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Some sufficient conditions for path-factor uniform graphs

Sizhong Zhou, Zhiren Sun, and Hongxia Liu

Abstract. For a set H of connected graphs, a spanning subgraph H of G is called an H-factor
of G if each component of H is isomorphic to an element of H. A graph G is called an
H-factor uniform graph if for any two edges e1 and e2 of G, G has an H-factor covering e1
and excluding e2. Let each component in H be a path with at least d vertices, where d ≥ 2 is
an integer. Then an H-factor and an H-factor uniform graph are called a P≥d-factor and a
P≥d-factor uniform graph, respectively. In this article, we verify that (i) a 2-edge-connected

graph G is a P≥3-factor uniform graph if δ(G) > α(G)+4
2

; (ii) a (k+2)-connected graph G of

order n with n ≥ 5k+3− 3
5γ−1

is a P≥3-factor uniform graph if |NG(A)| > γ(n−3k−2)+k+2

for any independent set A of G with |A| = �γ(2k + 1)�, where k is a positive integer and γ

is a real number with 1
3

≤ γ ≤ 1.
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1. Introduction

The graphs considered here are finite, undirected and simple. Let G be a graph
with edge set E(G) and vertex set V (G). We use i(G), ω(G), α(G) and δ(G) to
denote the number of isolated vertices, the number of connected components,
the independence number and the minimum degree of G, respectively. Let
NG(x) denote the set of neighbours of a vertex x in G. By dG(x) we mean
|NG(x)| and we call it the degree of a vertex x in G. For any X ⊆ V (G) or
X ⊆ E(G) the symbol G[X] denotes the subgraph of G induced by X. We
write NG(X) =

⋃
x∈X NG(x) and G − X = G[V (G)\X] for X ⊆ V (G), and

denote by G − X the subgraph derived from G by deleting edges of X for
X ⊆ E(G). The edge joining vertices x and y is denoted by xy. A vertex
subset X of G is called an independent set if X ∩ NG(X) = ∅. Let Pn and
Kn denote the path and the complete graph with n vertices, respectively. We
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denote by Km,n the complete bipartite graph with the bipartition (X,Y ),
where |X| = m and |Y | = n. Let G1 and G2 be two graphs. By G1 ∪ G2 we
mean a graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2).
By G1 ∨ G2 we mean a graph with vertex set V (G1) ∪ V (G2) and edge set
E(G1) ∪ E(G2) ∪ {e = xy : x ∈ V (G1), y ∈ V (G2)}. Recall that �r	 is the
greatest integer with �r	 ≤ r, where r is a real number.

A subgraph of G is spanning if the subgraph includes all the vertices of
G. For a set H of connected graphs, a spanning subgraph H of G is called an
H-factor of G if each component of H is isomorphic to an element of H. A
graph G is called an H-factor covered graph if G admits an H-factor covering
e for any e ∈ E(G). A graph G is called an H-factor uniform graph if G − e is
an H-factor covered graph for any e ∈ E(G). Let each component in H be a
path with at least d vertices, where d ≥ 2 is an integer. Then an H-factor, an
H-factor covered graph and an H-factor uniform graph are called a P≥d-factor,
a P≥d-factor covered graph and a P≥d-factor uniform graph, respectively.

