Aeguationes Mathematicae

Some characterizations of the disc by properties of isoptic triangles

RAFAEL I. AYALA-FIGUEROA, IVÁN GONZÁLEZ-GARCÍA, JESÚS JERÓNIMO-CASTRO, AND FRANCISCO G. JIMENEZ-LOPEZ

Abstract. The main result in this article is the following: Let $K \subset \mathbb{R}^2$ be a regular convex body and let α , β , θ , be three angles such that K has α -chords, β -chords, and θ -chords of constant length and $\alpha + \beta + \theta = \pi$, then K is a disc. We also prove another characterization of the disc with respect to properties of its (α, β, θ) -circumscribed triangles.

Mathematics Subject Classification. 52A10.

Aequat. Math. 98 (2024), 591-602

published online September 4, 2023

0001-9054/24/020591-12

Springer Nature Switzerland AG 2023

https://doi.org/10.1007/s00010-023-00983-w

(c) The Author(s), under exclusive licence to

1. Introduction

Let K be a strictly convex body in the plane, i.e., a compact and convex set with non-empty interior and without segments in its boundary. Denote by $\ell(t)$ the support line of K with outward normal vector $u(t) = (\cos t, \sin t)$, for every real number t. Consider now a triangle $\Delta = \triangle ABC$ with given angles α, β , and θ . For every $t \in [0, 2\pi]$ there exists exactly one triangle similar to Δ circumscribed to K, with its side A(t)C(t) over the line $\ell(t)$, and with the angles α , β , and θ in the counter clockwise sense as shown in Fig. 1. We denote such a triangle by $\Delta(t) = A(t)B(t)C(t)$ and name it (α, β, θ) -triangle. Let D(t), E(t), and F(t) be the contact points between K and the sides of $\Delta(t)$. When K is a disc, the following conditions hold:

- (1) $\overline{A(t)D(t)} = \overline{A(t)F(t)}, \quad \overline{B(t)D(t)} = \overline{B(t)E(t)}, \quad \overline{C(t)E(t)} = \overline{C(t)F(t)},$ (2) $\frac{\overline{A(t)D(t)}}{D(t)B(t)} = \lambda_1, \quad \frac{\overline{B(t)E(t)}}{\overline{E(t)C(t)}} = \lambda_2, \quad \frac{\overline{C(t)F(t)}}{\overline{F(t)A(t)}} = \lambda_3, \text{ for three fixed numbers } \lambda_1,$
- (3) $\overline{D(t)F(t)} = \lambda_{\alpha}, \ \overline{D(t)E(t)} = \lambda_{\beta}, \ \overline{E(t)F(t)} = \lambda_{\theta}, \ \text{for some fixed numbers}$ $\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\theta}, \lambda_{\theta},$

for every $t \in [0, 2\pi]$.

🕲 Birkhäuser

AEM

FIGURE 1. A triangle similar to Δ circumscribed to K

However, what happens if for a convex body K, any one of conditions (1), (2) or (3) holds for every $t \in [0, 2\pi]$? Is K a disc?

As we will see in the following sections, the answer is positive and it relies on results about isoptic curves. We may think that if the size of $\Delta(t)$ is independent of t, i.e., it always has the same size, then it is sufficient to ensure that K must be a disc. However, this is not true: Let K be a convex body in the plane and let \mathcal{P} be a convex polygon. It is said that K is a rotor in \mathcal{P} if for every rotation ρ , there is a translate of \mathcal{P} that contains $\rho(K)$ and all sides of \mathcal{P} are tangent to K. In the case where the polygon \mathcal{P} is a triangle with angles α, β, θ , it is known that there exist rotors different from discs if $\frac{\alpha}{\pi}, \frac{\beta}{\pi}$, and $\frac{\theta}{\pi}$ are all rational numbers, see for instance [3], and for the particular case of rotors in equilateral triangles see [11].

