the orientation of identification,
see Fig. 1. (For example, reversing one of the single arrows results in a Klein
bottle as identification space.)

If h : R → (−1, 1) is the homeomorphism h(x) = x
1+|x| , then h × h : R2 →

(−1, 1)×(−1, 1), (x, y) �→ (h(x), h(y)) also is a homeomorphism from R
2 to the

open square (−1, 1)×(−1, 1), and we can transfer circles and parallel classes of
the affine part (that is, on A(∞,∞)) of a 2-dimensional Minkowski plane onto
the open square. With the above identification this yields a representation
of the entire 2-dimensional Minkowski plane on Q. Clearly, parallel classes
become horizontal and vertical line segments in Q, and the diagonal in S

1 ×S
1
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Figure 1. The torus as an identification space

Figure 2. The torus minus one parallel class, one circle, or
one parallel class and one circle

becomes the diagonal in Q. We will use this representation on Q in the following
diagrams. Note that the four vertices of the boundary of Q represent the same
point (in the above description the point (∞,∞)).

We are interested in collections of parallel classes and circles that separate
the torus, that is, their complement in the point set S

1 × S
1 is disconnected.

One readily sees that a single parallel class G or a single circle C or one parallel
class and one circle do not separate the torus, see Fig. 2 where a deleted parallel
class or circle is indicated by a dashed line segment.

Semi-classical 2-dimensional Minkowski planes can be imagined as two
halves of the classical real Minkowski plane being pasted together along some
circles and/or parallel classes. By the above we need at least two circles or at
least two parallel classes. More formally, we have the following definition.

Definition 2.1. We say that a 2-dimensional Minkowski plane is semi-classical
if there are two parallel classes or two circles that separate the torus into
two connected components P1 and P2 such that the geometry induced on the
closure on each of the connected components is the same as the one induced
by the classical real Minkowski plane Mcl.

Remark 2.2. One can more broadly define semi-classical 2-dimensional
Minkowski planes by allowing a minimal set of finitely many parallel classes/
circles along which the closures of the connected components in the comple-
ment are glued together or allowing more than two connected components in
their complement. Here minimal means that removal of any one member in
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Figure 3. Three parallel classes/circles or three connected
components

the set results in a connected complement. In Fig. 3 the possible extra cases
that arise under this broader definition of semi-classical are illustrated.

There is a different way to cut-and-paste via separating sets in the circle
set. One example is as follows. Let M = (S1 × S

1, C) be a 2-dimensional
Minkowski plane in standard representation. Let C+ and C− be the sets of all
circles in C that are graphs of orientation-preserving and orientation-reversing
homeomorphisms S

1 → S
1, respectively. Clearly, C = C+ ∪ C−. We call C+

the positive half and and C− the negative half of M. These two halves are
completely independent of each other, that is, we can combine these parts from
different 2-dimensional Minkowski planes and obtain another 2-dimensional
Minkowski plane; see [5, Proposition 3] or [6, Theorem 4.3.1].

Theorem 2.3. Let Mi = (S1×S
1, Ci), i = 1, 2 be two 2-dimensional Minkowski

planes. Then the geometry M = (S1×S
1, C+

1 ∪C−
2 ) is a 2-dimensional Minkowski

plane.

Remark 2.4. In other words, the above Theorem says that we can exchange
one half of the circle set of one 2-dimensional Minkowski plane by the corre-
sponding half from another 2-dimensional Minkowski plane and obtain again
2-dimensional Minkowski plane. This method has been used to construct a
variety of Minkowski planes from two different models of the classical real
Minkowski plane Mcl, see [6, 4.3.1] or [10]. Circles of Mcl are the graphs of
transformations in PGL(2,R), the projective linear group of all fractional lin-
ear transformations of S

1. Furthermore, the positive and negative halves of
Mcl consist of all graphs of transformations in PGL+(2,R) = PSL(2,R) and
PGL−(2,R) = PGL(2,R) \ PSL(2,R), respectively, where PSL(2,R) is the
unique normal subgroup of index 2 in PGL(2,R).

Let f and g be two orientation-preserving homeomorphisms of S
1. Then

(x, y) �→ (f(x), g(y)) is an isomorphism from Mcl to another copy of Mcl.
We now swap the negative halves of these two planes. More precisely, we
replace all graphs of transformations in PGL−(2,R) by graphs of transfor-
mations in g−1PGL−(2,R)f . The 2-dimensional Minkowski plane one obtains
according to Theorem 2.3 is denoted by M(f, g). Note that each 2-dimensional
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Minkowski plane M(f, g) is isomorphic to one where both describing homeo-
morphisms f and g fix ∞, 1 and 0 and that the homeomorphism (x, y) �→ (y, x)
of S1 × S

1 to itself defines an isomorphism from M(f, g) to M(g, f).

By construction M(fk, id) is a 2-dimensional Minkowski plane. Since the
restriction of fk on the interval (−∞, 0) is linear and its restriction on (0,∞)
is the identity, one readily obtains the following.

Theorem 2.5. The planes M(fk, id) where fk, k > 0, is as in the Main Theo-
rem are semi-classical 2-dimensional Minkowski planes.

We will show that a semi-classical 2-dimensional Minkowski plane is iso-
morphic to a plane M(fk, id) from Theorem 2.5 with 0 < k ≥ 1. Note that
M(f1, id) is the classical real Minkowksi plane.

