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Abstract. The main result in this article is the following: Let K ⊂ R
2 be a regular convex

body and let α, β, θ, be three angles such that K has α-chords, β-chords, and θ-chords of
constant length and α+β + θ = π, then K is a disc. We also prove another characterization
of the disc with respect to properties of its (α, β, θ)-circumscribed triangles.
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1. Introduction

Let K be a strictly convex body in the plane, i.e., a compact and convex set
with non-empty interior and without segments in its boundary. Denote by
�(t) the support line of K with outward normal vector u(t) = (cos t, sin t), for
every real number t. Consider now a triangle Δ = �ABC with given angles
α, β, and θ. For every t ∈ [0, 2π] there exists exactly one triangle similar
to Δ circumscribed to K, with its side A(t)C(t) over the line �(t), and with
the angles α, β, and θ in the counter clockwise sense as shown in Fig. 1. We
denote such a triangle by Δ(t) = A(t)B(t)C(t) and name it (α, β, θ)-triangle.
Let D(t), E(t), and F (t) be the contact points between K and the sides of
Δ(t). When K is a disc, the following conditions hold:
(1) A(t)D(t) = A(t)F (t), B(t)D(t) = B(t)E(t), C(t)E(t) = C(t)F (t),
(2) A(t)D(t)

D(t)B(t)
= λ1,

B(t)E(t)

E(t)C(t)
= λ2,

C(t)F (t)

F (t)A(t)
= λ3, for three fixed numbers λ1,

λ2, λ3,
(3) D(t)F (t) = λα, D(t)E(t) = λβ , E(t)F (t) = λθ, for some fixed numbers

λα, λβ , λθ,
for every t ∈ [0, 2π].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-023-00983-w&domain=pdf
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Figure 1. A triangle similar to Δ circumscribed to K

However, what happens if for a convex body K, any one of conditions (1),
(2) or (3) holds for every t ∈ [0, 2π]? Is K a disc?

As we will see in the following sections, the answer is positive and it relies
on results about isoptic curves. We may think that if the size of Δ(t) is in-
dependent of t, i.e., it always has the same size, then it is sufficient to ensure
that K must be a disc. However, this is not true: Let K be a convex body in
the plane and let P be a convex polygon. It is said that K is a rotor in P if for
every rotation ρ, there is a translate of P that contains ρ(K) and all sides of
P are tangent to K. In the case where the polygon P is a triangle with angles
α, β, θ, it is known that there exist rotors different from discs if α

π , β
π , and

θ
π are all rational numbers, see for instance [3], and for the particular case of
rotors in equilateral triangles see [11].

Similar problems were recently studied: a convex body K is a disc if for
some angles α ∈ (0, π) and β = α, it holds that A(t)D(t) = D(t)B(t), for every
t ∈ [0, 2π] (see [9]). If for some α ∈ (0, π) it holds that B(t)D(t) has a constant
value for every t ∈ [0, 2π], K is a disc (see [4]). If D(t)F (t) = λα, for every
t ∈ [0, 2π] and for a constant number λα, and K has constant width or has
rotational symmetry of angle π −α, then K is a disc (see [7]). We can see that
condition (1) implies that K must be a disc: just notice that the points D(t),
E(t), F (t), are points of contact between the incircle of �A(t)B(t)C(t) and its
sides. Now we use Lemma 3.3 in [6] and conclude that K is a disc. However,
there are convex bodies different from discs, for which A(t)D(t) = A(t)F (t) for
every t ∈ [0, 2π] (see [8]). Indeed, there are convex bodies, different from discs,
for which this condition holds for three (or more) different angles α, β, θ ∈
(0, π), but in this case the condition α + β + θ = π does not hold.
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The main purpose of this paper is to prove that a convex body for which
condition (3) holds, must be a disc.

2. Basic concepts of isoptic curves

The function p : R −→ R, defined as p(t) = maxx∈K〈u(t), x〉, is known by the
name of support function of K. When the origin O is contained in K, p(t) is
nothing else but the distance from O to the support line �(t). The distance
between the support lines �(t) and �(t+π) is called the width of K in direction
u(t) and it is denoted by w(t), in other words, w(t) = p(t)+p(t+π). If w(t) is
constant, independently of t, we say that K is a body of constant width. For
any α ∈ (0, π), the α-isoptic Kα of K is defined as the locus of points at which
two tangent lines to K intersect at an angle α. Using the support function,
∂K is parameterized (see for instance [10]) by

γ(t) = p(t)u(t) + p′(t)u′(t), for t ∈ [0, 2π].

The isoptic curve Kα can be parameterized by the same angle by the for-
mula (see [2] or [8])

γα(t) = p(t)u(t) +
[
p(t) cot α +

1
sin α

p(t + π − α)
]

u′(t).

