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Curves that allow the motion of a regular polygon

David Rochera

Abstract. This paper characterizes curves where a regular polygon of either a variable side
length or a constant side length is allowed to rotate during k full revolutions while having its
vertices on the curve during the motion. A constructive method to generate these curves is
given based on the curve described by the polygon centers (centroids) during the motion and
some examples are shown. Moreover, if the regular polygon divides the curve perimeter into
parts of equal length, it is proved that the curve is either a rotational symmetric curve in the
case of a variable side length or a circle otherwise. Finally, in the case of a regular polygon
of constant side length rotating along a curve, a simple relation between the algebraic areas
of such a curve and the curve of polygon centers is revisited.
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1. Introduction

This paper is devoted to a geometrical question: how to characterize planar
curves that allow the motion of a n-sided regular polygon of constant side
length having its vertices on the curve and making k full revolutions?

The circle is the most obvious example of a curve where a regular polygon
(in fact, any regular polygon) can move with its vertices always lying on it
during the motion. The existence of curves different from the circle with such
a property is well known and there are some papers providing partial construc-
tions and examples of these curves, both in the convex case [2,8,13] and in the
non-convex case [19–21].

An answer to the question can be provided from the results presented in
the German paper [18], where different movement processes to generate trajec-
tories described by the motion of a moving plane over a fixed one are studied.
The methods used belong to classical kinematics.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-024-01054-4&domain=pdf
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Figure 1. A rotor β in a pentagon and a non-convex curve
α generated by the motion of the vertices of the pentagon if
it is slided along β

The same question can also be partially answered from the works of Gold-
berg [5–7], based on a result of Meissner [16] that characterizes rotors in regular
polygons. A rotor in a regular polygon is defined as a closed convex curve that
can be rotated inside the regular polygon while always touching its sides dur-
ing a complete rotation of the curve. Meissner showed that all the rotors in a
n-sided regular polygon are given analytically by support functions

p(t) = a0 +
∞∑

k=1

(
ak cos(k t) + bk sin(k t)

)

such that

ak = bk = 0 for k �= ±1 (mod n).

Support functions are widely used in convex geometry, the interested reader
can find an introduction in [15].

Rotors constitute a generalization of curves of constant width. These can be
seen as rotors in a square. Some other related works on rotors are [3,4,10,14].

Goldberg states that for each convex rotor in a n-sided polygon, by main-
taining the rotor fixed and rotating the regular polygon about it, the polygon
vertices generate a curve with the desired property (i.e., where a regular poly-
gon can rotate along). However, while this is true, there is no guarantee that
the curve which is obtained is convex (see an example in Fig. 1).

In this paper, a direct and simple way to characterize these curves without
using rotors nor plane over plane movements is presented. In fact, we will
consider a more general class of curves: those that allow the rotation of a n-
sided regular polygon of a variable side length during k full revolutions while
having their vertices always lying on the curve (Sect. 2). First, we provide
a new characterization of these curves in Theorem 1 and some examples are
shown. The idea is to start from the curve of polygon centers, i.e., the locus of
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the centers (centroids) of the regular polygon during its motion. The chosen
parameterization of the curve of polygon centers will be relevant for the shape
of the resulting curve.

In Theorem 2 we prove that if in one of these curves the n-sided regu-
lar polygon divides the curve perimeter into equal parts, then the curve has
rotational symmetry of an angle 2π

n .
We then focus on the case where the n-sided regular polygon has constant

side length during the entire motion (Sect. 3). As a direct consequence of The-
orem 1 we also have a characterization of these curves (Theorem 3), which is
essentially one of the results that can be deduced from [18]. In the particu-
lar case where the curve of polygon centers is a circle parameterized by the
arc-length, we get the construction of generalized polygonal Wankel engines
given in [17] (see also the examples from [18]). This will be seen in detail in
Example 3.

The characterization provides a constructive way to generate these curves
as parametric curves. In particular, we are able to prove explicitly the existence
of convex bodies with an equichordal convex body in their interior (Example 5)
by a computation of the curvature function.