Similar problems were recently studied: a convex body K is a disc if for some angles $\alpha \in (0, \pi)$ and $\beta = \alpha$, it holds that $\overline{A(t)D(t)} = \overline{D(t)B(t)}$, for every $t \in [0, 2\pi]$ (see [9]). If for some $\alpha \in (0, \pi)$ it holds that $\overline{B(t)D(t)}$ has a constant value for every $t \in [0, 2\pi]$, K is a disc (see [4]). If $D(t)F(t) = \lambda_{\alpha}$, for every $t \in [0, 2\pi]$ and for a constant number λ_{α} , and K has constant width or has rotational symmetry of angle $\pi - \alpha$, then K is a disc (see [7]). We can see that condition (1) implies that K must be a disc: just notice that the points D(t), E(t), F(t), are points of contact between the incircle of $\Delta A(t)B(t)C(t)$ and its sides. Now we use Lemma 3.3 in [6] and conclude that K is a disc. However, there are convex bodies different from discs, for which $\overline{A(t)D(t)} = \overline{A(t)F(t)}$ for every $t \in [0, 2\pi]$ (see [8]). Indeed, there are convex bodies, different from discs, for which this condition holds for three (or more) different angles $\alpha, \beta, \theta \in$ $(0, \pi)$, but in this case the condition $\alpha + \beta + \theta = \pi$ does not hold. The main purpose of this paper is to prove that a convex body for which condition (3) holds, must be a disc.

2. Basic concepts of isoptic curves

The function $p : \mathbb{R} \longrightarrow \mathbb{R}$, defined as $p(t) = \max_{x \in K} \langle u(t), x \rangle$, is known by the name of support function of K. When the origin O is contained in K, p(t) is nothing else but the distance from O to the support line $\ell(t)$. The distance between the support lines $\ell(t)$ and $\ell(t+\pi)$ is called the width of K in direction u(t) and it is denoted by w(t), in other words, $w(t) = p(t) + p(t+\pi)$. If w(t) is constant, independently of t, we say that K is a body of constant width. For any $\alpha \in (0, \pi)$, the α -isoptic K_{α} of K is defined as the locus of points at which two tangent lines to K intersect at an angle α . Using the support function, ∂K is parameterized (see for instance [10]) by

$$\gamma(t) = p(t)u(t) + p'(t)u'(t)$$
, for $t \in [0, 2\pi]$.

The isoptic curve K_{α} can be parameterized by the same angle by the formula (see [2] or [8])

$$\gamma_{\alpha}(t) = p(t)u(t) + \left[p(t)\cot\alpha + \frac{1}{\sin\alpha}p(t+\pi-\alpha)\right]u'(t).$$

By Cauchy's formula, the perimeter of K can be obtained by (see [10])

$$L(K) = \int_{0}^{2\pi} p(t)dt.$$
 (1)

For any $t \in \mathbb{R}$ we define (see Fig. 2)

$$a_{\alpha}(t) = |\gamma_{\alpha}(t) - \gamma(t)|,$$

$$b_{\alpha}(t) = |\gamma_{\alpha}(t) - \gamma(t + \pi - \alpha)|,$$

$$q_{\alpha}(t) = |\gamma(t) - \gamma(t + \pi - \alpha)|.$$

By some simple calculations we can express the lengths a(t) and b(t) in terms of the support function of K:

$$a_{\alpha}(t) = \frac{1}{\sin\alpha} [p(t+\pi-\alpha) + p(t)\cos\alpha - p'(t)\sin\alpha], \qquad (2)$$

$$b_{\alpha}(t) = \frac{1}{\sin\alpha} [p(t+\pi-\alpha)\cos\alpha + p'(t+\pi-\alpha)\sin\alpha + p(t)].$$
(3)

3. Some useful lemmas about isoptic curves

Lemma 1. Let K be a strictly convex body in the plane and let $\alpha, \theta \in (0, \pi)$ be angles such that $a_{\alpha}(t) = a_{\alpha}(t+\theta)$, for every $t \in [0, 2\pi]$. Then, K has rotational symmetry of angle θ .

