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1. Introduction

The cosine addition formula, cosine subtraction formula, and sine addition for-
mula on any semigroup S for unknown functions g, f : S → C are, respectively,
the functional equations

g(xσ(y)) = g(x)g(y) − f(x)f(y), (1.1)
g(xσ(y)) = g(x)g(y) + f(x)f(y), (1.2)
g(xσ(y)) = g(x)f(y) + f(x)g(y), (1.3)

for all x, y ∈ S, where σ : S → S is an involutive automorphism. That is
σ(xy) = σ(x)σ(y) and σ(σ(x)) = x for all x, y ∈ S. These functional equations
have been investigated by many authors. In Vincze [11] obtained the solutions
of (1.2) on abelian groups with σ = id, and it was solved on general groups by
Chung et al. [3] with σ = id. The results were extended to the case of topolog-
ical groups by Poulsen and Stetkær [7] and to semigroups generated by their
squares by Ajebbar and Elqorachi [1], both papers with σ an involutive auto-
morphism. Also Stetkær [10, Theorem 6.1] gave a description of the solution
of (1.1) with σ = id on a general semigroup in terms of the solutions of (1.3)
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with σ = id. The most recent result about (1.3) with σ = id was obtained
by Ebanks [5, Theorem 2.1] and [6, Theorem 3.1] on semigroups. Ebanks [5,
Theorem 4.1] gives the solution of (1.2) on monoids. Recently the authors [2]
solved (1.1), (1.2) and (1.3) on semigroups.

Stetkær [10, Theorem 3.1] solved the functional equation

g(xy) = g(x)g(y) − f(x)f(y) + αf(xy), x, y ∈ S, (1.4)

on a semigroup S, where α ∈ C is a fixed constant. He expressed the solutions
in terms of multiplitive functions on S and solutions h : S → C of the special
case of the sine addition law

h(xy) = h(x)χ(y) + h(y)χ(x), x, y ∈ S, (1.5)

in which χ : S → C is a multiplicative function. Equation (1.4) generalizes both
the cosine addition formula (1.1) and the cosine subtraction formula (1.2) with
σ = id.

As a continuation and a generalization of these investigations we determine
the complex valued solutions of the functional equation

g(xσ(y)) = g(x)g(y) − f(x)f(y) + αf(xσ(y)), x, y ∈ S, (1.6)

on semigroups, where σ : S → S is an involutive automorphism. We obtain
explicit formulas for the solutions expressed in terms of multiplicative, additive
and sometimes arbitrary functions. The paper concludes with some examples.

Our notation is decribed in the following set up.

2. Set up and notation

Throughout this paper S denotes a semigroup and σ : S → S an involutive
automorphism.
A function a : S → C is additive if

a(xy) = a(x) + a(y) for all x, y ∈ S.

A function χ : S → C is multiplicative if

χ(xy) = χ(x)χ(y) for all x, y ∈ S.

A function f : S → C is central if f(xy) = f(yx) for all x, y ∈ S, and f is
abelian if f is central and f(xyz) = f(xzy) for all x, y, z ∈ S.
For any subset T ⊆ S we define the set T 2 := {xy | x, y ∈ T}, so T 2 consists
of all products of two (or more) elements of T .

The following remark follows easily from Stetkær [8, Corollary 3.19] and
will be used throughout the paper without explicit mentioning.

Remark 2.1. If χ1 and χ2 are multiplicative functions on S such that χ1 =
−χ2, then χ1 = χ2 = 0.
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If χ : S → C is a non-zero multiplicative function, we define the sets

Iχ := {x ∈ S | χ(x) = 0}
Pχ :=

{
p ∈ Iχ\I2χ |up, pv, upv ∈ Iχ\I2χ for all u, v ∈ S\Iχ

}
.

For any function f : S → C we define the function

f∗(x) := f(σ(x)), x ∈ S.

We call fe := f+f∗

2 the even part of f and f◦ := f−f∗

2 its odd part. The
function f is said to be even if f = f∗, and f is said to be odd if f = −f∗. In
the following lemma we give some properties of the set Pχ.

Lemma 2.2. (a) If u ∈ S\Iχ and p ∈ Pχ, then up, pu ∈ Pχ.
(b) σ(Pχ) = Pχ∗ . Note in particular that σ(Pχ) = Pχ, if χ = χ∗.

Proof. (a) follows directly from the definition of Pχ.
(b) is easy to verify using that σ : S → S is a bijection (See [4, Lemma 4.1]).

�
For a topological semigroup S let C(S) denote the algebra of continuous

functions from S into C.

3. The main result

The following lemmas will be used later.

Lemma 3.1. Let f, g : S → C be a solution of the functional equation

f(xσ(y)) = βf(x)f(y) − βg(x)g(y), (3.1)

where g = 0 on S2 and β ∈ C\{0} is a constant. Then f and g are linearly
dependent.

