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A functional equation related to Wigner’s theorem

Xujian Huang, Liming Zhang, and Shuming Wang

Abstract. An open problem posed by G. Maksa and Z. Páles is to find the general solution
of the functional equation

{‖f(x) − βf(y)‖ : β ∈ Tn} = {‖x − βy‖ : β ∈ Tn} (x, y ∈ H)

where f : H → K is between two complex normed spaces and Tn := {ei
2kπ

n : k = 1, · · · , n} is
the set of the nth roots of unity. With the aid of the celebrated Wigner’s unitary-antiunitary
theorem, we show that if n ≥ 3 and H and K are complex inner product spaces, then f
satisfies the above equation if and only if there exists a phase function σ : H → Tn such
that σ · f is a linear or anti-linear isometry. Moreover, if the solution f is continuous, then
f is a linear or anti-linear isometry.
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1. Introduction

Let R be the set of real numbers, C be the set of complex numbers, and T be
the unit circle in C. Let n be a fixed positive integer and Tn denote the finite
cyclic subgroup of T consisting of the nth roots of unity, i.e., Tn := {ei 2kπ

n :
k = 1, · · · , n}.

The celebrated Wigner’s theorem plays a fundamental role in the founda-
tions of quantum mechanics and in representation theory in physics. It states
that any quantum mechanical symmetry transformation can be represented
by a unitary or an anti-unitary operator on a complex inner product space. In
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mathematical language, the result can be reformulated in the following way.
For complex inner product spaces H and K, a mapping f : H → K satisfies

|〈f(x), f(y)〉| = |〈x, y〉| (x, y ∈ H) (1.1)

if and only if there exist a function (called phase function) σ : H → T and a
linear or anti-linear (i.e. conjugate linear) isometry U : H → K such that

f(x) = σ(x)U(x) (x ∈ H). (1.2)

We then say that f is phase equivalent to a linear or anti-linear isometry.
There are several proofs of this result, see [1,4,6,7,9,18,22] to list just some of
them. For further generalizations of this fundamental result, we mention the
papers [3,5,8,16,17,19].

The real version of Wigner’s theorem was also obtained by Rätz [18, Corol-
lary 8 (a)] and by Turnšek [22, Theorem 2.4 (i)] as follows. A mapping f : H →
K between real inner product spaces satisfies (1.1) if and only if there exist
a function σ : H → {−1, 1} and a real linear isometry U : H → K such that
(1.2) holds. We then say that f is phase equivalent to a real linear isometry.
By an easy argument, Maksa and Páles [15, Theorem 2] obtained that if H
and K are real inner product spaces then f : H → K satisfies the functional
equation

{‖f(x) + f(y)‖, ‖f(x) − f(y)‖} = {‖x + y‖, ‖x − y‖} (x, y ∈ H), (1.3)

if and only if f satisfies (1.1). Combining the two results above, Maksa and
Páles [15, Theorem 2] then proved that the general solution of the functional
Eq. (1.3) is phase equivalent to a real linear isometry.

Maksa and Páles [15] also at last formulated two open problems as follows.

Problem 1.1. [15] Under what conditions, when H and K are real normed but
not necessarily inner product spaces, the solutions of (1.3) are phase equivalent
to a real linear isometry?

Problem 1.2. [15] Let H and K be complex normed spaces and n be a fixed pos-
itive integer. Under what conditions the solutions f : H → K of the following
generalization of (1.3):

{‖f(x) − βf(y)‖ : β ∈ Tn} = {‖x − βy‖ : β ∈ Tn} (x, y ∈ H) (1.4)

have the form (1.2) for some phase function σ : H → Tn and some linear or
anti-linear isometry U : H → K?

There are several recent papers dealing with Problem 1.1, see [10–14,20,
21,23]. Recently, Ilǐsević, Turnšek, etc. gave a positive answer to Problem 1.1.
Namely, they proved that the solutions of Eq. (1.3) for a mapping f : H → K,
where H and K are real normed spaces, are phase equivalent to a real linear
isometry under the condition that either f is surjective [12] or K is strictly
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convex [13]. Huang and Tan in [10] introduced a weaker version of Eq. (1.3)
as follows:

min{‖f(x) + f(y)‖, ‖f(x) − f(y)‖} = min{‖x + y‖, ‖x − y‖} (x, y ∈ H).