FIGURE 2. Parameters of the isoptic curve

Proof. Recall that $a_{\alpha}(t) = \frac{1}{\sin \alpha} [p(t + \pi - \alpha) + p(t) \cos \alpha - p'(t) \sin \alpha]$. The hypothesis $a_{\alpha}(t) = a_{\alpha}(t + \theta)$ implies that

$$p(t + \pi - \alpha) + p(t)\cos\alpha - p'(t)\sin\alpha = p(t + \theta + \pi - \alpha) + p(t + \theta)\cos\alpha - p'(t + \theta)\sin\alpha,$$

which is equivalent to

 $[p'(t+\theta) - p'(t)]\sin\alpha = [p(t+\theta) - p(t)]\cos\alpha + p(t+\theta + \pi - \alpha) - p(t+\pi - \alpha).$

Let $y(t)=p(t\!+\!\theta)\!-\!p(t).$ Using the previous equality we obtain the following differential equation

$$y'(t)\sin\alpha = y(t)\cos\alpha + y(t+\pi-\alpha).$$
(4)

We express y and y' in terms of their Fourier Series:

$$y(t) = \sum_{n=-\infty}^{\infty} c_n e^{int},$$
$$y'(t) = \sum_{n=-\infty}^{\infty} nic_n e^{int}.$$

Then,

$$\sum_{n=-\infty}^{\infty} ni\sin\alpha c_n e^{int} = \sum_{n=-\infty}^{\infty} \cos\alpha c_n e^{int} + \sum_{n=-\infty}^{\infty} (-1)^n e^{-in\alpha} c_n e^{int}$$

Vol. 98 (2024)

and we have

$$ni\sin\alpha c_n = \cos\alpha + (-1)^n e^{-in\alpha} c_n.$$

We claim that $c_n = 0$ for every *n* not equal to 1 or -1. Suppose this is not the case. Then,

$$ni\sin\alpha = \cos\alpha + (-1)^n \cos n\alpha - (-1)^n i \sin(n\alpha).$$

Equivalently

$$n\sin\alpha = -(-1)^n\sin(n\alpha)$$
 and $\cos\alpha + (-1)^n\cos n\alpha = 0$.

Notice that the first equation is not satisfied when $n \neq 0, 1, -1$ while the second is false for n = 0. The claim now follows and we conclude that

$$p(t+\theta) - p(t) = y(t) = c_{-1}e^{-it} + c_1e^{it} = a_1\cos t + b_1\sin t,$$

where $c_1 = a_1 - b_1 i = \overline{c_{-1}}$. Using vector notation we obtain

$$p(t+\theta) = p(t) + \langle (a_1, b_1), u(t) \rangle$$

Let t_0 be such that $u(t_0 + \theta)$ is parallel to (a_1, b_1) . Notice that

$$p(t_0 + 2\theta) = p(t_0 + \theta) + \langle (a_1, b_1), u(t_0 + \theta) \rangle = p(t_0 + \theta) + ||(a_1, b_1)||,$$

$$p(t_0 + 3\theta) = p(t_0 + 2\theta) + ||(a_1, b_1)|| = p(t_0 + \theta) + 2||(a_1, b_1)||,$$

$$\vdots$$

$$p(t_0 + n\theta) = p(t_0 + \theta) + (n - 1)||(a_1, b_1)||.$$

Since the support function is bounded, we must have $(a_1, b_1) = (0, 0)$. We conclude that $p(t + \theta) = p(t)$ for every t, which implies that K has rotational symmetry of angle θ .

As an application of Lemma 1, we have the following characterization of the disc, which we will prove for every kind of triangles in the following section.

Proposition 1. Let K be a convex body and $\alpha, \beta \in (0, \pi)$ such that $2\alpha + \beta = \pi$. Suppose that $q_{\alpha}(t) = \lambda_{\alpha}$ and $q_{\beta}(t) = \lambda_{\beta}$, for every $t \in [0, 2\pi]$ and for some positive numbers λ_{α} and λ_{β} . Then K is a disc.