Proof. If f = 0 or g = 0 then f and g are linearly dependent, so we may
assume that f �= 0 and g �= 0. By applying (3.1) to the pair (xy, z) and taking
into account that g = 0 on S2 we obtain

f(xyσ(z)) = βf(xy)f(z), for all x, y, z ∈ S. (3.2)

Now if we apply (3.1) to the pair (x, σ(y)z) and take into account that g = 0
on S2 we get

f(xyσ(z)) = βf(x)f(σ(y)z), for all x, y, z ∈ S. (3.3)

So we deduce from (3.2) and (3.3) since β �= 0 that

f(xy)f(z) = f(x)f(σ(y)z), for all x, y, z ∈ S.

Then we get since f �= 0 that f(xy) = f(x)φ(σ(y)) for some function φ : S →
C. Substituting this into (3.1) we find that

f(x)φ(y) = βf(x)f(y) − βg(x)g(y).
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This implies that

[βf(y) − φ(y)] f = βg(y)g.

Choosing y0 ∈ S such that g(y0) �= 0 we see that f and g are linearly depen-
dent. This completes the proof of Lemma 3.1. �

Lemma 3.2. Let g, f : S → C be two functions such that

f = a1χ1 + a2χ2 and g = b1χ1 + b2χ2,

where χ1, χ2 : S → C are two different non-zero multiplicative functions, g �= 0
and a1, a2 ∈ C\{0}, b1, b2 ∈ C are constants. We have
(1) If f is even and g is odd, then a1 = a2 and b1 + b2 = 0.
(2) If f is odd and g is even, then a1 + a2 = 0 and b1 = b2.

Proof. (1) If f is even and g is odd, we get that

a1χ1 + a2χ2 = a1χ
∗
1 + a2χ

∗
2, (3.4)

and

b1χ1 + b2χ2 = −b1χ
∗
1 − b2χ

∗
2. (3.5)

By the help of [10, Proposition A.2] we deduce from (3.4) that a1χ1 = a1χ
∗
1 or

a1χ1 = a2χ
∗
2. If a1χ1 = a1χ

∗
1 then χ1 = χ∗

1 since a1 �= 0, and then we get from
(3.4) that χ2 = χ∗

2 since a2 �= 0. In view of (3.5) we deduce that g = 0. This
contradicts the fact that g �= 0. So a1χ1 = a2χ

∗
2 then since χ1, χ2 are non-zero,

a1 �= 0 and a2 �= 0, according to [8, Theorem 3.18 (a)] we deduce that χ1 = χ∗
2

and then a1 = a2. Now (3.5) becomes (b1 + b2)(χ1 + χ2) = 0 which implies
that b1 + b2 = 0. This is case (1).
(2) We proceed similarly to case (1) to get the result. This completes the proof
of Lemma 3.2. �

In the following lemma we give some key properties of the solutions of
Eq. (1.6).

Lemma 3.3. Let g, f : S → C be a solution of the functional Eq. (1.6), and
define the function G := g − αf . The following statements hold:
(1) G(xσ(y)) = G(yσ(x)) for all x, y ∈ S.
(2) G(xyz) = G∗(xyz) for all x, y, z ∈ S.
(3) For all x, y, z ∈ S

ge(x)g◦(yz) = fe(x)f◦(yz), (3.6)
ge(yz)g◦(x) = fe(yz)f◦(x). (3.7)

Proof. (1) The functional Eq. (1.6) is equivalent to

G(xσ(y)) = g(x)g(y) − f(x)f(y) for all x, y ∈ S. (3.8)
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The right hand side of (3.8) is invariant under the interchange of x and y.
That is

G(xσ(y)) = G(yσ(x)) for all x, y ∈ S. (3.9)

(2) Replacing y by σ(y) in (3.9), we get G(xy) = G∗(yx) for all x, y ∈ S, and
then we deduce that

G(xyz) = G∗(zxy) = G(yzx) = G∗(xyz) for all x, y, z ∈ S.

(3) By applying the identity (3.8) to the pair (x, σ(yz)) we obtain

G(xyz) = g(x)g∗(yz) − f(x)f∗(yz) for all x, y, z ∈ S. (3.10)

Then by using (2), we deduce from (3.10) that

g(x)g∗(yz) − f(x)f∗(yz) = g∗(x)g(yz) − f∗(x)f(yz) for all x, y, z ∈ S.