By Cauchy’s formula, the perimeter of K can be obtained by (see [10])

L(K) =
∫ 2π

0

p(t)dt. (1)

For any t ∈ R we define (see Fig. 2)

aα(t) = |γα(t) − γ(t)|,
bα(t) = |γα(t) − γ(t + π − α)|,
qα(t) = |γ(t) − γ(t + π − α)|.

By some simple calculations we can express the lengths a(t) and b(t) in
terms of the support function of K:

aα(t) =
1

sin α
[p(t + π − α) + p(t) cos α − p′(t) sin α], (2)

bα(t) =
1

sin α
[p(t + π − α) cos α + p′(t + π − α) sin α + p(t)]. (3)

3. Some useful lemmas about isoptic curves

Lemma 1. Let K be a strictly convex body in the plane and let α, θ ∈ (0, π) be
angles such that aα(t) = aα(t+θ), for every t ∈ [0, 2π]. Then, K has rotational
symmetry of angle θ.
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Figure 2. Parameters of the isoptic curve

Proof. Recall that aα(t) = 1
sinα [p(t + π − α) + p(t) cos α − p′(t) sin α]. The

hypothesis aα(t) = aα(t + θ) implies that

p(t + π − α) + p(t) cos α − p′(t) sin α = p(t + θ + π − α)

+ p(t + θ) cos α − p′(t + θ) sin α,

which is equivalent to

[p′(t + θ) − p′(t)] sin α = [p(t + θ) − p(t)] cos α + p(t + θ + π − α) − p(t + π − α).

Let y(t) = p(t+θ)−p(t). Using the previous equality we obtain the following
differential equation

y′(t) sin α = y(t) cos α + y(t + π − α). (4)

We express y and y′ in terms of their Fourier Series:

y(t) =
∞∑

n=−∞
cneint,

y′(t) =
∞∑

n=−∞
nicneint.

Then,
∞∑

n=−∞
ni sin αcneint =

∞∑
n=−∞

cos αcneint +
∞∑

n=−∞
(−1)ne−inαcneint
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and we have

ni sin αcn = cos α + (−1)ne−inαcn.

We claim that cn = 0 for every n not equal to 1 or −1. Suppose this is not the
case. Then,

ni sin α = cos α + (−1)n cos nα − (−1)ni sin(nα).

Equivalently

n sin α = −(−1)n sin(nα) and cos α + (−1)n cos nα = 0.

Notice that the first equation is not satisfied when n �= 0, 1,−1 while the
second is false for n = 0. The claim now follows and we conclude that

p(t + θ) − p(t) = y(t) = c−1e
−it + c1e

it = a1 cos t + b1 sin t,

where c1 = a1 − b1i = c−1. Using vector notation we obtain

p(t + θ) = p(t) + 〈(a1, b1), u(t)〉.
Let t0 be such that u(t0 + θ) is parallel to (a1, b1). Notice that

p(t0 + 2θ) = p(t0 + θ) + 〈(a1, b1), u(t0 + θ)〉 = p(t0 + θ) + ||(a1, b1)||,
p(t0 + 3θ) = p(t0 + 2θ) + ||(a1, b1)|| = p(t0 + θ) + 2||(a1, b1)||,

...

p(t0 + nθ) = p(t0 + θ) + (n − 1)||(a1, b1)||.
Since the support function is bounded, we must have (a1, b1) = (0, 0). We
conclude that p(t + θ) = p(t) for every t, which implies that K has rotational
symmetry of angle θ. �

As an application of Lemma 1, we have the following characterization of the
disc, which we will prove for every kind of triangles in the following section.

Proposition 1. Let K be a convex body and α, β ∈ (0, π) such that 2α+β = π.
Suppose that qα(t) = λα and qβ(t) = λβ, for every t ∈ [0, 2π] and for some
positive numbers λα and λβ. Then K is a disc.

Proof. Let �γ(t)γ(t+π−α)γ(t−2α) = φ and �γ(t)γ(t+π−α)γα(t) = α1(t), for
every t ∈ [0, 2π], as shown in Fig. 3. Notice that α1(t+π −α) = α1(t)+φ−α,
for every t. Let t1, t2 ∈ [0, 2π] be such that α(t1) ≤ α(t) ≤ α(t2) for every
t ∈ [0, 2π]. Since α1(t1 +π −α) = α1(t1)+φ−α, we must have that φ−α ≥ 0.
Similarly, α(t2 + π − α) = α1(t2) + φ − α implies that φ − α ≤ 0. We conclude
that α = φ and α1(t + π − α) = α1(t) for every t ∈ [0, 2π]. Using the previous
equality and the Law of sines for the triangles Δγα(t+π−α)γ(t−2α)γ(t+π−α)
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Figure 3. An isosceles circumscribed triangle

and Δγα(t)γ(t+π−α)γ(t) we conclude that for every t the following equalities
hold

aα(t)
sinα1(t)

=
λα

sin α
=

aα(t + π − α)
sinα1(t)

.