Proof. Let $\angle \gamma(t)\gamma(t+\pi-\alpha)\gamma(t-2\alpha) = \phi$ and $\angle \gamma(t)\gamma(t+\pi-\alpha)\gamma_{\alpha}(t) = \alpha_{1}(t)$, for every $t \in [0, 2\pi]$, as shown in Fig. 3. Notice that $\alpha_{1}(t+\pi-\alpha) = \alpha_{1}(t) + \phi - \alpha$, for every t. Let $t_{1}, t_{2} \in [0, 2\pi]$ be such that $\alpha(t_{1}) \leq \alpha(t) \leq \alpha(t_{2})$ for every $t \in [0, 2\pi]$. Since $\alpha_{1}(t_{1}+\pi-\alpha) = \alpha_{1}(t_{1}) + \phi - \alpha$, we must have that $\phi - \alpha \geq 0$. Similarly, $\alpha(t_{2}+\pi-\alpha) = \alpha_{1}(t_{2}) + \phi - \alpha$ implies that $\phi - \alpha \leq 0$. We conclude that $\alpha = \phi$ and $\alpha_{1}(t+\pi-\alpha) = \alpha_{1}(t)$ for every $t \in [0, 2\pi]$. Using the previous equality and the Law of sines for the triangles $\Delta \gamma_{\alpha}(t+\pi-\alpha)\gamma(t-2\alpha)\gamma(t+\pi-\alpha)$

FIGURE 3. An isosceles circumscribed triangle

and $\Delta\gamma_{\alpha}(t)\gamma(t+\pi-\alpha)\gamma(t)$ we conclude that for every t the following equalities hold

$$\frac{a_{\alpha}(t)}{\sin \alpha_1(t)} = \frac{\lambda_{\alpha}}{\sin \alpha} = \frac{a_{\alpha}(t+\pi-\alpha)}{\sin \alpha_1(t)}$$

It follows that $a_{\alpha}(t) = a_{\alpha}(t+\pi-\alpha)$ for every t. By Lemma 1, K has rotational symmetry of angle α . The result now follows from Theorem 2 in [7].

Lemma 2. Let K be a strictly convex body in the plane and let $\alpha \in (0, \pi)$ be a given angle. Then there exist two real numbers $t_0, t_1 \in [0, 2\pi]$ such that $a_{\alpha}(t_0) = b_{\alpha}(t_0)$ and $a_{\alpha}(t_1 + \pi - \alpha) = b_{\alpha}(t_1)$.

Proof. From (2) and (3) we have that

$$\sin \alpha [a_{\alpha}(t) - b_{\alpha}(t)]$$

= $p(t + \pi - \alpha)(1 - \cos \alpha) - p(t)(1 - \cos \alpha) - p'(t) \sin \alpha - p'(t + \pi - \alpha) \sin \alpha.$

By Cauchy's formula for the perimeter and since p is a periodic function with period equal to 2π , we have that

$$\int_{0}^{2\pi} \sin \alpha [a_{\alpha}(t) - b_{\alpha}(t)] dt$$

= $L(K)(1 - \cos \alpha) - L(K)(1 - \cos \alpha) - p(t) \sin \alpha |_{0}^{2\pi} - p(t + \pi - \alpha) \sin \alpha |_{0}^{2\pi},$

hence

$$\int_{0}^{2\pi} \sin \alpha [a_{\alpha}(t) - b_{\alpha}(t)] dt = 0.$$

Since a and b are continuous functions, we have that there exists a number t_0 such that $a_{\alpha}(t_0) = b_{\alpha}(t_0)$.

The proof of the existence of t_1 such that $a_{\alpha}(t_1 + \pi - \alpha) = b_{\alpha}(t_1)$ is completely analogous.

The following lemma gives another characterization of the disc.

Lemma 3. Let K be a strictly convex body in the plane and let $\alpha \in (0, \pi/2)$ be a given angle. Suppose $a_{\alpha}(t) = \lambda a_{\pi-\alpha}(t)$, for every $t \in [0, 2\pi]$ and for $\lambda > 1$. Then K is a disc.

Proof. We know that

$$a_{\alpha}(t) = \frac{1}{\sin \alpha} [p(t + \pi - \alpha) + p(t)\cos \alpha - p'(t)\sin \alpha]$$

and

$$\lambda a_{\pi-\alpha}(t) = \frac{\lambda}{\sin \alpha} [p(t+\alpha) - p(t)\cos \alpha - p'(t)\sin \alpha].$$

Then,

 $p(t + \pi - \alpha) + p(t) \cos \alpha - p'(t) \sin \alpha = \lambda p(t + \alpha) - \lambda p(t) \cos \alpha - \lambda p'(t) \sin \alpha$, or

$$(\lambda - 1)p'(t)\sin\alpha + p(t + \pi - \alpha) - \lambda p(t + \alpha) + (\lambda + 1)p(t)\cos\alpha = 0.$$
 (5)