We show in Theorem 4 that the circle is the unique curve where a n-sided
regular polygon of constant side length, with n > 2, can rotate along while
dividing the curve perimeter into parts of equal length. Although related, this
result must not be confused with similar problems where equilateral polygons
(which are not necessarily regular) are considered, such as Ulam’s problem 19
from the Scottish book [1,24] or the kind of problems considered by Salkowski
[23,25].

Finally, given a curve α where a regular polygon of a constant side length
can rotate, a relation between the algebraic areas of α and the corresponding
curve of polygon centers is obtained in Theorem 5 by using a classical theorem
in kinematics due to Leudesdorf. We must point out that the same result can
also be found in [18], but derived differently using a J. Steiner formula and the
Steiner point.

2. A characterization of curves where a regular polygon can rotate

We say that a regular polygon is allowed to move with an always-forward
motion over a closed curve if its vertices can move along the curve such that
the polygon is always rotating in a strictly monotonous way (i.e., the angle of
rotation of the polygon can be seen as a strictly monotonous function of time).

In the following result we characterize curves where regular polygons (of a
possibly variable size) can rotate along with an always-forward motion.

Theorem 1. Let n ∈ N, n > 2, and k ∈ Z \ {0} such that gcd(k, n) = 1.
Any closed curve where an always-forward motion of a regular polygon of n
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sides of variable length is allowed and that makes k full revolutions can be
parameterized as α : [0, 2πk] → R

2 by

α(t) = c(t) + a(t) (cos t, sin t),

where a : [0, 2πk] → ]0,+∞[ is extendable to a 2πk
n -periodic function in R with

minimum period 2πk
n and c : [0, 2πk] → R

2 is a closed parametric curve with
minimum period 2πk

n , regarded as the curve of polygon centers of α.

Proof. Let α : I → R
2, where I is some closed interval, be a (single-traced)

closed parametric curve where a regular n-sided polygon Γ(t) of side length
�(t) > 0 can move along with an always-forward movement during k revolu-
tions. Consider α, as a closed curve, being continuously extendable to R by
periodicity.

By hypothesis, there exists a homeomorphism f : R → R such that if α(t)
is a vertex of the regular polygon Γ(t), then α

(
f(t)

)
is the next vertex of Γ(t)

according to the parameterization of α.

Define f i = f◦ i)· · · ◦f . We have
∥∥∥α

(
f i+1(t)

) − α
(
f i(t)

)∥∥∥ = �(t),

for all t ∈ I, and α
(
fn(t)

)
= α(t). Notice that the last condition needs that

n > 2. The curve C of polygon centers of α can be parameterized by

c(t):=
1
n

n∑

i=1

α
(
f i(t)

)
.

By the definition, notice that c
(
f(t)

)
= c(t) for all t ∈ I.

Define v : R → R
2 as the continuous function such that, for each c(t),

v(t) gives a unit direction for which the vertex α(t) is found from c(t). Let
a : R → ]0,+∞[ be the distance from c(t) to α(t), i.e.

a(t) =
∥∥α(t) − c(t)

∥∥.

Thus, we can write

α(t) = c(t) + a(t)v(t). (1)

Notice that since c(t) = c
(
f(t)

)
for all t ∈ I and Γ(t) is a regular polygon, we

have that a(t) = a
(
f(t)

)
for all t ∈ I.

The function v|I : I → R
2 can be seen as a parameterization of a k-times

traced unit circle that describes the position of a resized version of the regular
polygon Γ(t) for each t ∈ I. Indeed, since c

(
f(t)

)
= c(t) and a

(
f(t)

)
= a(t),

we have

α
(
f(t)

)
= c(t) + a(t)v

(
f(t)

)
. (2)
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From (1) and (2), we deduce

a(t)
(
v
(
f(t)

) − v(t)
)

= α
(
f(t)

) − α(t).