They also proved that every surjective mapping satisfying this equation be-
tween two real normed spaces is phase equivalent to a real linear isometry.

In this paper, we give a positive answer to Problem 1.2 for complex inner
product spaces. Let H and K be two complex inner product spaces and f be a
mapping f : H → K. We will show in Theorem 2.5 that for n ≥ 3, a mapping
f satisfies (1.4) if and only if there is a phase function σ : H → Tn such that
σ ·f is a linear or anti-linear isometry. Moreover, we will show in Corollary 2.7
that for n ≥ 3, a continuous mapping f satisfies (1.4) if and only if f is a linear
or anti-linear isometry.

2. Results

Throughout this section, let H and K be complex inner product spaces, and
n be a fixed positive integer.

First we present a simple and useful lemma. For convenience, we introduce
two equations

{‖f(x) + βf(y)‖ : β ∈ Tn} = {‖x + βy‖ : β ∈ Tn} (x, y ∈ H) (2.1)

and

{Reβ〈f(x), f(y)〉 : β ∈ Tn} = {Reβ〈x, y〉 : β ∈ Tn} (x, y ∈ H). (2.2)

Lemma 2.1. For n ≥ 2 and a mapping f : H → K, the following statements
are equivalent:

(i) f satisfies Eq. (1.4);
(ii) f satisfies Eq. (2.1);
(iii) f satisfies Eq. (2.2).
Moreover, if this is the case, then f is norm preserving, i.e., ‖f(x)‖ = ‖x‖ for
every x ∈ H.

Proof. Putting y = x, we deduce from each of Eqs. (1.4), (2.1) and (2.2) that
f is norm preserving. For x, y ∈ H and β ∈ Tn, we obtain

‖x ± βy‖2 = ‖x‖2 + ‖y‖2 ± 2Re〈x, βy〉 = ‖x‖2 + ‖y‖2 ± 2Reβ〈x, y〉,
and

‖f(x) ± βf(y)‖2 = ‖f(x)‖2 + ‖f(y)‖2 ± 2Reβ〈f(x), f(y)〉.
By the norm-preserving property and the fact that β ∈ Tn if and only if
β ∈ Tn, each of Eqs. (1.4) and (2.1) is equivalent to Eq. (2.2). The proof is
complete. �



888 X. Huang et al. AEM

Remark 2.2. In the case n = 1, Eqs. (1.4), (2.1) and (2.2) turn out to be

‖f(x) − f(y)‖ = ‖x − y‖ (x, y ∈ H), (2.3)
‖f(x) + f(y)‖ = ‖x + y‖ (x, y ∈ H), (2.4)

and

Re〈f(x), f(y)〉 = Re〈x, y〉 (x, y ∈ H), (2.5)

respectively. By definition, f satisfies Eq. (2.3) if and only if f is an isometry.
Since an inner product space is strictly convex, Baker [2] showed that f −f(0)
is a real linear isometry if f is an isometry. However, an easy argument [15,
Theorem 1] shows that Eqs. (2.4) and (2.5) are equivalent to each other and
each of them is equivalent to f being a real linear isometry. Hence, in general,
Lemma 2.1 does not hold for n = 1.

In the case n = 2, each of Eqs. (1.4) and (2.1) is the same as Eq. (1.3), and
Eq. (2.2) becomes

|Re〈f(x), f(y)〉| = |Re〈x, y〉| (x, y ∈ H). (2.6)

Note that every complex linear space is obviously a real linear space and if
〈·, ·〉 is a complex inner product on H, then Re〈·, ·〉 is a real inner product on
H which induces the same norm. Therefore, from the real version of Wigner’s
theorem, the following theorem follows immediately. See [15, Theorem 2] or
[22, Theorem 2.4 (i)] for its proof.