An automorphism of a Minkowski plane is a permutation of the point
set such that parallel classes are mapped to parallel classes and circles are
mapped to circles. Every automorphism of the classical real Minkowski plane
is of the form (x, y) �→ (γ(x), δ(y)) or (x, y) �→ (δ(y), γ(x)) where γ, δ ∈
PGL(2,R). By [8] each classical subgeometry of a semi-classical 2-dimensional
Minkowski plane can be uniquely embedded into the classical real Minkowski
plane Mcl, up to automorphisms of Mcl. As a consequence automorphisms of
semi-classical 2-dimensional Minkowski planes can be explicitly determined
and a complete classification of all semi-classical 2-dimensional Minkowski
planes carried out.

We end this section with some notation for circles which will be used in
the remainder of this paper. Since S

1 is often represented as R ∪ {∞}, it is
usual to distinguish circles according to whether or not they pass through the
point (∞,∞). If a circle in Mcl passes through this point we have an extended
Euclidean (straight) line

Em,t = {(x, y) ∈ R
2 | y = mx + t} ∪ {(∞,∞)}

where m, t ∈ R, m 	= 0. A circle not passing through (∞,∞) is an extended
Euclidean hyperbola with horizontal and vertical asymptotes

Ha,b,c =
{

(x, y) ∈ R
2 | x 	= b, y =

a

x − b
+ c

}

∪ {(∞, c), (b,∞)}
where a, b, c ∈ R, a 	= 0. With this notation circles of a semi-classical 2-
dimensional Minkowski plane are of the form

Lm,t = (Em,t ∩ P1) ∪ ψ(Em′,t′ ∩ P2),

Ca,b,c = (Ha,b,c ∩ P1) ∪ ψ(Ha′,b′,c′ ∩ P2)

where ψ : P2 → P2 is an isomorphism from Mcl on P2 to M on P2 and where
m′, t′ depend on m and t, and similarly a′, b′, c′ depend on a, b and c. We
call a line or circle of a semi-clasical 2-dimensional Minkowski plane straight
if Lm,t = Em,t and Ca,b,c = Ha,b,c, respectively, that is, this line or circle is as
in the classical real Minkowski plane.
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Figure 4. The two connected components P1 and P2 deter-
mined by G1 and G2

3. Pasting along two disjoint parallel classes

In this section we consider a set consisting of two parallel classes G1 and G2 of
the same type so that these parallel classes are disjoint. G1 ∪G2 separates the
torus into two open connected subsets P1 and P2 that are both homeomorphic
to the cylinder, see Fig. 4 where the top and bottom edge of the square are
still identified.

Since we are making multiple use of derived affine planes at points on
G1 ∪G2 and these planes are ‘semi-classical’, we give a brief description of the
planes from [9], see also [6, 2.7.2].

Proposition 3.1. Let ϕ and ψ be increasing homeomorphisms of R that fix 0
and 1. Define

Lm,t = {(x,mx + t) ∈ R
2 | x ≥ 0} ∪ {(x, ψ−1(ϕ(m)x + ψ(t))) ∈ R

2 | x ≤ 0}
where m, t ∈ R. Then {Lm,t | m, t ∈ R} is the set of non-vertical lines of
a (topological, locally compact) 2-dimensional affine plane Aϕ,ψ such that the
induced geometries on the right half H+ = [0,∞) × R and left half H+ =
(−∞, 0] × R are desarguesian.

Conversely, a 2-dimensional affine plane that is composed of two desargue-
sian half-planes is isomorphic to a plane Aϕ,ψ for some increasing homeomor-
phisms ϕ and ψ of R that fix 0 and 1.

Theorem 3.2. Let M be a 2-dimensional Minkowski plane obtained by pasting
two classical halves along two disjoint parallel classes. Then M is isomorphic
to exactly one Minkowski plane of the form M(fk, id) where 0 < k ≤ 1 and
fk : R ∪ ∞ → R ∪ ∞ is given by

fk(x) =

⎧
⎪⎨

⎪⎩

x, if x ≥ 0,

kx, if x < 0,

∞, if x = ∞.

Proof. Since the automorphism group of the classical real Minkowski plane is
2-transitive on the set of (+)- or (−)-parallel classes, we may assume w.l.o.g.
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that the two parallel classes along which the two classical halves are pasted
together are G1 = {∞} × S

1 and G2 = {0} × S
1.

Let P1 and P2 be the closures of the connected components of (S1 × S
1) \

(G1 ∪ G2). We assume that the induced geometry on each Pi is isomorphic to
the geometry of the classical real Minkowski induced on the corresponding half
of the torus. Via these isomorphisms we may w.l.o.g. assume that on P1 we
have the geometry of the classical real Minkowski plane. Since parallel classes
are taken to parallel classes under an isomorphism, we may further assume
that the isomorphism from P2 to the classical real Minkowski plane is of the
form (x, y) �→ (x, f(y)) for some homeomorphism f of S

1. Using the group
PGL(2,R) we may additionally assume that f fixes ∞, 0 and 1. This means
that we may introduce coordinates on each of the two halves P1 and P2 such
that (+)-parallel classes are {u} × S

1, u ∈ S
1, the (−)-parallel classes are

(S1 × {v}) ∩ Pi, v ∈ S
1, and circles are of the form

{(

x,
ax + b

cx + d

)∣
∣
∣
∣ x ≥ 0

}

on P1 and
{(

x, f−1

(
a∗x + b∗

c∗x + d∗

))∣
∣
∣
∣ x ≤ 0

}

on P2

where a∗, b∗, c∗, d∗ are continuous functions of a, b, c, d and ad−bc, a∗d∗−b∗c∗ 	=
0.