Let the Fourier series of p be given by

$$p(t) = \sum_{n = -\infty}^{\infty} c_n e^{int}.$$

By equation (5) we have

$$\sum_{n=-\infty}^{\infty} i(\lambda-1)n\sin\alpha c_n e^{int} + \sum_{-\infty}^{\infty} (-1)^n c_n e^{-in\alpha} e^{int} - \sum_{n=-\infty}^{\infty} \lambda c_n e^{in\alpha} e^{int} + \sum_{n=-\infty}^{\infty} i(\lambda+1)\cos\alpha c_n e^{int} = 0.$$

We conclude that

$$[i(\lambda - 1)n\sin\alpha + (-1)^n e^{-in\alpha} - \lambda e^{in\alpha} + (\lambda + 1)\cos\alpha]c_n = 0,$$

i.e.,

$$[i(\lambda - 1)n\sin\alpha + (-1)^n\cos n\alpha - (-1)^n i\sin n\alpha - \lambda\cos n\alpha - i\lambda\sin n\alpha + (\lambda + 1)\cos\alpha]c_n = 0.$$

For n = 0 we obtain

$$1 - \lambda + (\lambda + 1)\cos\alpha = 0,$$

which implies

$$\lambda = \frac{1 + \cos \alpha}{1 - \cos \alpha}.\tag{6}$$

Notice that if $c_n \neq 0$ we must have

$$(\lambda - 1)n\sin\alpha - (\lambda + (-1)^n)\sin n\alpha = 0$$
 and $((-1)^n - \lambda)\cos n\alpha + (\lambda + 1)\cos\alpha = 0$.
Now, if $n \neq 1$ is an odd natural number, the first equation simplifies to

$$n\sin\alpha + \sin n\alpha = 0,$$

which is never satisfied. It follows that $c_n = 0$ for every odd natural number $n \neq 1$. On the other hand, for every natural even number $n \neq 0$, we have

 $(1 - \lambda)\cos n\alpha + (\lambda + 1)\cos \alpha = 0.$

Using equation (6) we conclude that

$$\cos n\alpha = -1,$$

which is impossible, since $0 < \alpha < \pi/2$. It follows that $c_n = 0$ for every even number n > 0 and that $p(t) = c_0 + ce^{it}$. Thus, K is a disc.

4. Main results

The first result we prove here is concerns property (2) mentioned in the introduction.

Theorem 1. Let $K \subset \mathbb{R}^2$ be a strictly convex body and let $\alpha, \beta, \theta \in (0, \pi)$ be three angles such that $\alpha + \beta + \theta = \pi$. Suppose that for every $t \in [0, 2\pi]$

$$\frac{b_{\alpha}(t)}{a_{\beta}(t+\pi-\alpha)} = \lambda_1, \quad \frac{b_{\beta}(t+\pi-\alpha)}{a_{\theta}(t-\pi+\theta)} = \lambda_2, \quad \frac{b_{\theta}(t-\pi+\theta)}{a_{\alpha}(t)} = \lambda_3,$$

for some constants λ_1 , λ_2 , and λ_3 . Then K is a disc.

Proof. Since all (α, β, θ) -triangles are similar and the points $\gamma(t + \pi - \alpha)$, $\gamma(t - \pi + \theta)$, $\gamma(t)$, divide the corresponding sides in the given ratios λ_1 , λ_2 , λ_3 , we have that

$$\frac{a_{\alpha}(t)}{b_{\alpha}(t)}, \quad \frac{a_{\beta}(t+\pi-\alpha)}{b_{\beta}(t+\pi-\alpha)}, \text{ and } \frac{a_{\theta}(t-\pi+\theta)}{b_{\theta}(t-\pi+\theta)}$$

are also constant. Now, by Lemma 2 we have that $a_{\alpha}(t) = b_{\alpha}(t)$, $a_{\beta}(t) = b_{\beta}(t)$, $a_{\theta}(t) = b_{\theta}(t)$ for every $t \in [0, 2\pi]$. It follows that the points $\gamma(t + \pi - \alpha)$, $\gamma(t - \pi + \theta)$, $\gamma(t)$ are the contact points between the incircle of the triangle $\Delta \gamma_{\alpha}(t)\gamma_{\beta}(t + \pi - \alpha)\gamma_{\theta}(t - \pi + \theta)$ and its sides, for every $t \in [0, 2\pi]$. Now, the hypothesis of Lemma 3.3 in [6] holds, and so we conclude that K is a disc. \Box

Now we present the main result of this work.