Amahashi and Kano [1] derived a characterization for a graph with a {K1,l :
1 ≤ l ≤ m}-factor. Kano and Saito [11] posed a sufficient condition for the
existence of {K1,l : m ≤ l ≤ 2m}-factors in graphs. Kano, Lu and Yu [10]
investigated the existence of {K1,2,K1,3,K5}-factors and P≥3-factors in graphs
depending on the number of isolated vertices. Bazgan et al. [2] put forward a
toughness condition for a graph to have a P≥3-factor. Zhou, Bian and Pan [22],
Zhou, Wu and Bian [28], Zhou, Wu and Xu [30], Wang and Zhang [13], Zhou
[20] obtained some results on P≥3-factors in graphs with given properties.
Johansson [7] presented a sufficient condition for a graph to have a path-
factor. Gao, Chen and Wang [4] showed an isolated toughness condition for
the existence of P≥3-factors in graphs with given properties. Kano, Lee and
Suzuki [9] verified that each connected cubic bipartite graph with at least
eight vertices admits a P≥8-factor. Wang and Zhang [14], Zhou and Liu [23]
presented some degree conditions for the existence of graph factors. Zhou, Wu
and Liu [29], Zhou [21], Yuan and Hao [16] established some relationships
between independence numbers and graph factors. Enomoto, Plummer and
Saito [3], Zhou, Liu and Xu [25], Zhou [18,19], Zhou and Sun [26] derived
some neighborhood conditions for the existence of graph factors. some other
results on graph factors can be found in Wang and Zhang [15], Zhou and Liu
[24].

A graph H is factor-critical if H − x has a perfect matching for each x ∈
V (H). To characterize a graph with a P≥3-factor, Kaneko [8] introduced the
concept of a sun. A sun is a graph formed from a factor-critical graph H by
adding n new vertices x1, x2, . . . , xn and n new edges y1x1, y2x2, . . . , ynxn,
where V (H) = {y1, y2, . . . , yn}. According to Kaneko, K1 and K2 are also
suns. A sun with at least six vertices is called a big sun. A component of G
is called a sun component if it is isomorphic to a sun. Let sun(G) denote the
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number of sun components of G. Kaneko [8] put forward a criterion for a graph
with a P≥3-factor.

Theorem 1.1. [8]. A graph G admits a P≥3-factor if and only if

sun(G − X) ≤ 2|X|
for all X ⊆ V (G).

Later, Zhou and Zhang [17] improved Theorem 1.1 and acquired a criterion
for a P≥3-factor covered graph.

Theorem 1.2. [17]. Let G be a connected graph. Then G is a P≥3-factor covered
graph if and only if

sun(G − X) ≤ 2|X| − ε(X)

for any vertex subset X of G, where ε(X) is defined by

ε(X) =

⎧
⎪⎪⎨

⎪⎪⎩

2, if X is not an independent set;
1, if X is a nonempty independent set and G − X has

a non − sun component;
0, otherwise.

Zhou and Sun [27] got a binding number condition for the existence of P≥3-
factor uniform graphs. Gao and Wang [5], Liu [12] improved the above result
on P≥3-factor uniform graphs. Hua [6] investigated the relationship between
isolated toughness and P≥3-factor uniform graphs. It is natural and interest-
ing to put forward some new sufficient conditions to guarantee that a graph is a
P≥3-factor uniform graph. In this article, we proceed to study P≥3-factor uni-
form graphs and pose some new graphic parameter conditions for the existence
of P≥3-factor uniform graphs, which are shown in the following.

Theorem 1.3. Let G be a 2-edge-connected graph. If G satisfies

δ(G) >
α(G) + 4

2
,

then G is a P≥3-factor uniform graph.

Theorem 1.4. Let k be a positive integer and γ be a real number with 1
3 ≤ γ ≤

1, and let G be a (k + 2)-connected graph of order n with n ≥ 5k + 3 − 3
5γ−1 .

If

|NG(A)| > γ(n − 3k − 2) + k + 2

for any independent set A of G with |A| = �γ(2k +1)	, then G is a P≥3-factor
uniform graph.

The proofs of Theorems 1.3 and 1.4 will be given in Sections 2 and 3.
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2. The proof of Theorem 1.3

Proof of Theorem 1.3. For any e = xy ∈ E(G), let G′ = G − e. To verify
Theorem 1.3, we only need to prove that G′ is a P≥3-factor covered graph.
Suppose, to the contrary, that G′ is not a P≥3-factor covered graph. Then it
follows from Theorem 1.2 that

sun(G′ − X) ≥ 2|X| − ε(X) + 1 (2.1)

for some vertex subset X of G′.
Claim 1. X �= ∅.