If a circle passes through (∞,∞) we describe it as

Lm,t = {(x,mx + t) | x ≥ 0} ∪ {(x, f−1(m′x + t′)) | x ≤ 0} ∪ {(∞,∞)}
where m, t ∈ R, m 	= 0, and m′, t′ are continuous functions of m and t such
that m′ 	= 0. If the circle does not pass through (∞,∞), then we use

Ca,b,c =
{(

x,
a

x − b
+ c

)∣
∣
∣
∣ b̃ 	= x ≥ 0

}

∪
{(

x, f−1

(
a′

x − b′ + c′
))∣

∣
∣
∣ b̃ 	= x ≤ 0

}

∪ {(b̃,∞), (∞, c)}
where a, b, c ∈ R, a 	= 0, and b̃ = b if b ≥ 0 and b̃ = b′ in case b < 0, and
where again a′, b′, c′ are continuous functions of a, b, c such that a′ 	= 0. Since
the definition of these circles must agree on G1, one immediately obtains that

c′ = f(c). (1)

Considering points on G2 one similarly finds that c′ − a′
b′ = f

(
c − a

b

)
so that

f
(
c − a

b

)
= f(c) − a′

b′ (2)

for all a, b, c ∈ R, a, b 	= 0.
By assumption the derived affine plane Ap at every point p ∈ G1 ∪ G2 is

a topological affine plane which is composed of two desarguesian half-planes.
Hence it has to be isomorphic to one of the planes from Proposition 3.1. In
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particular, the non-horizontal and non-vertical lines of the derived affine plane
at (∞,∞) are the circles Lm,t minus the point (∞,∞). From Proposition 3.1
it follows that t′ = f(t) and that there is a homeomorphism g of S

1, which
also fixes ∞, 0 and 1, such that m′ = g(m). Note that m′ is independent of t.

We now consider the derived affine plane at a point (∞, c), c ∈ R. After
the coordinate transformation

(x, y) �→
⎧
⎨

⎩

(
x, 1

y−c

)
, if x ≥ 0,

(
x, f−1

(
1

f(y)−f(c)

))
, if x ≤ 0,

the affine parts of circles Ca,b,c become
{(

x,
x − b

a

)∣
∣
∣
∣ x ≥ 0

}

∪
{(

x, f−1

(
x − b′

a′

))∣
∣
∣
∣ x ≤ 0

}

.

As noted before, it follows that the ‘slope’ 1
a′ only depends on 1

a , that is,
a′ = a′(a, b, c) as a function of a, b, c does not depend on b. When x = 0 we
obtain that − b′

a′ = f
(−b

a

)
. With this identity (2) becomes

f
(
c − a

b

)
= f(c) + f

(
−a

b

)
.

It follows that f is additive. Since f(1) = 1, we thus obtain that f = id.
We next consider the derived affine plane at the point (0,∞). After the

coordinate transformation

(x, y) �→
(

1
x

, y

)

the affine parts of circles Ca,0,c become

{(u, au + c) | u ≥ 0} ∪ {(u, a′u + c) | u < 0}.

Again as before, a′ does not depend on c. From these two cases we infer that
a′ only depends on a, that is, there is a homeomorphism h of S1 that fixes ∞
and 0 such that a′ = h(a).

In summary, we have established so far that

f = id

and for the circles Ca,b,c we have

a′ = h(a), b′ = b
h(a)

a
and c′ = c

for all a, b, c ∈ R, a 	= 0. For the circles Lm,t we have

m′ = g(m) and t′ = t

for all m, t ∈ R, m 	= 0. Here g and h are homeomorphisms of S1 that fix ∞
and 0, and g(1) = 1.

The coherence of M implies that the circle through (∞,∞) that is tangent
to Ca,b,c at each of its points is of the form Lm,t where m is the derivative of
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y = a
x−b + c at x 	= 0; at x = 0 we use the left-sided and right-sided derivative.

In this way we obtain that m = − a
b2 (from the right) and m′ = − a′

(b′)2 (from
the left). Hence

− a′

(b′)2
= m′ = g(m) = g

(
− a

b2

)
. (3)

Since a′
b′ = a

b , multiplication by a′ = h(a) in (3) yields

−a2

b2
= h(a)g

(
− a

b2

)
.

When a = −1, this gives us g(x) = rx for all x ≥ 0 where r = − 1
h(−1) > 0. But

g(1) = 1 so that r = 1 and h(−1) = −1. When a = 1, we obtain g(x) = kx for
all x ≤ 0 where k = 1

h(1) > 0. Hence g = fk. Finally, when b = 1 we find that

h(a) = − a2

g(−a) . It now follows that h(x) = x
k for all x ≥ 0 and h(x) = x for all

x ≤ 0. Hence

g = fk and h =
1
k

fk.

This shows that g and h are uniquely determined by the positive number k.
With these formulas we have

a′

x − b′ + c′ =
a′

x − ba′
a

+ c =
a

a
a′ x − b

+ c

where x ≤ 0. When a < 0, then a
a′ = a

h(a) = 1 and b′ = b so that

Ca,b,c =
{(

x,
a

x − b
+ c

)∣
∣
∣
∣ x 	= b

}

∪ {(b,∞), (∞, c)}

is as in the classical real Minkowski plane. Similarly, when m > 0 > x, then
m′x + t′ = g(m)x + t = mx + t and Lm,t is as in the classical real Minkowski
plane. Since the circles Ca,b,c, a < 0, and Lm,t, m > 0, comprise all circles in
the positive half C+ of M, this shows that circles in C+ are straight, that is,
are as in the classical real Minkowski plane.