It follows that aα(t) = aα(t+π−α) for every t. By Lemma 1, K has rotational
symmetry of angle α. The result now follows from Theorem 2 in [7]. �

Lemma 2. Let K be a strictly convex body in the plane and let α ∈ (0, π)
be a given angle. Then there exist two real numbers t0, t1 ∈ [0, 2π] such that
aα(t0) = bα(t0) and aα(t1 + π − α) = bα(t1).

Proof. From (2) and (3) we have that

sin α[aα(t) − bα(t)]
= p(t + π − α)(1 − cos α) − p(t)(1 − cos α) − p′(t) sin α − p′(t + π − α) sin α.

By Cauchy’s formula for the perimeter and since p is a periodic function with
period equal to 2π, we have that

2π∫
0

sinα[aα(t) − bα(t)]dt

= L(K)(1 − cos α) − L(K)(1 − cos α) − p(t) sin α|2π
0 − p(t + π − α) sin α|2π

0 ,

hence
2π∫
0

sin α[aα(t) − bα(t)]dt = 0.
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Since a and b are continuous functions, we have that there exists a number t0
such that aα(t0) = bα(t0).

The proof of the existence of t1 such that aα(t1 + π − α) = bα(t1) is
completely analogous. �

The following lemma gives another characterization of the disc.

Lemma 3. Let K be a strictly convex body in the plane and let α ∈ (0, π/2) be
a given angle. Suppose aα(t) = λaπ−α(t), for every t ∈ [0, 2π] and for λ > 1.
Then K is a disc.

Proof. We know that

aα(t) =
1

sin α
[p(t + π − α) + p(t) cos α − p′(t) sin α]

and

λaπ−α(t) =
λ

sinα
[p(t + α) − p(t) cos α − p′(t) sin α].

Then,

p(t + π − α) + p(t) cos α − p′(t) sin α = λp(t + α) − λp(t) cos α − λp′(t) sin α,

or

(λ − 1)p′(t) sin α + p(t + π − α) − λp(t + α) + (λ + 1)p(t) cos α = 0. (5)

Let the Fourier series of p be given by

p(t) =
∞∑

n=−∞
cneint.

By equation (5) we have
∞∑

n=−∞
i(λ − 1)n sin αcneint +

∞∑
−∞

(−1)ncne−inαeint −
∞∑

n=−∞
λcneinαeint

+
∞∑

n=−∞
i(λ + 1) cos αcneint = 0.

We conclude that

[i(λ − 1)n sin α + (−1)ne−inα − λeinα + (λ + 1) cos α]cn = 0,

i.e.,

[i(λ − 1)n sin α + (−1)n cos nα − (−1)ni sin nα − λ cos nα − iλ sin nα

+(λ + 1) cos α]cn = 0.

For n = 0 we obtain

1 − λ + (λ + 1) cos α = 0,
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which implies

λ =
1 + cos α

1 − cos α
. (6)

Notice that if cn �= 0 we must have

(λ − 1)n sin α − (λ + (−1)n) sin nα = 0 and ((−1)n − λ) cos nα + (λ + 1) cos α = 0.

Now, if n �= 1 is an odd natural number, the first equation simplifies to

n sin α + sin nα = 0,

which is never satisfied. It follows that cn = 0 for every odd natural number
n �= 1. On the other hand, for every natural even number n �= 0, we have

(1 − λ) cos nα + (λ + 1) cos α = 0.

Using equation (6) we conclude that

cos nα = −1,

which is impossible, since 0 < α < π/2. It follows that cn = 0 for every even
number n > 0 and that p(t) = c0 + ceit. Thus, K is a disc. �

4. Main results

The first result we prove here is concerns property (2) mentioned in the intro-
duction.

Theorem 1. Let K ⊂ R
2 be a strictly convex body and let α, β, θ ∈ (0, π) be

three angles such that α + β + θ = π. Suppose that for every t ∈ [0, 2π]

bα(t)
aβ(t + π − α)

= λ1,
bβ(t + π − α)
aθ(t − π + θ)

= λ2,
bθ(t − π + θ)

aα(t)
= λ3,

for some constants λ1, λ2, and λ3. Then K is a disc.