Theorem 2.3. ([15,22]) For a mapping f : H → K, the following statements
are equivalent:

(i) f satisfies Eq. (1.3);
(ii) f satisfies Eq. (2.6);
(iii) there exist a phase function σ : H → {−1, 1} and a real linear isometry

U : H → K such that f = σ · U .

It may be worth noting that in (iii) of Theorem 2.3, the phrase “a real
linear isometry” cannot be replaced by “a linear or anti-linear isometry”. To
show this, we construct an example as follows.

Example. Let H = C and K = C
2, both equipped with the usual inner prod-

ucts, i.e.,

〈x, y〉 = xy (x, y ∈ C)

and

〈(x1, x2), (y1, y2)〉 = x1y1 + x2y2 ((x1, x2), (y1, y2) ∈ C
2).

Define f : C → C
2 by

f(x) =
1√
2
(x, x), x ∈ C.
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An easy calculation shows that f satisfies Eq. (2.6), but for any phase function
σ : H → {−1, 1}, σ · f is neither linear nor anti-linear.

However, in the case n ≥ 3, in sharp contrast with the cases n = 1, 2,
each of (1.4), (2.1) and (2.2) is equivalent to there being a phase function
σ : H → Tn such that σ · f is a linear or anti-linear isometry. This is the
content of Theorem 2.5. To obtain it, we need an elementary lemma as follows.

Lemma 2.4. For n ≥ 3 and s, t ∈ C, the equation

{Reβs : β ∈ Tn} = {Reβt : β ∈ Tn} (2.7)

holds if and only if s = β0t or s = β0t for some β0 ∈ Tn.

Proof. Sufficiency. If s = β0t for some β0 ∈ Tn, then

{Reβs : β ∈ Tn} = {Reβ0βt : β ∈ Tn} = {Reβt : β ∈ Tn},

where the second equality follows from the fact that β0Tn = Tn. If s = β0t,
then

{Reβs : β ∈ Tn} = {Reβ0βt : β ∈ Tn} = {Reβt : β ∈ Tn}
= {Reβt : β ∈ Tn} = {Reβt : β ∈ Tn},

where the fourth equality follows from the fact that β ∈ Tn if and only if
β ∈ Tn.

Necessity. Suppose that Eq. (2.7) holds. We first claim that |s| = |t|. Indeed,
taking t = |t|eiθ and βk = ei 2kπ

n ∈ Tn for k = 1, · · · , n, we see that

(Reβkt)2 = |t|2 cos2
(

θ +
2kπ

n

)
=

|t|2
2

(
1 + cos

(
2θ +

4kπ

n

))

=
|t|2
2

(
1 + cos 2θ cos

4kπ

n
− sin 2θ sin

4kπ

n

)
.

Let us recall the formula of partial sums of trigonometric series
n∑

k=1

cos ku =
sin n

2u · cos n+1
2 u

sin u
2

and
n∑

k=1

sin ku =
sin n

2u · sin n+1
2 u

sin u
2

for u ∈ (0, 2π). It follows that
n∑

k=1

(Reβkt)2 =
|t|2
2

(
n + cos 2θ ·

n∑
k=1

cos k
4π

n
− sin 2θ ·

n∑
k=1

sin k
4π

n

)
=

|t|2n
2

.

Similarly,
n∑

k=1

(Reβks)2 =
|s|2n

2
.
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Therefore, Eq. (2.7) implies that |s| = |t| and the claim is proved. Furthermore,
let us take s = |t|eiθ1 and t = |t|eiθ. It follows from Eq. (2.7) that{

cos
(

θ1 +
2kπ

n

)
: k = 1, · · · , n

}
=

{
cos

(
θ +

2kπ

n

)
: k = 1, · · · , n

}
.

Choose k0 ∈ {1, · · · , n} such that cos θ1 = cos(θ + 2k0π
n ), or equivalently,

±θ1 = θ +
2k0π

n
+ 2mπ

for some integer m. Therefore, we have s = βk0t or s = βk0t. �

Now we present our main theorem. For convenience, we introduce the equa-
tion

〈f(x), f(y)〉 = β(x, y)〈x, y〉 or 〈f(x), f(y)〉 = β(x, y)〈y, x〉
for some β(x, y) ∈ Tn (x, y ∈ H).