If m,x < 0, then

m′x + t′ = g(m)x + t = kmx + t = m(kx) + t = mfk(x) + t

and

Lm,t = {(x,mfk(x) + t) | x ∈ R} ∪ {(∞,∞)}
for all m < 0. Similarly, in case a > 0 > x we find that

a

a′ x =
a

h(a)
x = kx = fk(x).

Thus

Ca,b,c =
{(

x,
a

fk(x) − b
+ c

)∣
∣
∣
∣ x 	= f−1

k (b)
}

∪ {(f−1
k (b),∞), (∞, c)}
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for all a, b, c ∈ R, a > 0. Since the circles Ca,b,c, a > 0, and Lm,t, m < 0,
comprise all circles in the negative half C− of M, this shows that circles in
C− are precisely the graphs of homeomorphisms in PGL−(2,R)fk. Hence, put
together, we have obtained M(fk, id).

Let σ ∈ PGL(2,R) be given by σ(x) = 1
x . Direct calculation shows that

σfkσ = f 1
k
. It then readily follows that (x, y) �→ (σ(x), σ(y)) is an isomorphism

from M(fk, id) to M(f1/k, id); see also [10, Theorem 3.14]. Applying the above
isomorphism, if necessary, we find that M is isomorphic to a Minkowski plane
M(fk, id) where k ≤ 1. Furthermore, no two distinct ones of these planes are
isomorphic, see [10, Example 3.15]. �

4. Pasting along two circles

4.1. The general set-up

Let C1 and C2 be two circles, and let P1 and P2 be the closures of the two
connected components of (S1 × S

1)\(C1 ∪ C2). We assume that the induced
geometry on each Pi is isomorphic to the classical real Minkowski geometry
induced on the corresponding half of the torus. Via these isomorphisms we
may introduce coordinates on each of the two halves P1 and P2 such that
(+)-parallel classes are ({u} × S

1) ∩ Pi, u ∈ S
1, the (−)-parallel classes are

(S1 × {v}) ∩ Pi, v ∈ S
1, and circles are formed from non-vertical and non-

horizontal lines or hyperbolas with vertical and horizontal asymptotes.
Since the automorphism group of the classical real Minkowski plane is tran-

sitive on C, we may assume w.l.o.g. that one of the two circles along which
the two classical halves are pasted together is C1 = {(x, x) | x ∈ S

1}. Then
C2 = {(x, γ(x)) | x ∈ S

1} for some γ ∈ PGL(2,R).
We may further assume that on P1 the geometry of the classical real

Minkowski plane is induced. On P2 we may only have the geometry of the
classical real Minkowski plane up to an isomorphism. W.l.o.g. this isomor-
phism has the form (x, y) �→ (f(x), g(y)) for suitable homeomorphisms f and
g of S

1. Since we are gluing the two halves along C1, this circle has to be
preserved by this isomorphism so that g = f . We call f the pasting function.
Since the stabilizer of C1 is transitive on C1 we may further assume that f
fixes ∞.

Similarly, a point (x, γ(x)) ∈ C2 ⊂ P1 is identified with a point (f(x),
g(γ(x))) = (f(x), f(γ(x))) ∈ C2 ⊂ P2. Hence,

γ(f(x)) = f(γ(x)) for all x ∈ S
1. (4)

Recall that circles that pass through (∞,∞) are described as

Lm,t = (Em,t ∩ P1) ∪ ψ(Em′,t′ ∩ P2)
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where ψ is an isomorphism from P2 in the classical real Minkowski plane Mcl

to P2 in M and where m,m′, t, t′ ∈ R, m,m′ 	= 0, and m′ and t′ are continuous
functions of m and t. One calculates that

Em,t ∩ L1,0 =
(

t

1 − m
,

t

1 − m

)

(5)

where m 	= 0, 1.
Those circles that do not pass through (∞,∞) are of the form

Ca,b,c = (Ha,b,c ∩ P1) ∪ ψ(Ha′,b′,c′ ∩ P2).

where a, a′, b, b′, c, c′ ∈ R, a, a′ 	= 0, and each of a′, b′ and c′ is a continuous
function of a, b and c. One calculates that

Ha,b,c ∩ L1,0 =
(

1
2

(
c + b ±

√
(c − b)2 + 4a

)
,
1
2

(
c + b ±

√
(c − b)2 + 4a

))

(6)
if (c − b)2 + 4a > 0.

When pasting the two classical halves together the above formulas show
that

t′

1 − m′ = f

(
t

1 − m

)

.

Similarly,

1
2

(
c′ + b′ ±

√
(c′ − b′)2 + 4a′

)
= f

(
1
2

(
c + b ±

√
(c − b)2 + 4a

))

,

so that

c′ + b′ = f

(
1
2

(
c + b +

√
(c − b)2 + 4a

))

+ f

(
1
2

(
c + b −

√
(c − b)2 + 4a

))

, (7)

√
(c′ − b′)2 + 4a′ = f

(
1
2

(
c + b +

√
(c − b)2 + 4a

))

− f

(
1
2

(
c + b −

√
(c − b)2 + 4a

))

. (8)

The general strategy is to use circles that meet C1∪C2 in four points. Since
there is a unique circle through three pairwise non-parallel points, the fourth
point of intersection results in a condition on the pasting function f . We will
find that the resulting functional equations for f force f to be the identity. In
a second step circles that do not meet C1 ∪ C2 in four points are determined.
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Figure 5. The connected components P1, P2 w.r.t. C1, C2

4.2. Two circles meeting in two points

Let C1 and C2 be two circles in the same component of C that intersect in two
points. In this case (S1×S

1)\(C1∪C2) has three connected components, com-
pare the right diagram in Fig. 3. Since this does not agree with our definition
of a semi-classical real Minkowski geometry, we do assume from now on that
C1 and C2 are in different connected components of C (Fig. 5).