(3.11)

Since k = ke + k◦ and k∗ = ke − k◦ for any function k : S → C, we get from
(3.11) after some rearrangement that for all x, y, z ∈ S

g◦(x)ge(yz) − f◦(x)fe(yz) = ge(x)g◦(yz) − fe(x)f◦(yz). (3.12)

In the identity (3.12) the left hand side is an odd function of x while the right
is an even function of x, so

g◦(x)ge(yz) − f◦(x)fe(yz) = 0, (3.13)

and

ge(x)g◦(yz) − fe(x)f◦(yz) = 0, (3.14)

for all x, y, z ∈ S. This completes the proof of Lemma 3.3. �

Now we present the general solution of (1.6) on semigroups. Stetkær [10,
Theorem 3.1] is Theorem 3.4 with σ = id, and point (8) of Theorem 3.4 is new
compared to [10].

Theorem 3.4. The solutions g, f : S → C of the functional Eq. (1.6) are the
following families:
(1) α = ±1, f is any non-zero function and g = αf .
(2) α �= 1, f = g �= 0 and g = 0 on S2.
(3) α �= −1, f = −g �= 0 and g = 0 on S2.
(4) f = (q + α)

χ

2
and g =

(
1 ±

√
1 + q2 − α2

) χ

2
, where q ∈ C is a constant

and χ : S → C a non-zero even multiplicative function.

(5) f = α
χ1 + χ2

2
+ q

χ1 − χ2

2
and g =

χ1 + χ2

2
±

√
1 + q2 − α2

χ1 − χ2

2
,

where χ1, χ2 : S → C are two different non-zero even multiplicative func-
tions and q ∈ C\{±α} is a constant.
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(6) α �= 0, f = αχ1 and g = χ2, where χ1, χ2 : S → C are two different
non-zero even multiplicative functions.

(7) f = αχ + h and g = χ ± h, where χ : S → C is a non-zero even
multiplicative function and h : S → C is a non-zero even solution of the
special sine addition law (1.5).

(8) α �= ±1, and

f =
1 + α

2
χ − 1 − α

2
χ∗ and g =

1 + α

2
χ +

1 − α

2
χ∗,

where χ : S → C is a multiplicative function such that χ �= χ∗.
Note that, off the exceptional case (1), g and f are abelian.

Moreover, if S is a topological semigroup, f ∈ C(S) is such that
f �= αμ for any multiplicative function μ ∈ C(S), then g ∈ C(S). In
addition χ, χ∗ ∈ C(S) in case (8).

Proof. It is easy to check that each of the pairs described in Theorem 3.4 is a
solution of (1.6). So assume that the pair (g, f) is a solution of Eq. (1.6). If
g = 0, then (1.6) can be written as

αf(xσ(y)) = f(x)f(y), x, y ∈ S.

If α = 0 then f = 0. This occurs in case (4) with q = −α. Now if α �= 0, then

f(xσ(y)) =
1
α

f(x)f(y), x, y ∈ S.

Then according to [2, Lemma 4.1], f = αχ, where χ : S → C is an even
multiplicative function. This occurs in case (4) with q = α. From now on we
assume that g �= 0 and we discuss two cases according to whether g and f are
linearly dependent or not.
First case: g and f are linearly dependent. There exists a constant c ∈ C such
that f = cg. So (1.6) becomes

(1 − αc)g(xσ(y)) = (1 − c2)g(x)g(y), for all x, y ∈ S.

Then we obtain by proceeding exactly as in the proof of [10, Lemma4.3] and
using [2, Lemma 4.1] the cases (1), (2), (3) and (4).
Second case: g and f are linearly independent.
Subcase A: g◦ = 0 and f◦ = 0. That is g and f are even, so if we replace y by
σ(y), the functional Eq. (1.6) can be written as

g(xy) = g(x)g(y) − f(x)f(y) + αf(xy) x, y ∈ S.

According to [10, Theorem 3.1] and taking into account that f and g are
linearly independent and g �= 0 we have the following possibilities:

(i) f = α
χ1 + χ2

2
+q

χ1 − χ2

2
and g =

χ1 + χ2

2
±

√
1 + q2 − α2

χ1 − χ2

2
, where

χ1, χ2 : S → C are two different non-zero multiplicative functions and q ∈
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C\{±α} is a constant. So

f − αg =
q ± α

√
1 + q2 − α2

2
(χ1 − χ2) .

Since f and g are even, we see that

q ± α
√

1 + q2 − α2

2
(χ1 − χ2) =

q ± α
√

1 + q2 − α2

2
(χ∗

1 − χ∗
2) . (3.15)

On the other hand the fact that g and f are linearly independent implies that

f − αg �= 0, and so
q ± α

√
1 + q2 − α2

2
�= 0. So (3.15) reduces to

χ1 − χ2 = χ∗
1 − χ∗

2.

Then since g is even, we get that

χ1 + χ2 = χ∗
1 + χ∗

2.

So, we deduce from the last two identities that χ1 = χ∗
1 and χ2 = χ∗

2. This
occurs in case (5).
(ii) α �= 0, f = αχ1 and g = χ2, where χ1, χ2 : S → C are two different non-
zero multiplicative functions. In addition since f and g are even, we deduce
that χ∗

1 = χ1 and χ∗
2 = χ2. This is case (6).