(2.8)

Theorem 2.5. For n ≥ 3 and a mapping f : H → K, the following statements
are equivalent:

(i) f satisfies Eq. (1.4);
(ii) f satisfies Eq. (2.1);
(iii) f satisfies Eq. (2.2);
(iv) f satisfies Eq. (2.8);
(v) there exist a phase function σ : H → Tn and a linear or anti-linear

isometry U : H → K such that f = σ · U .

Proof. The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) and (iii) ⇐⇒ (iv) are contained
in Lemmas 2.1 and 2.4, respectively. We will complete the proof by establishing
the implications (v) =⇒ (i) and (iv) =⇒ (v).

(v) =⇒ (i). Suppose that f = σ · U for some phase function σ : H → Tn

and some linear isometry U (respectively, some anti-linear isometry U). For
x, y ∈ H and β ∈ Tn,

‖f(x) − βf(y)‖ = ‖σ(x)U(x) − σ(y)βU(y)‖ = ‖U(σ(x)x − σ(y)βy)‖
= ‖σ(x)x − σ(y)βy‖ = ‖x − σ(x)σ(y)βy‖

(respectively,

‖f(x) − βf(y)‖ = ‖σ(x)U(x) − σ(y)βU(y)‖ = ‖U(σ(x)x − σ(y)βy)‖
= ‖σ(x)x − σ(y)βy‖ = ‖x − σ(x)σ(y)βy‖).

Note that βTn = Tn and β ∈ Tn for every β ∈ Tn. It follows that Eq. (1.4)
holds.

(iv) =⇒ (v). Suppose that Eq. (2.8) holds. Therefore Eq. (1.1) holds. By
Wigner’s theorem, there exist a phase function σ1 : H → T and a linear or
anti-linear isometry U1 : H → K such that f = σ1 · U1. Next, we will divide
our proof into two cases: dimH = 1 and dimH ≥ 2.
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(I) The case that dim H = 1. In this case, we have that f(H) ⊂ U1(H) and
dim U1(H) = 1. After a suitable identification, the mapping f can be
regarded as a mapping f : C → C. Set

A :=
{

x ∈ C\{0} :
x

x
∈ Tn

}
,

B :=
{

x ∈ C\{0} :
x

x
/∈ Tn and f(x) = β(x, 1)f(1)x

}
,

and

C :=
{

x ∈ C\{0} :
x

x
/∈ Tn and f(x) = β(x, 1)f(1)x

}
.

Obviously, the sets A, B and C are disjoint. By Eq. (2.8), we have that
A∪B∪C = C\{0}. We claim that B = ∅ or C = ∅. Suppose, on contrary
that x ∈ B and y ∈ C. Then

f(x) = β(x, 1)f(1)x and f(y) = β(y, 1)f(1)y.

Substituting these into Eq. (2.8), we obtain that

β(x, 1)β(y, 1)xy = β(x, y)xy or β(x, 1)β(y, 1)xy = β(x, y)xy,

which means that
y

y
=

β(x, y)
β(x, 1)β(y, 1)

∈ Tn or
x

x
=

β(x, y)
β(x, 1)β(y, 1)

∈ Tn.

However, the fact x ∈ B and y ∈ C implies that
x

x
/∈ Tn and

y

y
/∈ Tn.

This contradiction proves the claim. If C = ∅, then we set

A1 :=
{

x ∈ C\R :
x

x
∈ Tn and f(x) = β(x, 1)f(1)x

}
.

If x ∈ A1, then
x

x
∈ Tn and f(x) = β(x, 1)f(1)x = β(x, 1)

x

x
f(1)x.

If x ∈ A\A1 or x ∈ B, then Eq. (2.8) implies that

f(x) = β(x, 1)f(1)x.