Thus,
∥∥∥v

(
f(t)

) − v(t)
∥∥∥ =

�(t)
a(t)

is constant, because Γ(t) is a regular polygon. Moreover, from the expression

v(t) =
1

a(t)
(
α(t) − c(t)

)

and since c
(
f i(t)

)
= c(t), we have that

〈
v
(
f i+1(t)

) − v
(
f i(t)

)
, v

(
f i(t)

) − v
(
f i−1(t)

)〉

=
1

a(t)2
〈
α
(
f i+1(t)

) − α
(
f i(t)

)
, α

(
f i(t)

) − α
(
f i−1(t)

)〉

is also constant, because �(t)/a(t) is constant and α
(
f i(t)

)
are the vertices

of an equiangular polygon. Therefore, the points v
(
f i(t)

)
also describe the

vertices of an equiangular polygon and so, of a n-sided regular polygon of
constant side length �(t)/a(t).

Since the regular polygon must rotate in a strictly monotonous way during
k revolutions, we have that v|I : I → R

2 can be written as

v|I(t) =
(
cos g(t), sin g(t)

)
,

where g : I → [0, 2πk] is a homeomorphism (i.e., the function g describes a
parameterization of the unit circle v that may result in a motion of a regular
polygon with non-constant velocity).

Consider a reparameterization through g−1 : [0, 2πk] → I, so that

ṽ(t) = (v ◦ g−1)(t) =
(
cos t, sin t), (3)

for t ∈ [0, 2πk].
Define also c̃ = c ◦ g−1, α̃ = α ◦ g−1, ã = a ◦ g−1 and f̃ = g ◦ f ◦ g−1.

This way, we have the same properties for the new parameterizations. First,
we have that

∥∥∥ṽ
(
f̃(t)

) − ṽ(t)
∥∥∥ =

�
(
g−1(t)

)

a
(
g−1(t)

) =
�(t)
a(t)

(4)

is contant. Since f̃ i = g ◦ f i ◦ g−1, we also have that the curve of polygon
centers is

c̃(t) =
1
n

n∑

i=1

α̃
(
f̃ i(t)

)
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Figure 2. The unit circle ṽ and an inscribed regular polygon.
The value of θ determines if the polygon is convex or star

and is such that c̃
(
f̃(t)

)
= c̃(t). Analogously, ã

(
f̃(t)

)
= ã(t). Finally, we indeed

get α̃ : [0, 2πk] → R
2 given by

α̃(t) = c̃(t) + a ṽ(t),

as in the statement.
Now, from (4) using the expression (3) we get

2
(
1 − cos

(
t − f̃(t)

))
=

�2(t)
a2(t)

. (5)

By the cosine rule,

�2(t)
a2(t)

= 2 (1 − cos θ), (6)

where θ = 2πj
n , for some j ∈ Z such that |j| < |k|n and gcd(j, n) = 1. The need

of this integer j is the following: given α(t), the next vertex α
(
f(t)

)
according

to the parameterization of α is not necessarily the vertex of the polygon that
provides a convex polygon, that is, Γ(t) can be a star polygon (see Fig. 2).

Now, with (5) and (6) we deduce that

f̃(t) = t ± 2πj

n
. (7)

As a consequence, we have that c̃ and ã are 2πj
n -periodic. Moreover, the period

2πj
n is the minimum period by definition of f̃ , that provides the next vertex of

the regular polygon according to the parameterization of α̃.
Moreover, since f̃ is defined such that given a vertex α̃(t) of the regular

polygon, α
(
f̃(t)

)
provides the next vertex according to the parameterization

of α̃ and α̃ is single-traced in [0, 2πk], we necessarily have f̃n(t) = t+2πk. So,
from the expression (7) we conclude that j = k. �
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Remark 1. The function g from the proof of Theorem 3 indicates the rotation
velocity of the regular polygon with respect to the curve of polygon centers C.
Notice that the reparameterization we have done in order to have a constant
velocity in the rotation of the regular polygon is not restrictive, because such a
velocity can also be controlled by the chosen parameterization c of C. In other
words, a change of the rotation velocity of the regular polygon is transferred
to a different parameterization of the curve of polygon centers.

Analogously, a different position of the regular polygon at the starting point
of c, which corresponds to a parameterization ṽ starting at a point different
to (1, 0), can also be determined by an appropriate reparameterization of the
curve of polygon centers.

In particular, a choice of a reverse parameterization of C leads generally to
a different curve described by α.

Notice that we understand “reparameterization” in a broad sense, simply
as a continuous change of variables; we do not require differentiability nor
injectivity.