Proof. Assume that X = ∅. Then from (2.1) and ε(X) = 0 we have sun(G′) ≥
1. On the other hand, since G is 2-edge-connected, G′ is connected, which
implies that ω(G′) = 1. Thus, we derive that 1 ≤ sun(G′) ≤ ω(G′) = 1,
that is, sun(G′) = 1. Note that |V (G′)| = |V (G)| ≥ 3 by G being a 2-edge-
connected graph. Hence, G′ is a big sun, which implies that there exist at least
three vertices x1, x2, x3 with dG′(xi) = 1, i = 1, 2, 3. Thus, there exists at least
one vertex with degree 1 in G, which contradicts that G is 2-edge-connected.
Claim 1 is proved. �

Claim 2. |X| ≥ 2.

Proof. Let |X| ≤ 1. Combining this with Claim 1, we get |X| = 1.
If G′ − X admits a non-sun component, then ε(X) = 1 by the definition of

ε(X). According to (2.1) and ε(X) = 1, we obtain

sun(G′ − X) ≥ 2|X| − ε(X) + 1 = 2|X| = 2. (2.2)

Note that G′−X includes a non-sun component. Combining this with (2.2),
we get

α(G′) ≥ sun(G′ − X) + 1. (2.3)

Since G′ = G − e, we deduce α(G) ≥ α(G′) − 2. Then using (2.2) and (2.3),
we infer

α(G) ≥ α(G′) − 2 ≥ sun(G′ − X) − 1 ≥ 2 − 1 = 1. (2.4)

By virtue of (2.2), G′ − X has at least two sun components, which implies
that G − X admits one vertex v with dG−X(v) = 1. Thus, we derive

δ(G) ≤ dG(v) ≤ dG−X(v) + |X| = |X| + 1 = 2. (2.5)

It follows from (2.4), (2.5) and δ(G) > α(G)+4
2 that

2 ≥ δ(G) >
α(G) + 4

2
≥ 5

2
,

which is a contradiction.
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If G′ − X does not admit a non-sun component, then ε(X) = 0 by the
definition of ε(X). By means of (2.1), |X| = 1 and ε(X) = 0, we get

α(G′) ≥ sun(G′ − X) ≥ 2|X| + 1 = 3. (2.6)

From (2.6), we have

α(G) ≥ α(G′) − 2 ≥ 3 − 2 = 1. (2.7)

Note that sun(G − X) ≥ sun(G′ − X) − 2 ≥ 3 − 2 = 1 by (2.6), which implies
that G − X has at least one vertex v with dG−X(v) ≤ 1. Thus, we infer

δ(G) ≤ dG(v) ≤ dG−X(v) + |X| ≤ |X| + 1 = 2. (2.8)

In terms of (2.7), (2.8) and δ(G) > α(G)+4
2 , we derive

2 ≥ δ(G) >
α(G) + 4

2
≥ 5

2
,

which is a contradiction. This completes the proof of Claim 2. �

Suppose that there exist a isolated vertices, b K2’s and c big sun components
H1,H2, . . . ,Hc, where |V (Hi)| ≥ 6, in G′ − X, and so

sun(G′ − X) = a + b + c. (2.9)

It follows from (2.1), (2.9), ε(X) ≤ 2 and Claim 2 that

a + b + c = sun(G′ − X) ≥ 2|X| − ε(X) + 1 ≥ 2|X| − 1 ≥ 3. (2.10)

Claim 3. δ(G) ≤ |X| + 1.

Proof. If a �= 0, then dG′−X(v) = 0 for any v ∈ V (aK1). Note that G′ = G−e.
Thus, we infer dG−X(v) ≤ 1 for any v ∈ V (aK1), and so

δ(G) ≤ dG(v) ≤ dG−X(v) + |X| ≤ |X| + 1.

If a = 0, then b + c �= 0, which implies that G′ − X admits at least two
vertices with degree 1, and so G−X has at least one vertex v with dG−X(v) = 1.
Thus, we obtain

δ(G) ≤ dG(v) ≤ dG−X(v) + |X| = |X| + 1.