Define

σ(x) =

⎧⎪⎨
⎪⎩

β(x, 1)x
x , x ∈ A1

β(x, 1), x ∈ (A\A1) ∪ B

1, x = 0

and U(x) = f(1)x, x ∈ C. Then σ(C) ⊂ Tn, U is a linear isometry and
f = σ · U . If B = ∅, a similar argument shows that there exist a phase
function σ : C → Tn and an anti-linear isometry U : C → C such that
f = σ · U . This completes the proof of the case that dimH = 1.
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(II) The case that dim H ≥ 2. In this case, fix a unit vector e ∈ H. Define

σ(x) =

{
σ1(e)σ1(x), x ∈ H\{0}
1, x = 0

and U = σ1(e)U1. Then σ : H → T is a phase function, U : H → K is
a linear or anti-linear isometry and f = σ · U . It suffices to show that
σ(H\{0}) ⊂ Tn. From Eq. (2.8) it follows that if 〈x, y〉 ∈ R\{0} then

β(x, y)〈x, y〉 = 〈f(x), f(y)〉 = σ(x)σ(y)〈x, y〉,
which implies that σ(x)σ(y) = β(x, y) ∈ Tn. This is equivalent to saying
that σ(x) ∈ Tn if and only if σ(y) ∈ Tn whenever 〈x, y〉 ∈ R\{0}. Let
Z = (Ce)⊥ = {z ∈ H : 〈z, e〉 = 0} and choose arbitrarily z ∈ Z\{0}.
Since σ(e) = 1, the equations 〈e, e + z〉 = 1 and 〈z, e + z〉 = ‖z‖2 imply
that σ(e + z) ∈ Tn and hence σ(z) ∈ Tn. Moreover, for every t ∈ C\{0},
the equation 〈z, te + z〉 = ‖z‖2 implies that σ(te + z) ∈ Tn, and then the
equation 〈te, te + z〉 = |t|2 implies that σ(te) ∈ Tn. This completes the
proof of the case that dimH ≥ 2.

The proof is complete. �

Remark 2.6. Note that in (v) of Theorem 2.5, the phrase “a linear or anti-
linear isometry” cannot be replaced either by “a linear isometry” or by “an
anti-linear isometry”. For example, the mappings f1, f2 : C → C defined by
f1(x) = x and f2(x) = x both satisfy Eq. (2.8). However, it is easy to check
that for any phase function σ : H → Tn where n ≥ 3, σ · f1 cannot be linear
and σ · f2 cannot be anti-linear.

The following corollary describes the continuous solutions of (1.4).

Corollary 2.7. For n ≥ 3 and a continuous mapping f : H → K, each of Eqs.
(1.4), (2.1), (2.2) and (2.8) holds if and only if f is a linear or anti-linear
isometry.

Proof. By Theorem 2.5, we need only to prove that Eq. (1.4) implies that f
is a linear or anti-linear isometry. Assume that f is a continuous mapping
satisfying Eq. (1.4). Then there exists a phase function σ : H → Tn such that
σ · f is a linear or anti-linear isometry. Thus,

σ(x)σ(y)〈f(x), f(y)〉 = 〈x, y〉 (x, y ∈ H)

or

σ(x)σ(y)〈f(x), f(y)〉 = 〈y, x〉 (x, y ∈ H).

If y �= 0, then there exists an open ball Vy centered at y such that

σ(x) = σ(y)
〈x, y〉

〈f(x), f(y)〉 (x ∈ Vy)
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or

σ(x) = σ(y)
〈y, x〉

〈f(x), f(y)〉 (x ∈ Vy).

This, by the continuity of f , shows that σ is continuous on Vy. Since the phase
function σ : H → Tn takes only finite values, we have that σ is constant on
Vy. By the fact that H\{0} is connected, σ is constant on H\{0}, f must be
a linear or anti-linear isometry. �

Remark 2.8. The proof of Corollary 2.7 is similar to that of [15, Corollary 3],
where the case n = 2 was considered as follows. For a continuous mapping
f : H → K, each of Eqs. (1.3) and (2.6) holds if and only if f is a real linear
isometry.
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