From Theorem 1 and its proof, we can provide a method to construct our
curves.

Algorithm 1. Construction of a curve for which a regular polygon of n sides
with a variable length can move along with an always-forward motion and
making k full revolutions:

1. Choose the number of vertices n ∈ N, n > 2, of the regular polygon and
the number of full revolutions k ∈ Z \ {0} that it will perform.

2. Choose a closed parametric curve c : [0, 2πk] → R
2, with minimum pe-

riod 2πk, which will serve as the curve of polygon centers. The chosen
parameterization is very relevant.

3. Choose a 2πk-periodic function a : [0, 2πk] → ]0,+∞[, with minimum
period 2πk. The function a controls the size of the regular polygon during
the motion.

4. Construct the desired curve as αn,k : [0, 2πk] → R
2 given by

αn,k(t) = c(n t) + a(n t) (cos t, sin t).

5. The regular polygon of vertices α
(
f i(t)

)
, i = 0, 1, . . . n − 1, can be con-

structed with

f(t) = t +
2πkj

n
,

with j ∈ N such that j < n
2 and gcd(n, j) = 1. The choice of j will

determine if we get either a convex or some star polygon.

Example 1. Algorithm 1 gives an infinite number of possibilities for construct-
ing curves where a regular polygon of variable side length can rotate during k
full revolutions.
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Figure 3. Some examples αn,k. From left to right: n = 3,
k = 1; n = 4, k = 1; and n = 3, k = 2

As an example, given k ∈ Z \ {0}, consider a parametric circle

c(t) =
(

cos
(

t

k

)
, sin

(
t

k

))
, t ∈ [0, 2πk],

as the curve of polygon centers, and let a : [0, 2πk] → ]0,+∞[ be the 2πk-
periodic function

a(t) = 3 + sin
(

t

k

)
.

We can thus construct the curve αn,k as in Algorithm 1, see some examples in
Fig. 3.

Of course, the same procedure can be easily repeated for a different param-
eterization of the unit circle or taking any other parametric curve as the curve
of polygon centers.

Theorem 2. Let n ∈ N, n > 2, and k ∈ Z \ {0} such that gcd(k, n) = 1. If α
is a C1-curve where a n-sided regular polygon, of a side length given by a C1-
function, can rotate with an always-forward motion during k full revolutions
and such that the vertices of the polygon divide the perimeter of α into equal
parts, then α has rotational symmetry of an angle 2π

n .

Proof. By Theorem 1 we have that

α(t) = c(n t) + a(t) (cos t, sin t),

where c is a closed curve in [0, 2πk], with 2πk being the minimum period and a
is a C1-function that is 2πk

n -periodic and such that a(t) > 0 for all t ∈ [0, 2πk].
Thus,

α′(t) = n c′(n t) + a′(t) (cos t, sin t) + a(t) (− sin t, cos t),

so that
∥∥α′(t)

∥∥2 = n2
∥∥c′(n t)

∥∥2 + a′(t)2 + a(t)2

+ 2na′(t)
〈
c′(n t), (cos t, sin t)

〉
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+ 2na(t)
〈
c′(n t), (− sin t, cos t)

〉
.

Since the regular polygon divides the perimeter of α into parts of equal
length, we have that ‖α′‖ must be a 2πk

n -periodic function. Indeed, we have

F (t) =
∫ t+ 2πk

n

t

∥∥α′(s)
∥∥ ds

is constant for all t ∈ [0, 2πk]. Differentiating this expression, we deduce that

∥∥α′(t)
∥∥ =

∥∥∥∥α′
(

t +
2πk

n

)∥∥∥∥,

for all t ∈ [0, 2πk].
Therefore, we deduce that

a′(t)
〈
c′(n t), (cos t, sin t)

〉
+ a(t)

〈
c′(n t), (− sin t, cos t)

〉

must be 2πk
n -periodic. If c(t) =

(
x(t), y(t)

)
, the expression above can be writ-

ten as
(−a(t) sin t + a′(t) cos t

)
x′(n t) +

(
a(t) cos t + a′(t) sin t

)
y′(n t).