(iii) f = αχ + h and g = χ ± h, where h, χ : S → C is a solution of the sine
addition law

h(xy) = h(x)χ(y) + h(y)χ(x), x, y ∈ S,

such that χ �= 0 is multiplicative and h �= 0. So f−αg = (1∓α)h, and 1±α �= 0
since f and g are linearly independent. Since f and g are even, we get that
h∗ = h and then χ∗ = χ. This occurs in case (7).
Subcase B: g◦ = 0 and f◦ �= 0. In this case we deduce from (3.6) and (3.7)
respectively that fe(x)f◦(yz) = 0 and fe(yz) = 0 for all x, y, z ∈ S.
Subcase B.1: f◦ = 0 on S2. That is f = 0 on S2 since fe = 0 on S2. The
functional Eq. (1.6) can be written as

g(xσ(y)) = g(x)g(y) − f(x)f(y), for all x, y ∈ S.

Since f �= 0 (f◦ �= 0) we get according to Lemma 3.1 that f and g are linearly
dependent. This is a contradiction. This case does not occur.
Subcase B.2: f◦ �= 0 on S2. This implies that fe = 0, so if we replace y by
σ(y), the functional Eq. (1.6) can be written as

g(xy) = g(x)g(y) + f(x)f(y) + αf(xy), x, y ∈ S.

This means that the pair (g, if) satisfies (1.4), where α is replaced by −iα.
According to [10, Theorem 3.1] and taking into account that g and f are
linearly independent and g �= 0 we have the following possibilities:
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(i) if = −iα
χ1 + χ2

2
+ q

χ1 − χ2

2
and g =

χ1 + χ2

2
±

√
1 + q2 + α2

χ1 − χ2

2
,

where χ1, χ2 : S → C are two different non-zero multiplicative functions
and q ∈ C\{±iα} is a constant. So

f =
(−α − iq

2

)
χ1 +

(
iq − α

2

)
χ2,

and

g =

(
1 +

√
1 + q2 + α2

2

)

χ1 +

(
1 −

√
1 + q2 + α2

2

)

χ2,

or

g =

(
1 −

√
1 + q2 + α2

2

)

χ1 +

(
1 +

√
1 + q2 + α2

2

)

χ2.

Since q �= ±iα, we see that α �= ±iq. Then since f is odd and g is even
we get according to Lemma 3.2 (2) that

−α − iq

2
+

iq − α

2
= 0

and

1 −
√

1 + q2 + α2

2
=

1 +
√

1 + q2 + α2

2
.

Then α = 0 and
√

1 + q2 + α2 = 0. This implies that iq = ±1, so

f = ±
(

χ2 − χ1

2

)
,

and

g =
(

χ1 + χ2

2

)
.

This occurs in case (8) with α = 0, χ := χ1 and χ∗ := χ2 or χ := χ2 and
χ∗ := χ1.

(ii) α �= 0, if = −iαχ1 and g = χ2, where χ1, χ2 : S → C are two different
non-zero multiplicative functions. Then f = −αχ1. In addition since f is
odd, we deduce that χ∗

1 = −χ1. Then χ1 = 0, contradicting χ1 �= 0. So
case (ii) does not occur.

(iii) if = −iαχ + h and g = χ ± h, where χ, h : S → C is a solution of (1.5).
Then f = −αχ − ih. If g = χ + h, we get that

f + ig = (i − α)χ,

and then since f is odd and g is even

ig − f = (i − α)χ∗.
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By adding the last two identities we obtain g = (i − α)
χ + χ∗

2i
, and then

f = (i−α)
χ − χ∗

2
. The fact that f �= 0 implies χ �= χ∗ and α �= i. Substituting

the forms of f and g in (1.6) we get after reduction that

χ(x) [(1 − iα)χ∗(y) − (1 + iα)χ(y)] + (1 + iα)χ∗(x) [χ(y) − χ∗(y)] = 0,

for all x, y ∈ S. Then since χ �= χ∗ we deduce that 1 + iα = 0. That is α = i,
so this case does not occur since α �= i. For the case g = χ − h we proceed

in the same way to get that g = (i + α)
χ + χ∗

2i
and f = (i + α)

χ − χ∗

2
with

χ �= χ∗ and α �= −i. Similarly to the previous case we get by substitution that
α = −i. This case does not occur.
Subcase C: g◦ �= 0 and f◦ = 0. We deduce from (3.6) and (3.7) respectively
that ge(x)g◦(yz) = 0 and ge(yz) = 0 for all x, y, z ∈ S.
Subcase C.1: g◦ = 0 on S2. Then g = 0 on S2 since ge = 0 on S2, so the
functional Eq. (1.6) becomes

0 = g(x)g(y) − f(x)f(y) + αf(xσ(y)), x, y ∈ S.