Let C1 and C2 be two circles, one in each of the two connected components
of C. Then |C1 ∩ C2| = 2. As in Sect. 4.1 we assume C1 = E1,0. Since the
stabilizer of C1 is 2-transitive on it, we may assume w.l.o.g. that C1 ∩ C2 =
{(∞,∞), (0, 0)}. Then C2 = {(x, sx) | x ∈ S

1} for some s ∈ R, s < 0. From
Eq. (4) we find that

f(sx) = sf(x) for all x ∈ R. (9)

Lemma 4.1. In the case of two circles in different components the pasting func-
tion f is the identity.

Proof. As in Sect. 4.1 one calculates that

Ca,b,c ∩ Ls,0 =

(
1

2s

(
c+ sb ±

√
(c − sb)2 + 4sa

)
,
1

2

(
c+ sb ±

√
(c − sb)2 + 4sa

))

if (c − sb)2 + 4sa > 0 so that

1
2

(
c′ + sb′ ±

√
(c′ − sb′)2 + 4sa′

)
= f

(
1
2

(
c + sb ±

√
(c − sb)2 + 4sa

))

.
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Thus,

c′ + sb′ = f

(
1
2

(
c + sb +

√
(c − sb)2 + 4sa

))

+ f

(
1
2

(
c + sb −

√
(c − sb)2 + 4sa

))

, (10)

√
(c′ − sb′)2 + 4sa′ = f

(
1
2

(
c + sb +

√
(c − sb)2 + 4sa

))

− f

(
1
2

(
c + sb −

√
(c − sb)2 + 4sa

))

. (11)

We write the expressions under the square roots as (c − b)2 + 4a = (c +
b)2 − 4(bc − a) and (c − sb)2 + 4sa = (c + sb)2 − 4 s(bc − a), and similarly for
the formulas involving a′, b′, c′. Let d = bc − a and d′ = b′c′ − a′ and let

u =
1
2

(
c + b +

√
(c + b)2 − 4d

)
,

ū =
1
2

(
c + b −

√
(c + b)2 + −d

)
,

v =
1
2

(
c + sb +

√
(c + sb)2 − 4sd

)
,

v̄ =
1
2

(
c + sb −

√
(c + sb)2 − 4sd

)
.

Then Eqs. (7), (8) and the above two equations become

c′ + b′ = f(u) + f(ū),
√

(c′ + b′)2 − 4d′ = f(u) − f(ū),

c′ + sb′ = f(v) + f(v̄),
√

(c′ + sb′)2 − 4sd′ = f(v) − f(v̄).

The first two identities yield

d′ = f(u)f(ū),

and the last two give us

sd′ = f(v)f(v̄).

Then
f(v)f(v̄) = sd′ = sf(u)f(ū). (12)

One calculates uū = d and vv̄ = sd. Furthermore, u > ū and v > v̄, and when
u, v 	= 0, one obtains

c + b = u + ū = u +
d

u
,

c + sb = v + v̄ = v +
sd

v
.
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Hence

b =
1

1 − s

(

u +
d

u
− v − sd

v

)

,

c =
1

1 − s

(

v +
sd

v
− su − sd

u

)

,

a = bc − d = − 1
(1 − s)2v2

(v − u)(v − su)
(

v − d

u

) (

v − sd

u

)

.

This shows that a, b, c are functions of d, u, v. One thus has a one-to-one cor-
respondence between triples (a, b, c) for which Ca,b,c intersects L1,0 ∪ Ls,0 in
four distinct points and triples (d, u, v) such that

d, u, v 	= 0, v 	= u, su,
d

u
,
sd

u
, u >

d

u
, v >

sd

v
. (13)

(Given a, b, c as functions of d, u, v as above, one calculates, for example,
√

(c + b)2 − 4d =
√

(
u + d

u

)2 − 4d =
√

(
u − d

u

)2
= u − d

u so that u is ob-
tained back.) It follows from (12) that f(v)f

(
sd
v

)
= sf(u)f

(
d
u

)
and thus

f(v)f
(

d

v

)

= f(u)f
(

d

u

)

(14)

for all d, u, v ∈ R satisfying (13). This identity trivially remains true when
v = u, su, d

u , sd
u , that is, (14) holds for all d, u, v 	= 0, u > d

u , v > sd
v .

When d > 1
s put v = 1 to obtain f(d) = f(u)f

(
d
u

)
or

f

(

u · d

u

)

= f(u)f
(

d

u

)

. (15)

for all d, u ∈ R, d, u 	= 0, d > 1
s , u > d

u . This identity remains valid when u < d
u

because u = d
d/u . When d < 1

s , put v = sd to again obtain f(d) = f(u)f
(

d
u

)
.

Let w = d
u . Then (15) becomes

f(u)f(w) = f(uw)

for all u,w 	= 0, u 	= w, uw 	= 1
s . But this identity remains trivially true if

u = 0 or w = 0 or u = w. By (9) and the continuity of f also the case uw = 1
s

follows. This shows that f is multiplicative. Hence f(x) = x|x|k−1 for some
k ∈ R, k > 0. However, sf(x) = f(sx) = f(s)f(x) implies that f(s) = s so
that |s|k−1 = 1.