Since a and a′ are 2πk
n -periodic and x′ and y′ are 2πk-periodic, the previous

function is 2πk
n -periodic if and only if

2 sin
(

k π

n

) [(
a(t) cos

(
t +

k π

n

)
+ a′(t) sin

(
t +

k π

n

))
x′(n t)

+
(

a(t) sin
(

t +
k π

n

)
− a′(t) cos

(
t +

k π

n

))
y′(n t)

]
= 0.

Since n > 2 and gcd(k, n) = 1, this holds if and only if
(

a(t) cos
(

t +
k π

n

)
+ a′(t) sin

(
t +

k π

n

))
x′(n t)

+
(

a(t) sin
(

t +
k π

n

)
− a′(t) cos

(
t +

k π

n

))
y′(n t) = 0. (8)

Moreover, evaluating (8) at t + 2πk
n , we also have

(
a(t) cos

(
t +

3 k π

n

)
+ a′(t) sin

(
t +

3 k π

n

))
x′(n t)

+
(

a(t) sin
(

t +
3 k π

n

)
− a′(t) cos

(
t +

3 k π

n

))
y′(n t) = 0. (9)

We can see Eqs. (8) and (9) forming a system of equations with unknowns
x′(n t) and y′(n t). The determinant of the matrix A of this system of equations
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Figure 4. Curves where a regular polygon of variable side
length rotate during k revolutions and which have rotational
symmetry of an angle 2π

n , for n = 5 and different values of k

is

|A| = sin
(

2πk

n

) (
a(t)2 + a′(t)2

)
,

which is non-zero if n > 2. In such a case, the unique solution of the system is
x′(n t) = y′(n t) = 0, which produces a degenerated curve of polygon centers
reduced to a point. Therefore the regular polygon is rotating through this
point with a size according to the 2πk

n -periodic function a. This implies that
α has rotational symmetry of an angle 2πk

n . Since the domain of α is [0, 2πk]
this implies that α has rotational symmetry of an angle 2π

n . �

Example 2. Let us illustrate Theorem 2 with some examples. Suppose that the
curve of polygon centers is c(t) = (0, 0), a point. Given k ∈ Z \ {0}, Consider
the function a : [0, 2πk] → ]0,+∞[ defined by

a(t) = 2 + sin
(

t

k

)
,

which is 2πk
n -periodic. Thus, the curves αn,k found by Theorem 1 are curves

that have rotational symmetry of an angle 2π
n . See some examples in Fig. 4 for

different number k of revolutions.

3. Curves where regular polygons of constant side length can rotate

As a direct consequence of Theorem 1 we directly obtain the following result
by taking a(t) = a constant.

Theorem 3. Let n ∈ N, n > 2, and k ∈ Z \ {0} such that gcd(k, n) = 1.
Any closed curve where an always-forward motion of a regular polygon of n
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sides of constant length is allowed and that makes k full revolutions can be
parameterized as α : [0, 2πk] → R

2 by

α(t) = c(t) + a (cos t, sin t),

where a > 0 and c : [0, 2πk] → R
2 is a closed parametric curve with minimum

period 2πk
n , regarded as the curve of polygon centers of α.

As it has been already remarked, Theorem 3 can also be deduced from
the results of [18], where a different kinematics approach via movements is
followed.

Now we are going to use Algorithm 1 taking a(t) = a constant to contruct
examples of this kind of curves.

Example 3. Consider an arc-length parameterized unit circle given by c(t) =
(cos t, sin t). The generated curve is

αn,k,a(t) =
(
a cos(t) + cos(n t), a sin(t) + sin(n t)

)
, t ∈ [0, 2πk],

where a > 0 and n ∈ N, n > 2. Consider the case where the regular polygon
makes just a full revolution, that is, k = 1. These curves are generalized
polygonal Wankel engines according to [17] (see also [18]). Some generated
curves by varying the value of the free parameter a > 0 are plotted in Fig. 5.

We have
∥∥α′

n,1,a(t)
∥∥ = a2 + n2 + 2 an cos(t − n t).

Figure 5. A family of curves α3,1,a, for different values of
a > 0, where a regular triangle can travel along having an
arc-length parameterized unit circle as its curve of polygon
centers
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It is easy to check that this expression equal to zero has real solutions if and
only if a = n. Thus, given any n ∈ N, n > 2, the curve αn,1,a is regular for all
a �= n.