This completes the proof of Claim 3. �

Next, we consider two cases by the value of a + c.
Case 1. a + c = 0.

In this case, b ≥ 3 by (2.10).
Claim 4. α(G) ≥ b.

Proof. If x /∈ V (bK2) or y /∈ V (bK2), then we easily see that α(G) ≥ b. If
x ∈ V (bK2) and y ∈ V (bK2), then G−X has (b−2) K2’s and a P4 component,
and so we easily see that α(G) ≥ (b − 2) + 2 = b. We have finished the proof
of Claim 4. �
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According to (2.10), a + c = 0, Claim 4 and δ(G) > α(G)+4
2 , we deduce

δ(G) >
α(G) + 4

2
≥ b + 4

2
=

a + b + c + 4
2

≥ 2|X| − 1 + 4
2

=
2|X| + 3

2
> |X| + 1,

which contradicts Claim 3.
Case 2. a + c �= 0.
Subcase 2.1. a �= 0.

If x /∈ V (aK1) and y /∈ V (aK1), then dG−X(v) = 0 for any v ∈ V (aK1).
Thus, we derive

δ(G) ≤ dG(v) ≤ dG−X(v) + |X| = |X|. (2.11)

It follows from (2.10), (2.11), δ(G) > α(G)+4
2 and α(G) ≥ sun(G − X) ≥

sun(G′ − X) − 2 that

|X| ≥ δ(G) >
α(G) + 4

2
≥ sun(G′ − X) − 2 + 4

2
=

sun(G′ − X) + 2
2

≥ 2|X| − 1 + 2
2

= |X| +
1
2
,

which is a contradiction. In what follows, we discuss the case with x ∈ V (aK1)
or y ∈ V (aK1). Without loss of generality, let x ∈ V (aK1). We write Y =
V (H1) ∪ · · · ∪ V (Hc).
Subcase 2.1.1. y ∈ V (bK2) ∪ Y .

In this subcase, we deduce α(G) ≥ a + b + c. Combining this with (2.10)
and δ(G) > α(G)+4

2 , we infer

δ(G) >
α(G) + 4

2
≥ a + b + c + 4

2
≥ 2|X| − 1 + 4

2
=

2|X| + 3
2

> |X| + 1,

which contradicts Claim 3.
Subcase 2.1.2. y ∈ V (G) \ (V (bK2) ∪ Y ).

In this subcase, we have sun(G − X) ≥ sun(G′ − X) − 1. Combining this
with (2.10), α(G) ≥ sun(G − X) and δ(G) > α(G)+4

2 , we derive

δ(G) >
α(G) + 4

2
≥ sun(G − X) + 4

2
≥ sun(G′ − X) − 1 + 4

2

=
sun(G′ − X) + 3

2
≥ 2|X| − 1 + 3

2
= |X| + 1,

which contradicts Claim 3.
Subcase 2.2. c �= 0.

Obviously, α(G′) ≥ a+b+
c∑

i=1

|V (Hi)|
2 ≥ a+b+3c by |V (Hi)| ≥ 6. Combining

this with (2.10), c �= 0 and α(G) ≥ α(G′) − 2, we obtain

α(G) ≥ α(G′) − 2 ≥ a + b + 3c − 2 ≥ a + b + c ≥ 2|X| − 1. (2.12)
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By virtue of (2.12), Claim 3 and δ(G) > α(G)+4
2 , we deduce

|X| + 1 ≥ δ(G) >
α(G) + 4

2
≥ 2|X| − 1 + 4

2
= |X| +

3
2
,

which is a contradiction. This completes the proof of Theorem 1.3. �

3. The proof of Theorem 1.4

Proof of Theorem 1.4. For any e ∈ E(G), we write G′ = G − e. To prove
Theorem 1.4, we only need to justify that G′ is a P≥3-factor covered graph.
Suppose, to the contrary, that G′ is not a P≥3-factor covered graph. Then by
Theorem 1.2, we have

sun(G′ − X) ≥ 2|X| − ε(X) + 1 (3.1)

for some vertex subset X of G′. We write a = i(G − X) and b = �γ(2k + 1)	.
Claim 1. b ≥ a + 1.