FIGURE 4. $\gamma(t + \pi - \alpha)$, $\gamma(t - \pi + \theta)$, $\gamma(t)$, divide the corresponding sides in the given ratios

Theorem 2. Let $K \subset \mathbb{R}^2$ be a regular convex body and let $\alpha, \beta, \theta \in (0, \pi)$ be three angles such that $\alpha + \beta + \theta = \pi$. Suppose that for every $t \in [0, 2\pi]$, $q_{\alpha}(t) = \lambda_{\alpha}, q_{\beta}(t) = \lambda_{\beta}, q_{\theta}(t) = \lambda_{\theta}$, for some constants $\lambda_{\alpha}, \lambda_{\beta}$, and λ_{θ} . Then K is a disc.

In the proof of Theorem 2 we will use the following lemma (see [11]). For the sake of completeness we give a proof here.

Lemma 4. Let C be one of the points of intersection between two circles Γ_1 and Γ_2 with centres O_1 and O_2 , respectively. The unique chord AB, with $A \in \Gamma_1$, $B \in \Gamma_2$, through C and with maximum length is obtained when AB is orthogonal to the common chord between Γ_1 and Γ_2 , i.e., when AB is parallel to O_1O_2 .

Proof. Let AB be any chord through C, as shown in Fig. 5. Let M_1 and M_2 be the orthogonal projections of O_1 and O_2 onto AB. We know that the length of M_1M_2 is half the length of AB. Suppose the orthogonal projection, T, of O_1 onto the line O_2M_2 lies in the segment O_2M_2 . Since $O_1M_1M_2T$ is a rectangle, we have that the lengths of O_1T and M_1M_2 are equal. From here we see that the maximum length of M_1M_2 and hence of AB is when AB is parallel to O_1O_2 . The case when the orthogonal projection of O_2 onto the line O_1M_1 lies in the segment O_1M_1 , is completely analogous.

Proof of Theorem 2. Let $t \in [0, 2\pi]$ be any angle and let $\Delta(t) = \Delta \gamma_{\alpha}(t)\gamma_{\beta}(t + \pi - \alpha)\gamma_{\theta}(t - \pi + \theta)$ be the corresponding circumscribed (α, β, θ) -triangle. The contact points between the sides of $\Delta(t)$ and the boundary of K are $\gamma(t)$,

599

FIGURE 5. Maximum chord AB is when AB is parallel to O_1O_2

FIGURE 6. All circumscribed (α, β, θ) -triangles are maximal

 $\gamma(t + \pi - \alpha)$, and $\gamma(t - \pi + \theta)$, respectively. By Miquel's theorem we know that there exists a point m(t) in common to the circumcircles of triangles $\bigtriangleup \gamma_{\alpha}(t)\gamma(t + \pi - \alpha)\gamma(t), \bigtriangleup \gamma_{\beta}(t + \pi - \alpha)\gamma(t - \pi + \theta)\gamma(t + \pi - \alpha), \text{ and } \bigtriangleup \gamma_{\theta}(t - \pi + \theta)\gamma(t)\gamma(t - \pi + \theta)$. By Lemma 4 we obtain that the maximum (α, β, θ) -triangle circumscribed to $\bigtriangleup \gamma(t)\gamma(t + \pi - \alpha)\gamma(t - \pi + \theta)$ is obtained when $[m(t), \gamma(t)],$ $[m(t), \gamma(t + \pi - \alpha)], [m(t), \gamma(t - \pi + \theta)]$ are orthogonal to the corresponding sides of $\Delta(t)$. Suppose that this is not the case and let $\Delta z_{\alpha} z_{\beta} z_{\theta}$ be the maximum $((\alpha, \beta, \theta)$ -triangle circumscribed to $\Delta \gamma(t)\gamma(t + \pi - \alpha)\gamma(t - \pi + \theta)$, as shown in Fig. 6. Since the boundary of K is regular, the sides of $\Delta z_{\alpha} z_{\beta} z_{\theta}$ intersect the interior of K. If we consider the corresponding support lines of K, parallel to the sides of $\Delta z_{\alpha} z_{\beta} z_{\theta}$, we obtain an (α, β, θ) -triangle circumscribed to K with size bigger than the size of $\Delta z_{\alpha} z_{\beta} z_{\theta}$. This is a contradiction since such a triangle must touch the boundary of K in three points which are vertices of a triangle congruent to $\Delta(t)$. It follows that the triangle $\Delta(t)$, for every $t \in [0, 2\pi]$, is maximal. In particular, we have that the length of $a_{\alpha}(t)$ is constant for every $t \in [0, 2\pi]$. We apply Lemma 2 in [4] and conclude that K is a disc.