Proof. Since all (α, β, θ)-triangles are similar and the points γ(t + π − α),
γ(t−π + θ), γ(t), divide the corresponding sides in the given ratios λ1, λ2, λ3,
we have that

aα(t)
bα(t)

,
aβ(t + π − α)
bβ(t + π − α)

, and
aθ(t − π + θ)
bθ(t − π + θ)

are also constant. Now, by Lemma 2 we have that aα(t) = bα(t), aβ(t) = bβ(t),
aθ(t) = bθ(t) for every t ∈ [0, 2π]. It follows that the points γ(t + π − α),
γ(t − π + θ), γ(t) are the contact points between the incircle of the triangle
�γα(t)γβ(t + π − α)γθ(t − π + θ) and its sides, for every t ∈ [0, 2π]. Now, the
hypothesis of Lemma 3.3 in [6] holds, and so we conclude that K is a disc. �

Now we present the main result of this work.
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Figure 4. γ(t + π − α), γ(t − π + θ), γ(t), divide the corre-
sponding sides in the given ratios

Theorem 2. Let K ⊂ R
2 be a regular convex body and let α, β, θ ∈ (0, π) be

three angles such that α + β + θ = π. Suppose that for every t ∈ [0, 2π],
qα(t) = λα, qβ(t) = λβ, qθ(t) = λθ, for some constants λα, λβ, and λθ. Then
K is a disc.

In the proof of Theorem 2 we will use the following lemma (see [11]). For
the sake of completeness we give a proof here.

Lemma 4. Let C be one of the points of intersection between two circles Γ1

and Γ2 with centres O1 and O2, respectively. The unique chord AB, with A ∈
Γ1, B ∈ Γ2, through C and with maximum length is obtained when AB is
orthogonal to the common chord between Γ1 and Γ2, i.e., when AB is parallel
to O1O2.

Proof. Let AB be any chord through C, as shown in Fig. 5. Let M1 and M2 be
the orthogonal projections of O1 and O2 onto AB. We know that the length of
M1M2 is half the length of AB. Suppose the orthogonal projection, T , of O1

onto the line O2M2 lies in the segment O2M2. Since O1M1M2T is a rectangle,
we have that the lengths of O1T and M1M2 are equal. From here we see that
the maximum length of M1M2 and hence of AB is when AB is parallel to
O1O2. The case when the orthogonal projection of O2 onto the line O1M1 lies
in the segment O1M1, is completely analogous. �

Proof of Theorem 2. Let t ∈ [0, 2π] be any angle and let Δ(t) = �γα(t)γβ(t+
π − α)γθ(t − π + θ) be the corresponding circumscribed (α, β, θ)-triangle. The
contact points between the sides of Δ(t) and the boundary of K are γ(t),
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Figure 5. Maximum chord AB is when AB is parallel to
O1O2

Figure 6. All circumscribed (α, β, θ)-triangles are maximal

γ(t + π − α), and γ(t − π + θ), respectively. By Miquel’s theorem we know
that there exists a point m(t) in common to the circumcircles of triangles
�γα(t)γ(t+π−α)γ(t), �γβ(t+π−α)γ(t−π+θ)γ(t+π−α), and �γθ(t−π+
θ)γ(t)γ(t−π+θ). By Lemma 4 we obtain that the maximum (α, β, θ)-triangle
circumscribed to �γ(t)γ(t + π − α)γ(t − π + θ) is obtained when [m(t), γ(t)],
[m(t), γ(t+π−α)], [m(t), γ(t−π+θ)] are orthogonal to the corresponding sides
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of Δ(t). Suppose that this is not the case and let �zαzβzθ be the maximum
((α, β, θ)-triangle circumscribed to �γ(t)γ(t + π − α)γ(t − π + θ), as shown
in Fig. 6. Since the boundary of K is regular, the sides of �zαzβzθ intersect
the interior of K. If we consider the corresponding support lines of K, parallel
to the sides of �zαzβzθ, we obtain an (α, β, θ)-triangle circumscribed to K
with size bigger than the size of �zαzβzθ. This is a contradiction since such
a triangle must touch the boundary of K in three points which are vertices
of a triangle congruent to Δ(t). It follows that the triangle Δ(t), for every
t ∈ [0, 2π], is maximal. In particular, we have that the length of aα(t) is
constant for every t ∈ [0, 2π]. We apply Lemma 2 in [4] and conclude that K
is a disc. �

Remark 1. Indeed, we have that the points γ(t), γ(t+π −α), and γ(t−π + θ)
are the contact points between the incircle of Δ(t) and the sides of Δ(t). We
can also conclude the proof of the theorem using Lemma 3.3 in [6].
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Instituto Tecnológico de Mexicali
Mexicali
Mexico
e-mail: rafaelivan@itmexicali.edu.mx
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