Proof. Let b ≤ a. We may choose b isolated vertices x1, x2, . . . , xb in G − X.
Write A = {x1, x2, . . . , xb}. Then A is an independent set of G. Thus, we infer

γ(n − 3k − 2) + k + 2 < |NG(A)| ≤ |X|. (3.2)

It follows from (3.1), (3.2) and ε(X) ≤ 2, 1
3 ≤ γ ≤ 1 and n ≥ 5k +3− 3

5γ−1

that

0 ≥ |X| + sun(G′ − X) − n ≥ |X| + 2|X| − ε(X) + 1 − n

≥ 3|X| − n − 1 > 3(γ(n − 3k − 2) + k + 2) − n − 1

= (3γ − 1)n − 3γ(3k + 2) + 3k + 5

≥ (3γ − 1)
(

5k + 3 − 3
5γ − 1

)

− 3γ(3k + 2) + 3k + 5

= (3γ − 1)(2k + 1) − 3(3γ − 1)
5γ − 1

+ 3

≥ 3 − 3(3γ − 1)
5γ − 1

> 3 − 3 = 0,

which is a contradiction. We have finished the proof of Claim 1. �

In what follows, we consider four cases by the value of |X| and derive a
contradiction in each case.
Case 1. |X| = 0.

Note that G′ = G − e and G is (k + 2)-connected. Hence, G′ is (k + 1)-
connected and ω(G′) = 1. Combining this with (3.1) and ε(X) = 0, we obtain
1 = ω(G′) ≥ sun(G′) ≥ 1. Thus, we have sun(G′) = ω(G′) = 1. Then using
n ≥ 5k + 3 − 3

5γ−1 ≥ 8 − 3
5× 1

3−1
= 7

2 > 3, we see that G′ is a big sun, and
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so G′ has at least three vertices with degree 1, which contradicts that G′ is a
(k + 1)-connected graph.
Case 2. 1 ≤ |X| ≤ k.

Note that 1 ≤ |X| ≤ k and G′ is (k+1)-connected. We derive ω(G′−X) = 1.
According to (3.1) and ε(X) ≤ |X|, we get

1 = ω(G′ − X) ≥ sun(G′ − X) ≥ 2|X| − ε(X) + 1 ≥ |X| + 1 ≥ 2,

which is a contradiction.
Case 3. |X| = k + 1.

Since G is (k + 2)-connected, G − X is connected, and so ω(G − X) = 1.
Note that G′ = G − e. Thus, we deduce

ω(G′ − X) ≤ ω(G − X) + 1 = 2. (3.3)

By virtue of (3.1), (3.3), k ≥ 1 and ε(X) ≤ 2, we infer

2 ≥ ω(G′ − X) ≥ sun(G′ − X) ≥ 2|X| − ε(X) + 1 ≥ 2|X| − 1

= 2(k + 1) − 1 = 2k + 1 ≥ 3,

which is a contradiction.
Case 4. |X| ≥ k + 2.

In light of (3.1), ε(X) ≤ 2 and 1
3 ≤ γ ≤ 1, we derive

sun(G − X) ≥ sun(G′ − X) − 2 ≥ 2|X| − ε(X) + 1 − 2 ≥ 2|X| − 3

≥ 2(k + 2) − 3 = 2k + 1 ≥ γ(2k + 1) ≥ �γ(2k + 1)	 = b,

which implies that G − X admits an independent set of order at least b. Then
using Claim 1, we may choose a isolated vertices x1, x2, . . . , xa and (b − a)
nonadjacent vertices xa+1, . . . , xb with dG−X(xi) = 1 for a + 1 ≤ i ≤ b, in
G − X. Set A = {x1, x2, . . . , xa, xa+1, . . . , xb}. Then A is an independent set
of G. Thus, we deduce