If −1 	= s < 0, we obtain k = 1 and thus f = id.
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It remains to deal with the special case s = −1. Then f is an odd function
by (9). The formulas from above for Ca2,b,b where 0 < a < b become

c′ + b′ = f(b + a) + f(b − a),
√

(c′ − b′)2 + 4a′ = f(b + a) − f(b − a),

c′ − b′ = f
(√

b2 − a2
)

+ f
(
−

√
b2 − a2

)
= 0

√
(c′ + b′)2 − 4(a′)2 = f

(√
b2 − a2

)
− f

(
−

√
b2 − a2

)
= 2f

(√
b2 − a2

)

It follows that

c′ = b′ =
1
2
(f(b + a) + f(b − a)),

a′ =
1
2
(f(b + a) − f(b − a)) and

√
(b′)2 − (a′)2 = f

(√
b2 − a2

)
. (16)

Using lines one calculates

Lm,t ∩ L−1,0 =
(

− t

1 + m
,

t

1 + m

)

where m 	= 0,= 1. Hence, and because f is odd,

t′

1 + m′ = f

(
t

1 + m

)

.

Together with Eq. (5) we obtain that

m′ =
f

(
t

1−m

)
− f

(
t

1+m

)

f
(

t
1−m

)
+ f

(
t

1+m

) and t′ =
−2f

(
t

1−m

)
f

(
t

1+m

)

f
(

t
1−m

)
+ f

(
t

1+m

) .

Since f is multiplicative, the formula for m′ now becomes

m′ =
f

(
m+1
m−1

)
+ 1

f
(

m+1
m−1

)
− 1

.

Direct calculation shows that
m′ + 1
m′ − 1

= f

(
m + 1
m − 1

)

.

We now consider the tangent lines to Ca2,b,,b at the points of intersection with
L−1,0. The slopes of these lines are found as − a2

(x−b)2 which gives us

m = − a2

(x − b)2
= − a2

(±√
b2 − a2 − b)2

.
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Thus

m + 1
m − 1

=
2b2 − 2a2 ∓ 2b

√
b2 − a2

−2b2 ± 2b
√

b2 − a2
=

√
b2 − a2(

√
b2 − a2 ∓ b)

±b(∓b +
√

b2 − a2)
= ±

√
b2 − a2

b
.

Since c′ = b′ we similarly find

f

(

±
√

b2 − a2

b

)

=
m′ + 1
m′ − 1

= ±
√

(b′)2 − (a′)2

b′ = ±f(
√

b2 − a2)
b′ .

Hence b′ = f(b). Equation (16) then yields 2f(b) = f(b + a) + f(b − a) for all
0 < a < b. Since f is continuous, this identity remains valid as a → b. Thus
2f(b) = f(2b). In particular, 2 = 2f(1) = f(2) = 2k so that k = 1. Hence
f = id. �

We finally show that f = id implies that only the classical real Minkowski
plane can be obtained.

Theorem 4.2. A semi-classical Minkowski plane obtained by pasting along two
circles in different components of C is classical.

Proof. f = id shows that circles Ca,b,c are straight (that is, are as in the
classical real Minkowski plane) if they meet C1 ∪C2 in at least three points. In
particular, every line Lm,t is straight. This follows as above in case m 	= ±1.
When m = ±1, these lines can be obtained as a limit of straight lines with
slopes 	= ±1 by coherence of 2-dimensional Minkowski planes. Hence these
lines are straight as well. Since every circle 	= C1, C2 meets C1 or C2 in two
points, it remains to determine those circles that intersect C1 ∪ C2 in two
points. Suppose that Ca,b,c ∈ C− so that it meets C1 in two points. Note
that a > 0. These points of intersection are p± = (x±, x±) where x± =
1
2

(
c + b ± √

(c − b)2 + 4a
)
. We consider the tangent line Lm,t to Ca,b,c at

p+. As noticed above this line is straight. But then Ca,b,c is described as the
tangent circle to Lm,t at p+ and passing through p−. In each half Pi this
uniquely determines Ca,b,c, and because Lm,t is straight, so is Ca,b,c.

The case when Ca,b,c ∈ C+ is dealt with in a similar fashion by look-
ing at points of intersection with C2. This shows that only the classical real
Minkowski plane can be obtained. �

4.3. Two tangent circles

Let C1 and C2 be two circles that touch at a point p. Using the automorphism
group of the classical real Minkowski plane, we may assume w.l.o.g. that C2

touches C1 = {(x, x) | x ∈ S
1} at (∞,∞), and that C2 = {(x, x + 1) | x ∈ S

1}
(Fig. 6).
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Figure 6. The connected components P1, P2 w.r.t. touching
circles C1, C2

From Eq. (4) we know that for the pasting function f we have

f(x + 1) = f(x) + 1 for all x ∈ R.

We may further assume that f(0) = 0. But then f(1) = 1 too.

Lemma 4.3. In the case of two tangent circles the pasting function f is the
identity.