Remark 1. Indeed, we have that the points $\gamma(t)$, $\gamma(t + \pi - \alpha)$, and $\gamma(t - \pi + \theta)$ are the contact points between the incircle of $\Delta(t)$ and the sides of $\Delta(t)$. We can also conclude the proof of the theorem using Lemma 3.3 in [6].

Author contributions JJ and FJ wrote the manuscript and JJ produce the figures. All authors reviewed the manuscript

Declarations

Conflict of interest The authors declare no competing interests.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

- Chakerian, G.D., Groemer, H.: Convex bodies of constant width. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and Its Applications. Birkhäuser, Basel (1983)
- [2] Cieślak, W., Miernowski, A., Mozgawa, W.: Isoptics of a closed strictly convex curve. Lect. Notes Math. 1481, 28–35 (1991)
- [3] Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge Univ. Press, Cambridge (1996)
- [4] Jerónimo-Castro, J.: A characterization of the disc by the angle of the support cone, Results Math. 76, no. 3, Paper No. 130, 9 pp (2021)
- [5] Jerónimo-Castro, J., Yee-Romero, C.: An inequality for the length of isoptic chords of convex bodies. Aequat. Math. 93(3), 619–628 (2019)
- [6] Jerónimo-Castro, J., Jimenez-Lopez, F.G.: Symmetries of convex sets in the hyperbolic plane. J. Conv. Anal. 26, 1077–1088 (2019)

- [7] Jerónimo-Castro, J., Jimenez-Lopez, F.G., Jiménez-Sánchez, R.: On convex bodies with isoptic chords of constant length. Aequ. Math. 94(6), 1189–1199 (2020)
- [8] Jerónimo-Castro, J., Rojas-Tapia, M.A., Velasco-García, U., Yee-Romero, C.: An isoperimetric type inequality for isoptic curves of convex bodies. Results Math. 75, 134 (2020)
- [9] Jerónimo-Castro, J., Jimenez-Lopez, F.G., Velasco-García, U.: Some characterizations of the circle related to circumscribed equiangular polygons. Bol. Soc. Mat. Mex. 27(3), 8 (2021)
- [10] Valentine, F.A.: Convex Sets. McGraw-Hill Series in Higher Mathematics, McGraw-Hill, New York (1964)
- [11] Yaglom, I.M., Boltyanski, V.G.: Convex Figures. Holt, Rinehart and Winston, London (1961)

Rafael I. Ayala-Figueroa Departamento de Eléctrica-Electrónica, Tecnológico Nacional de México Instituto Tecnológico de Mexicali Mexicali Mexico e-mail: rafaelivan@itmexicali.edu.mx

Iván González-García, Jesús Jerónimo-Castro and Francisco G. Jimenez-Lopez Facultad de Ingeniería Universidad Autónoma de Querétaro Santiago de Querétaro México e-mail: ivan.glez@uaq.mx

Jesús Jerónimo-Castro e-mail: jesus.jeronimo@uaq.mx

Francisco G. Jimenez-Lopez e-mail: fjimenez@uaq.mx

Received: February 28, 2023 Revised: August 15, 2023 Accepted: August 19, 2023