That is

αf(xσ(y)) = f(x)f(y) − g(x)g(y), x, y ∈ S.

Since f and g are linearly independent, we see that α �= 0, so for all x, y ∈ S

f(xσ(y)) =
1
α

f(x)f(y) − 1
α

g(x)g(y).

Then according to Lemma 3.1 we get that f and g are linearly dependent.
This is a contradiction. This case does not occur.
Subcase C.2: g◦ �= 0 on S2. In this case we get that ge = 0, so if we replace y
by σ(y) the functional Eq. (1.6) can be written as

g(xy) = −g(x)g(y) − f(x)f(y) + αf(xy), x, y ∈ S.

This means that the pair (−g, if) satisfies the functional Eq. (1.4), where α is
replaced by iα. According to [10, Theorem 3.1] and taking into account that
g and f are linearly independent we have the following cases

(i) if = iα
χ1 + χ2

2
+ q

χ1 − χ2

2
and −g =

χ1 + χ2

2
±

√
1 + q2 + α2

χ1 − χ2

2
,

where χ1, χ2 : S → C are two different non-zero multiplicative functions and
q ∈ C\{±iα} is a constant. Then

f =
(

α − iq

2

)
χ1 +

(
α + iq

2

)
χ2,

and

g =

(
−1 −

√
1 + q2 + α2

2

)

χ1 +

(
−1 +

√
1 + q2 + α2

2

)

χ2,
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or

g =

(
−1 +

√
1 + q2 + α2

2

)

χ1 +

(
−1 −

√
1 + q2 + α2

2

)

χ2.

Since q �= ±iα, we see that α �= ±iq. Then since f is even and g is odd we get
according to the statement b1 + b2 = 0 in Lemma 3.2 (1) that

−1 +
√

1 + q2 + α2

2
+

−1 −
√

1 + q2 + α2

2
= 0.

This case does not occur.
(ii) α �= 0, if = iαχ1 and −g = χ2, where χ1, χ2 : S → C are two different
non-zero multiplicative functions. Then f = αχ1 and g = −χ2. In addition
since g is odd and f is even, we deduce that χ∗

1 = χ1 and χ∗
2 = −χ2. This

means that χ2 = 0. This case does not occur.
(iii) if = iαχ + h and −g = χ ± h, where χ, h : S → C is a solution of (1.5).
So f = αχ − ih and g = −χ ± h. Suppose that g = −χ − h, to get that

f − ig = (α + i)χ,

then since f is even and g is odd we deduce that

f + ig = (α + i)χ∗.

By adding the last two identities, we get that

f =
α + i

2
[χ + χ∗] ,

and then

g =
α + i

2i
[χ∗ − χ] .

The fact that g �= 0 implies that χ �= χ∗ and α �= −i. Substituting the forms
of g and f in (1.6) we get that for all x, y ∈ S

χ(x) [(iα − 1)χ(y) − (iα + 1)χ∗(y)] + χ∗(x)(1 − iα) [χ(y) − χ∗(y)] = 0.

Then since χ �= χ∗, we deduce that 1−iα = 0. That is α = −i. This contradicts
the fact that α �= −i, so this case does not occur.

Now if g = −χ + h, we get in the same way that f =
α − i

2
[χ + χ∗] and

g =
α − i

2i
[χ − χ∗], where χ �= χ∗ and α �= i, and then by substitution that

α = i. This case does not occur.
Subcase D: g◦ �= 0 and f◦ �= 0.
Subcase D.1: g◦ = 0 on S2 and f◦ = 0 on S2. That is g = ge on S2 and f = fe

on S2, and from (3.7) we deduce that fe = cge on S2 for some constant c ∈ C.
That is f = cg on S2, so the functional Eq. (1.6) can be written as

(1 − cα)g(xσ(y)) = g(x)g(y) − f(x)f(y).
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Since g and f are linearly independent, we see that β := 1 − cα �= 0. Then

g(xσ(y)) =
1
β

g(x)g(y) − 1
β

f(x)f(y).

This means that the pair
(

1
β

g,
i

β
f

)
satisfies the functional Eq. (1.2), so taking

into account that g and f are linearly independent we get from [2, Theorem 4.2]

that
1
β

g is even. This is a contradiction since g◦ �= 0. This case does not occur.

Subcase D.2: g◦ = 0 on S2 and f◦ �= 0 on S2. We get from (3.6) that fe = 0,
then from (3.7) that ge = 0 on S2. That is g = 0 on S2. The functional
Eq. (1.6) becomes

αf(xσ(y)) = f(x)f(y) − g(x)g(y).