Proof. One calculates

Ca,b,c ∩ L1,1 =
(

1
2

(
c + b − 1 ±

√
(c − b − 1)2 + 4a

)
,

1
2

(
c + sb ±

√
(c − sb)2 + 4sa

))

where we assume that (c− b)2 +4a, (c− b− 1)2 +4a > 0. Let u = 1
2 (c+ b) and

v = 1
2 (c − b), and similarly u′ = 1

2 (c′ + b′) and v′ = 1
2 (c′ − b′). When pasting

the two classical halves together the above formula and (6) show that

u′ ±
√

(v′)2 + a′ = f
(
u ±

√
v2 + a

)

u′ − 1
2

±
√

(

v′ − 1
2

)2

+ a′ = f

⎛

⎝u − 1
2

±
√

(

v − 1
2

)2

+ a

⎞

⎠ .

so that

2u′ = f
(
u +

√
v2 + a

)
+ f

(
u −

√
v2 + a

)

2u′ − 1 = f

⎛

⎝u − 1
2

+

√
(

v − 1
2

)2

+ a

⎞

⎠ + f

⎛

⎝u − 1
2

−
√

(

v − 1
2

)2

+ a

⎞

⎠
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Hence,

f(u +
√

v2 + a) + f(u −
√

v2 + a)

= f

⎛

⎝u − 1
2

+

√
(

v − 1
2

)2

+ a

⎞

⎠ + f

⎛

⎝u − 1
2

−
√

(

v − 1
2

)2

+ a

⎞

⎠ + 1

(17)

for all a, u, v ∈ R a ≥ 0. By the continuity of f this identity remains valid
when a = 0. For each w ≥ 1

2 there is a unique n ∈ Z, n ≥ 1, such that
w − 1

2 < n ≤ w + 1
2 . Now let v = w2 − n2 + 1

4 . One calculates

w2 − v2 = (w − v)(w + v) =
(

w − w2 + n2 − 1
4

)(

w + w2 − n2 +
1
4

)

=

(

n2 −
(

w − 1
2

)2
) ((

w +
1
2

)2

− n2

)

=
(

n − w +
1
2

)(

n + w − 1
2

) (

w +
1
2

− n

) (

w +
1
2

+ n

)

≥ 0.

Thus, if we define a = w2 − v2, then a ≥ 0 and
√

v2 + a = w
√

(

v − 1
2

)2

+ a =

√

v2 + a − v +
1
4

= n.

Hence (17) becomes

f(u + w) + f(u − w) = f

(

u − 1
2

+ n

)

+ f

(

u − 1
2

− n

)

+ 1

= f

(

u +
1
2

)

+ f

(

u − 1
2

)

. (18)

This identity is valid for all u,w ∈ R, w ≥ 1
2 . But f(u + w) + f(u − w) =

f(u+w+m)+f(u−w−m) for each m ∈ Z. This shows that (18) remains valid
for all u,w ∈ R. When w = 0, we obtain that f

(
u + 1

2

)
+ f

(
u − 1

2

)
= 2f(u).

Thus

f(u + w) + f(u − w) = 2f(u)

for all u ∈ R. Now w = u yields f(2u) = 2f(u) and so f(u + w) + f(u − w) =
f(2u). Finally, let x = u + w and y = u − w. Then

f(x) + f(y) = f(x + y)

for all c, y ∈ R. This shows that f is additive. Hence f = id because f(1) = 1.
�
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Theorem 4.4. A semi-classical Minkowski plane obtained by pasting along two
tangent circles is classical.

Proof. The pasting function f is the identity by Lemma 4.3.
Let C be a circle that intersects each of C1 and C2 in two points. If

C = Ca,b,c, the formulas above show that b′ + c′ = b + c,
√

(c′ − b′)2 + 4a′ =
√

(c − b)2 + 4a,
√

(c′ − b′ − 1)2 + 4a′ =
√

(c − b − 1)2 + 4a. Squaring the last
two equations and subtracting yields c′ − b′ = c − b. Hence b′ = b, c′ = c, and
a′ = a follows, that is, the circle Ca,b,c is straight.

As in the previous case, the continuity of the geometric operations and co-
herence of 2-dimensional Minkowski planes implies that circles through (∞,∞)
are also straight. For the same reason circles that are tangent to one of C1 or
C2 and meet the other circle in two points are straight as well.

If a circle C meets neither C1 nor C2, it is entirely contained in one of the
connected components of (S1 × S

1)\(C1 ∪ C2). Hence, such a circle is straight
by definition of a semi-classical Minkowski plane. Similarly, if C is tangent to
one of C1 or C2 and does not meet the other circle or if C is tangent to both
of C1 and C2, it is entirely contained in the closure of one of the connected
components of (S1 × S

1) \ (C1 ∪ C2) and thus is straight.
This leaves us with the case where C intersects one of C1 or C2 in two

points and is disjoint to the other circle.
We consider the tangent line Lm,t to C at one of the points p+ of intersection

with Ci. This line is straight. But then C is described as the tangent circle to
Lm,t at p+ and passing through the other point p− of intersection with Ci. In
each half Pi this uniquely determines C, and because Lm,t is straight, so is C.

�

4.4. Two disjoint circles

Let C1 and C2 be two disjoint circles and let P1 and P2 be the closures of the
connected components of (S1 ×S

1)\(C1 ∪C2). We assume that the induced ge-
ometry on each Pi is isomorphic the classical real Minkowski geometry induced
on the corresponding half of the torus. As before, via these isomorphisms we in-
troduce coordinates on each of the two halves P1 and P2 such that (+)-parallel
classes are ({u} × S

1) ∩ Pi, u ∈ S
1, the (−)-parallel classes are (S1 × {v}) ∩ Pi,

v ∈ S
1, and circles are formed from non-vertical and non-horizontal lines or

hyperbolas with vertical and horizontal asymptotes.
As in Sect. 4.1 we assume that C1 = L1,0. Using the stabilizer of C1 in the

automorphism group of the classical real Minkowski plane, we see that we may
further assume that

C2 = H−1−s2,s,−s =
{(

x,−1 + s2

x − s
− s

)∣
∣
∣
∣ x ∈ R \ {s}

}

∪ {(∞,−s), (s,∞)}
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Figure 7. The connected components P1, P2 w.r.t. C1, C2

where s ∈ R, see Fig. 7. (First move the centre of C2 onto the line E−1,0 by a
translation (x, y) �→ (x+ t, y+ t), and then use a homothety (x, y) �→ (rx, ry).)