The curvature function of αn,1,a is

κα(t) =
a2 + a (n + 1)n cos(t − n t) + n3

(a2 + 2 an cos(t − n t) + n2)3/2
.

If a ≤ n or a ≥ n2 then

a2 − a (n + 1)n + n3 ≥ 0

and we have that κα(t) ≥ 0 for all t ∈ [0, 2π]. The case a ≤ n corresponds to
non-simple shapes which are rosettes. The case a ≥ n2 yields convex curves. In
each case, the rotation index of these curves can be checked out by computing a
continuous primitive of κα‖α′

n,1,a‖ and making the difference of its evaluation
at the endpoints, namely t = 2π and t = 0.

See in Fig. 6 the generated curve αn,1,a for the first value of a > 0 that
yields a convex curve, which is a = n2, shown for different regular polygons.

The curve for a = n (the only singular curve, which makes the transition
between non-convex curves and rosettes) turns out to be (φ, �)-isochordal-
viewed, where � is the side length of the regular polygon (triangle) and φ = π

n
(see an example in Fig. 7-middle). This means that the curve can be enveloped
by a pair of lines making a constant angle φ and such that at each position of
these lines, their contact points with the curve are a constant distance � apart.

Indeed, if tn,a is the tangent vector of αn,1,a, where it can be defined, we
can check that

〈
tn,n(t), tn,n

(
t +

2π

n

)〉
= s(t) cos

(π

n

)
,

Figure 6. The curves αn,1,n2 for n = 3, 4 and 5, respectively.
For any a > n2, the curves αn,1,a are strictly convex
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Figure 7. The curves αn,1,a for n = 3 and different values
of a. The curve for a = n = 3 is (π

3 ,
√

3 a)-isochordal viewed

where s(t) is a sign function, so that the angle between the tangent vectors to
αn,1,a defined by the chord of side length � is either π

n or π − π
n . Therefore, the

angle between these tangent lines is π
n .

Example 4. Now we will show how the parameterization of the curve C of
polygon centers is very relevant for the constructed curve. Notice that there is
no constraint on the way we parameterize the curve as long as it is 2π-periodic
(i.e., the parameterization of C is not necessarily injective). See in Fig. 8 three
examples of curves αn,1,a for the following parameterizations of C:

c1(t) =
(
cos(−t), sin(−t)

)
,

c2(t) =
(
cos(t + sin(t)

)
, sin

(
t + sin(t)

))
,

c3(t) =
(
cos(t + 2 sin(3 t)

)
, sin

(
t + 2 sin(3 t)

))
.

In particular, as seen for c1, a reversal of the orientation of the parameter-
ization produces, in general, a different curve.

Figure 8. The curves αn,1,a for n = 3, a = 9 and different
parameterizations ci of the unit circle, i = 1, 2, 3
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Figure 9. A family of curves α3,a, for different values of
a > 0, where a regular triangle can travel along having an
ellipse as its curve of polygon centers

Example 5. Consider an ellipse parameterized by c(t) = (2 cos t, sin t) and
k = 1. The generated curve is

αn,a(t) =
(
a cos(t) + 2 cos(n t), a sin(t) + sin(n t)

)
.

See in Fig. 9 some generated curves by varying the value of the free parameter
a > 0.

It can be easily proved that the curve α3,a is convex and regular if a > 9.
The parametric expression of the envelope ε defined by the chords of con-

stant length can be computed explicitly. In the case n = 3, its curvature
function can be written as

κε(t) =
2∣∣a − 9 sin

(
2 t + π

6

) − 15 sin
(

π
6 − 4 t

)∣∣ ,

for t ∈ [0, 2π].
The function

f(t) = 9 sin
(
2 t +

π

6

)
+ 15 sin

(π

6
− 4 t

)

has an absolute minimum value of −24 and an absolute maximum of 627
40 =

15.675 in [0, 2π]. Therefore, the envelope is strictly convex (and regular) if and
only if a > 627

40 . Notice that in this case, the curve α3,a is convex as well. See
in Fig. 10 some examples of these envelopes for different values of a > 0.