Since g and f are linearly independent, we see that α �= 0, so

f(xσ(y)) =
1
α

f(x)f(y) − 1
α

g(x)g(y).

So we get according to Lemma 3.1 that f and g are linearly dependent. This
is a contradiction. This case does not occur.
Subcase D.3: g◦ �= 0 on S2 and f◦ = 0 on S2. We deduce from (3.6) that
ge = 0, and then by using (3.7) we get that fe = 0 on S2. This implies that
f = 0 on S2, and (1.6) can be written as

g(xσ(y)) = g(x)g(y) − f(x)f(y).

Since f �= 0 (f◦ �= 0) we get according to Lemma 3.1 that f and g are linearly
dependent. This case does not occur.
Subcase D.4: g◦ �= 0 on S2 and f◦ �= 0 on S2. By using (3.6) we get that

ge = δfe, (3.16)

for some constant δ ∈ C.
Subcase D.4.1: fe = 0. So ge = 0, and then if we replace y by σ(y) the
functional Eq. (1.6) becomes

g(xy) = −g(x)g(y) + f(x)f(y) + αf(xy).

This means that the pair (−g, f) satisfies (1.4), where α is replaced by −α.
According to [10, Theorem 3.1] and taking into account that g and f are
linearly independent we have the following cases

(i) f = −α
χ1 + χ2

2
+ q

χ1 − χ2

2
and −g =

χ1 + χ2

2
±

√
1 + q2 − α2

χ1 − χ2

2
,

where χ1, χ2 : S → C are two different non-zero multiplicative functions and

q ∈ C\{±α} is a constant. Then g = −χ1 + χ2

2
±

√
1 + q2 − α2

χ1 − χ2

2
.
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So f − αg =
q ± α

√
1 + q2 − α2

2
(χ1 − χ2), and

q ± α
√

1 + q2 − α2

2
�= 0

since g and f are linearly independent. The fact that f and g are odd implies
that

q ± α
√

1 + q2 − α2

2
(χ1 − χ2) =

q ± α
√

1 + q2 − α2

2
(χ∗

2 − χ∗
1).

This implies that

χ1 − χ2 = χ∗
2 − χ∗

1.

Then, since g is odd we get that

χ1 + χ2 = −(χ∗
1 + χ∗

2).

So we deduce from the last two identities that χ1 = −χ∗
1 and χ2 = −χ∗

2. This
implies that χ1 = χ2 = 0. This case does not occur.
(ii) α �= 0, f = −αχ1 and −g = χ2, where χ1, χ2 : S → C are two different
non-zero multiplicative functions. Then g = −χ2. In addition since g and f
are odd, we deduce that χ∗

1 = −χ1 and χ∗
2 = −χ2. That is χ1 = χ2 = 0. This

case does not occur.
(iii) f = −αχ+h and −g = χ±h, where χ : S → C is a non-zero multiplicative
function and h : S → C is a solution of (1.5). So g = −χ ∓ h. Then f − αg =
(1 ± α)h and 1 ± α �= 0 since g and f are linearly independent. Since g and f
are odd, we see that h = −h∗, and then χ = −χ∗. This implies that χ = 0.
This case does not occur.
Subcase D.4.2: fe �= 0. We get from (3.6) that f◦ = bg◦ on S2 for some
constant b ∈ C and δ �= 0.
Subcase D.4.2.1: fe = 0 on S2. So ge = 0 on S2 by (3.16). That is f = bg on
S2 since fe = ge = 0 on S2. The functional Eq. (1.6) can be written as

(1 − bα)g(xσ(y)) = g(x)g(y) − f(x)f(y).

The fact that g and f are linearly independent implies that γ := 1 − bα �= 0,
so we get

g(xσ(y)) =
1
γ

g(x)g(y) − 1
γ

f(x)f(y).

This means that the pair
(

1
γ

g,
i

γ
f

)
satisfies (1.2), then since f and g are

linearly independent we get from [2, Theorem 4.2] that
1
γ

g is even. This con-

tradicts the fact that g◦ �= 0 here in subcase D. This case does not occur.
Subcase D.4.2.2: fe �= 0 on S2. In this case we get from (3.7) that f◦ = ag◦

for some constant a ∈ C, and a �= 0 since f◦ �= 0. So

g◦ =
1
a
f◦.
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So with (3.16), Eq. (3.6) becomes
δ

a
fe(x)f◦(yz) = fe(x)f◦(yz),

for all x, y, z ∈ S. This implies that
δ

a
= 1, and then δ = a �= 0, so we get that

g◦ =
1
δ
f◦. (3.17)

By adding (3.17) to (3.16) we get that

g = δfe +
1
δ
f◦. (3.18)

Since f and g are linearly independent, we see from (3.18) that δ �= ±1. So in
view of (3.18) the functional Eq. (1.6) becomes