From Eq. (4) we obtain

f

(

−1 + s2

x − s
− s

)

= − 1 + s2

f(x) − s
− s for all x ∈ R \ {s}

for the pasting function f . It directly follows that f(−s) = −s and f(s) = s.

Lemma 4.5. In the case of two disjoint circles the pasting function f is the
identity.

Proof. We consider the hyperbola Ha,b,−s where (b + s)2 + 4a > 0, b 	= s. It

meets C2 in the points (∞,−s) and
(

as+(1+s2)b
a+1+s2 , a+1+bs

s−b

)
. Thus, the other half

of the circle Ca,b,−s must be induced by Ha′,b′,−s for some a′, b′, and so (from
the second coordinate)

a′ + 1 + b′s
s − b′ = f

(
a + 1 + bs

s − b

)

.

The intersection of Ha,b,−s and C1 consists of the points
(

1
2

(
b − s ±

√
(b + s)2 + 4a

)
,
1
2

(
b − s ±

√
(b + s)2 + 4a

))

.

Let

u =
1
2

(
b − s +

√
(b + s)2 + 4a

)
and

v =
1
2

(
b − s −

√
(b + s)2 + 4a

)

so that

b = s + u + v and a = −(u + s)(v + s).

Then u > v, u + v 	= 0, u, v 	= −s and

a′ = −(f(u) + s)(f(v) + s),

b′ = s + f(u) + f(v).
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One calculates
a + 1 + bs

s − b
=

uv − 1
u + v

and
a′ + 1 + b′s

s − b′ =
f(u)f(v) − 1
f(u) + f(v)

.

Hence
f(u)f(v) − 1
f(u) + f(v)

= f

(
uv − 1
u + v

)

for all u, v ∈ R, u > v, u, v 	= −s. However, this equation is symmetric in u
and v, and by continuity it must be valid for all u, v ∈ R.

Write u = cot α, v = cot β for some α, β ∈ (0, π). Then uv−1
u+v = cot(α + β)

by the addition theorem for the cot function. We now write f ◦ cot = cot ◦ϕ for
some increasing homeomorphism ϕ : (0, π) → (0, π) so that f(u) = cot(ϕ(α)),
f(v) = cot(ϕ(β)). Then

cot ϕ(α + β) = f(cot(α + β)) = f

(
uv − 1
u + v

)

=
f(u)f(v) − 1
f(u) + f(v)

= cot(ϕ(α) + ϕ(β)).

It follows that ϕ(α + β) = ϕ(α) + ϕ(β) (mod π) for all α, β ∈ (0, π). One can
extend ϕ to an increasing homeomorphism ϕ̃ : R → R by ϕ̃(kπ) = kπ for each
k ∈ Z and ϕ̃(x) = ϕ(x) + nπ where n = � x

π �, the largest integer ≤ x
π , and

x = x − nπ ∈ (0, π) where x /∈ πZ. It readily follows that ϕ̃ is additive. Note
that ϕ(θ) = θ where θ = cot−1(s) because f(s) = s. By the continuity of ϕ̃ it
then follows that ϕ̃ = id and so ϕ = id. Hence f = id. �

Remark 4.6. Let θ = cot−1(s) ∈ (0, π). Then

γ(x) = −1 + s2

x − s
− s =

−sx − 1
x − s

=
x cos θ − sin θ

x sin θ + cos θ

comes from a rotation through the angle θ. If θ is an irrational multiple of
π, then the subgroup Γ = 〈γ〉 = {γm | m ∈ Z} ≤ SO(2,R) generated by
γ is dense in SO(2,R); compare Dirichlet’s approximation theorem or Weyl’s
equidistribution theorem. Since f commutes with γ by Eq. (4), one sees that
f commutes with every member in SO(2,R), that is,

f

(
x cos t − sin t

x sin t + cos t

)

=
f(x) cos t − sin t

f(x) sin t + cos t

for all t ∈ R, x ∈ R ∪ {∞}. When x = ∞ one finds f(cot t) = cot t. Hence
f = id.

Theorem 4.7. A semi-classical Minkowski plane obtained by pasting along two
disjoint circles is classical.

Proof. By Lemma 4.5 the pasting function f is the identity. Hence a circle
that meets C1 ∪ C2 in at least three points is straight.



Semi-classical 2-dimensional

As in the previous cases, the continuity of the geometric operations and
coherence of 2-dimensional Minkowski planes implies that circles that are tan-
gent to each of C1 and C2 are straight as well.

If a circle C meets neither C1 nor C2, it is entirely contained in one of the
connected components of (S1 × S

1) \ (C1 ∪ C2). Hence, such a circle is straight
by definition of a semi-classical Minkowski plane. Similarly, if C is tangent to
one of C1 or C2 and does not meet the other circle or if C is tangent to both
of C1 and C2, it is entirely contained in the closure of one of the connected
components of (S1 × S

1) \ (C1 ∪ C2) and thus is straight.
Hence, all circles are straight, and the plane is classical. �

The Main Theorem now follows from Theorems 2.5, 3.2, 4.2, 4.4 and 4.7.
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