Remember that a convex body L is said to be an equichordal body for a
convex body K if L ⊂ int K and every chord of K tangent to L has constant
length. The authors of [9] raised the question if there exist convex bodies
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Figure 10. Some curves α3,a with their associated envelopes
of the chords of constant length for different values of a > 0

Figure 11. The generated parametric curve α3,1 has station-
ary points while a regular triangle rotates about it

different from balls which possess an equichordal convex body in its interior.
The interested reader can also see the paper [22] on the equichordal property.

From the construction of the envelope above, we have found an infinite
number of explicit examples of convex bodies different from balls that have a
equichordal convex body in its interior.

This construction can be repeated for any other integer n > 3 providing
even more examples of this kind of curves.

Remark 2. Notice that from Theorems 1 and 3 the curve of polygon centers
c and the generated curve α are not necessarily simple. In particular, there
could be segments of these curves which are multiple-traced when following
the trajectory given by their parameterizations. Further, notice that the as-
sumption of these statements on the always-forward motion (no stationary
points) of the regular polygon is applied to the rotation of this polygon about
its center. Nothing prevents that there could be stationary points for instance
in the generated curve α. In fact, if we consider the curve of polygon centers
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c : [0, 2π] → R
2 parameterized by

c(t) =

{(
sin(π/6 − t/3), cos(π/6 − t/3)

)
, if t < π,(− cos(t/3),

√
3 − sin(t/3)

)
, if t ≥ π,

and extended by periodicity to R, then the curve αn,a that is found for n = 3
and a = 1 has stationary points, which is a classical example [8] of a curve
where a regular triangle can rotate (see Fig. 11).

Now, using Theorem 2 we can directly get a characterization of the circle
as follows.

Theorem 4. Let n ∈ N, n > 2, and k ∈ Z \ {0} such that gcd(k, n) = 1. If
α is a C1-curve where a n-sided regular polygon of constant side length can
rotate with an always-forward motion during k full revolutions and such that
the vertices of the polygon divide the perimeter of α into equal parts, then α is
a circle.

Proof. We known by Theorem 2 that α must have rotational symmetry of an
angle 2π

n with a(t) being the function that determines the distance of each
point of α to the center of symmetry. Since a(t) is constant in this case, we
deduce that α is a (possibly multiple traced) circle. �

Finally, we revisit an expression that relates the algebraic areas (counted
by sign and multiplicity) of curves where a regular polygon of constant side
length can rotate along and the corresponding curve of polygon centers (see
Fig. 12). A proof of this formula is given in [18] using a J. Steiner result and
the Steiner point. Instead, we will prove it as a consequence of a classical
kinematics theorem by Leudesdorf [11,12].

Figure 12. An example showing the difference of areas of
Theorem 5, for k = 1



Curves that allow the motion of a regular polygon

Theorem 5. Let n ∈ N, n > 2, and k ∈ Z \ {0} such that gcd(k, n) = 1.
If α is a C1-curve where a n-sided regular polygon of constant side length is
allowed to rotate with an always-forward motion during k full revolutions and
c is the curve of polygon centers, then the algebraic areas of α and c are related
through

A(α) = A(c) + π k a2,

where a is the circumradius of the regular polygon.

Proof. Consider the motion of a moving plane over another fixed one making
k full revolutions. Let A, B, C and P be four fixed points on the moving plane
that, during the motion, will describe four closed curves over the fixed plane.
Leudesdorf’s theorem [11] states that the areas of these four curves are related
through the relation

A(P ) = xA(A) + y A(B) + z A(C) + π k T,

where [x, y, z] are the barycentric coordinates of P referred to ABC as a tri-
angle of reference (x + y + z = 1) and T is the power of the point P to the
circle rounding ABC.

In our case, let A, B and C be three vertices of the regular polygon and let
P be the polygon center. Thus, since the three points describe the same curve
α and so the same area, we have

A(P ) = A(A) + π k T.

Since P is also the center of the circumscribed circle to the triangle ABC,
which has radius a, then the power of P to this circle is simply −a2, from
which the result follows. �
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