(δ − α)fe(xσ(y)) +
(

1
δ

− α

)
f◦(xσ(y)) = g(x)g(y) − f(x)f(y). (3.19)

If we apply (3.19) first to the pair (x, σ(y)) and then to the pair (σ(x), y) we
get respectively the following two identities

(δ − α)fe(xy) +
(

1
δ

− α

)
f◦(xy) = g(x)g∗(y) − f(x)f∗(y). (3.20)

(δ − α)fe(xy) −
(

1
δ

− α

)
f◦(xy) = g∗(x)g(y) − f∗(x)f(y). (3.21)

By adding (3.20) to (3.21) and taking into account that k∗ = ke − k◦ and
k = ke + k◦ for any function k : S → C we get

(δ − α)fe(xy) = ge(x)ge(y) − g◦(x)g◦(y) − fe(x)fe(y) + f◦(x)f◦(y).

(3.22)

Now by using (3.16) and (3.17), the identitiy (3.22) becomes

(δ − α)fe(xy) = (δ2 − 1)fe(x)fe(y) +
(

1 − 1
δ2

)
f◦(x)f◦(y). (3.23)

Since δ �= ±1 and fe �= 0, we see from (3.23) that α �= δ, and if we apply (3.23)
to the pair (σ(y), x) we get

(δ − α)fe(σ(y)x) = (δ2 − 1)fe(x)fe(y) −
(

1 − 1
δ2

)
f◦(x)f◦(y). (3.24)

By adding (3.24) to (3.23) we get since α �= δ

fe(xy) + fe(σ(y)x) =
2(δ2 − 1)

δ − α
fe(x)fe(y). (3.25)

According to [9, Theorem 2.1] we deduce from (3.25) that

fe =
δ − α

2(δ2 − 1)
(χ + χ∗) , (3.26)
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where χ : S → C is multiplicative. χ is non-zero since fe �= 0. Substituting
(3.26) in (3.23) and taking into account that f◦ �= 0 we obtain

f◦ = ∓
(

δ(δ − α)
2(δ2 − 1)

)
(χ − χ∗) , (3.27)

and χ �= χ∗, so we deduce from (3.26) and (3.27) that

f =
δ − α

2(δ2 − 1)
(χ + χ∗) +

δ(δ − α)
2(δ2 − 1)

(χ − χ∗) ,

or

f =
δ − α

2(δ2 − 1)
(χ + χ∗) − δ(δ − α)

2(δ2 − 1)
(χ − χ∗) ,

and then by using (3.16) and (3.17) that

g =
δ(δ − α)
2(δ2 − 1)

(χ + χ∗) +
δ − α

2(δ2 − 1)
(χ − χ∗) ,

or

g =
δ(δ − α)
2(δ2 − 1)

(χ + χ∗) − δ − α

2(δ2 − 1)
(χ − χ∗) .

So we deduce that

f =
δ − α

2(δ2 − 1)
(χ + χ∗) +

δ(δ − α)
2(δ2 − 1)

(χ − χ∗)

g =
δ(δ − α)
2(δ2 − 1)

(χ + χ∗) +
δ − α

2(δ2 − 1)
(χ − χ∗)

, (3.28)

or

f =
δ − α

2(δ2 − 1)
(χ + χ∗) − δ(δ − α)

2(δ2 − 1)
(χ − χ∗)

g =
δ(δ − α)
2(δ2 − 1)

(χ + χ∗) − δ − α

2(δ2 − 1)
(χ − χ∗)

. (3.29)

By substituting (3.28) and (3.29) in (1.6) we deduce after reduction that δα =

1. That is δ =
1
α

, and then we get that

f =
1 + α

2
χ − 1 − α

2
χ∗ and g =

1 + α

2
χ +

1 − α

2
χ∗,

or

f =
1 + α

2
χ∗ − 1 − α

2
χ and g =

1 + α

2
χ∗ +

1 − α

2
χ,

where α �= ±1. This occurs in case (8).
Finally, if S is a topological semigroup, we get the continuity of g in cases

(1), (2), (3), (4), (5) and (7) from the continuity of f by proceeding like in the
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proof of [10, Proposition 5.1]. Case (6) contains the excluded form of f . For
case (8) we get according to [8, Theorem 3.18(d)] from

f =
1 + α

2
χ − 1 − α

2
χ∗ ∈ C(S),

that (1 + α)χ, (1 − α)χ∗ ∈ C(S). So α �= ∓1 implies that χ, χ∗ ∈ C(S), then
g ∈ C(S) as a linear combination of two continuous functions. This completes
the proof of Theorem 3.4. �

Remark 3.1. Theorem 3.4(7) can by the help of Ebanks [6, Theorem 3.1(B)]
be formulated in more details as follows:
f = αχ + h and g = χ ± h such that

h =

⎧
⎨

⎩

χA on S\Iχ

0 on Iχ\Pχ

ρ on Pχ

,

where χ : S → C is an even non-zero multiplicative function, A : S\Iχ → C

an additive function such that A◦σ = A, and ρ : Pχ → C a function such that
ρ ◦ σ = ρ. In addition we have the following conditions.
(I): If x ∈ {up, pv, upv} for p ∈ Pχ and u, v ∈ S\Iχ, then we have respectively

ρ(x) = ρ(p)χ(u), ρ(x) = ρ(p)χ(v), or ρ(x) = ρ(p)χ(uv).
(II): h(xy) = h(yx) = 0 for all x ∈ Iχ\Pχ and y ∈ S\Iχ.

4. Examples

In this section we give some examples of solutions of the functional Eq. (1.6).

Example 4.1. Let S = (R,+) under the usual topology, and let σ : R → R be
the involution defined by σ(x) = −x for all x ∈ R. The functional Eq. (1.6)
can be written as

g(x − y) = g(x)g(y) − f(x)f(y) + αf(x − y), (4.1)

where f, g : R → C. We determine the continuous solutions of (4.1). The
case α = 0 is [8, Example 4.18] where the function f is replaced by if . The
continuous non-zero multiplicative functions on S are the functions

χ(x) = eiλx, x ∈ R, (4.2)

where λ ∈ C. The only even, non-zero multiplicative function χ on S is χ = 1.
The only even, additive fonction a on S is a = 0. The solutions f, g ∈ C(S) of
(4.1) are the following:
(a) α = ±1, f is any non-zero continuous function on S and g = αf .

(b) f =
q + α

2
and g =

1 ±
√

1 + q2 − α2

2
, where q ∈ C is a constant.



802 Y. Aserrar, E. Elqorachi AEM

(c) f(x) =
1 + α

2
eiλx − 1 − α

2
e−iλx and g(x) =

1 + α

2
eiλx +

1 − α

2
e−iλx,

where λ ∈ C\{0} and α �= ∓1.

Example 4.2. Let S = H3 be the Heisenberg group defined by

H3 =

⎧
⎨

⎩

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ | x, y, z ∈ R

⎫
⎬

⎭
,

and let

X =

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ ,

for all x, y, z ∈ R. We consider the following involution

σ (X) =

⎛

⎝
1 −x z
0 1 −y
0 0 1

⎞

⎠ .

According to [8, Example 3.14], the continuous non-zero multiplicative func-
tions on S have the form

χ (X) = eax+by, (4.3)

where a, b ∈ C. The only even, non-zero multiplicative function χ on S is
χ = 1. So the continuous solutions of Eq. (1.6) are the following three types:
(1) α = ±1, f is any non-zero continuous function on S and g = αf .

(2) f(X) =
q + α

2
and g(X) =

1 ±
√

1 + q2 − α2

2
, where q ∈ C.

(3) α �= ±1, and

f(X) =
1 + α

2
eax+by − 1 − α

2
e−ax−by,

g(X) =
1 + α

2
eax+by +

1 − α

2
e−ax−by,

where (a, b) �= (0, 0).

In the following example we shall apply our theory to a semigroup S such
that S2 �= S.

Example 4.3. Let S = (N\{1}, ·), and let χ : S → C be the multiplicative
function defined by

χ(x) :=
{

1 for x ∈ N\ (2N ∪ {1})
0 for x ∈ 2N .

Then Iχ = 2N and Pχ = 2N\4N. We let σ := id be the identity function. So
χ is even with respect to σ. An additive function A : N\ (2N ∪ {1}) → C is
defined by

A(x) := the number of times 5 occurs in the prime factorization of x.
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In Remark 3.1, the form of the function h : N\{1} → C is

h(x) :=

⎧
⎨

⎩

A(x) for x ∈ N\ (2N ∪ {1})
0 for x ∈ 4N
ρ for x ∈ 2N\4N

,

where ρ : 2N\4N → C is a function satisfying condition (I). So

h(2(2n + 1)) = ρ(2)χ(2n + 1) = ρ(2) for all n ∈ N.

This implies that ρ(x) = c for all x ∈ 2N\4N, where c := ρ(2) ∈ C. That is

h(x) =

⎧
⎨

⎩

A(x) for x ∈ N\ (2N ∪ {1})
0 for x ∈ 4N
c for x ∈ 2N\4N

.

So condition (II) is satisfied. We get the solutions f, g : S → C of Eq. (1.6)
by plugging the appropriate forms above into the formula of Theorem 3.4 and
Remark 3.1.

For the semigroup S we have that S2 = S\P, where P denotes the set of all
prime numbers, and also S is neither a monoid nor generated by its squares,
so we can see that we can not avoid the cases (2), (3) and (7) from Theorem
3.4.
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