γ(n − 3k − 2) + k + 2 < |NG(A)| ≤ |X| + b − a,

that is,

|X| > γ(n − 3k − 2) + k + 2 − b + a. (3.4)

It follows from (3.1), (3.4), ε(X) ≤ 2 and n ≥ 5k + 3 − 3
5γ−1 that

0 ≥ |X| + 2sun(G′ − X) − i(G′ − X) − n

≥ |X| + 2(2|X| − ε(X) + 1) − (i(G − X) + 2) − n

≥ |X| + 2(2|X| − 1) − (a + 2) − n

= 5|X| − a − 4 − n

> 5(γ(n − 3k − 2) + k + 2 − b + a) − a − 4 − n
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= (5γ − 1)n − 5γ(3k + 2) + 5k + 10 − 5b + 4a − 4

≥ (5γ − 1)
(

5k + 3 − 3
5γ − 1

)

− 5γ(3k + 2) + 5k + 6 − 5b

= 5γ(2k + 1) − 5b

= 5γ(2k + 1) − 5�γ(2k + 1)	
≥ 0,

which is a contradiction. This completes the proof of Theorem 1.4. �

4. Remarks

Remark 1. Next, we show that the condition δ(G) > α(G)+4
2 in Theorem 1.3

cannot be replaced by δ(G) ≥ α(G)+4
2 . We construct a graph G = K3+t ∨

(4 + 2t)K2, where t is a nonnegative integer. Then G is (3 + t)-connected,
δ(G) = 4 + t and α(G) = 4 + 2t. Thus, we have δ(G) = α(G)+4

2 . For any
e ∈ E((4 + 2t)K2), let G′ = G − e = K3+t ∨ ((3 + 2t)K2 ∪ (2K1)). Select
X = V (K3+t) ⊆ V (G′). Then |X| = 3 + t and ε(X) = 2. Thus, we derive

sun(G′ − X) = 5 + 2t > 4 + 2t = 2(3 + t) − 2 = 2|X| − ε(X).

By Theorem 1.2, G′ is not a P≥3-factor covered graph, and so G is not a
P≥3-factor uniform graph.

Remark 2. The conditions with a (k + 2)-connected graph and |NG(A)| >
γ(n−3k−2)+k+2 in Theorem 1.4 cannot be replaced by a (k+1)-connected
graph and |NG(A)| ≥ γ(n − 3k − 2) + k + 1. Let γ be a rational number such
that 1

3 ≤ γ ≤ 1. Then we can write γ = b
2k+1 for nonnegative integers b and k.

Let G = Kk+1 ∨ ((2k +1)K2), where k is a positive integer. Then G is (k +1)-
connected and n = |V (G)| = 5k + 3 > 5k + 3 − 3

5γ−1 . If A is an independent
set of order b = γ(2k + 1), then

γ(n − 3k − 2) + k + 2 > |NG(A)| = γ(2k + 1) + k + 1 = γ(n − 3k − 2) + k + 1.

For any e ∈ E((2k + 1)K2), let G′ = G − e = Kk+1 ∨ ((2k)K2 ∪ (2K1)). Select
X = V (Kk+1) ⊆ V (G′). Then |X| = k + 1 and ε(X) = 2. Thus, we infer

sun(G′ − X) = 2k + 2 > 2k = 2(k + 1) − 2 = 2|X| − ε(X).

According to Theorem 1.2, G′ is not a P≥3-factor covered graph, and so G is
not a P≥3-factor uniform graph.

5. Conclusion

The concept of path-factor uniform graph was first presented by Zhou and
Sun [27], and they showed a binding number condition for the existence of
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P≥3-factor uniform graphs. Gao and Wang [5], Liu [12] improved Zhou and
Sun’s above result. Hua [6] gave toughness and isolated toughness conditions
for graphs to be P≥3-factor uniform graphs. In our article, we study the re-
lationships between some graphic parameters (for instance, minimum degree,
independence number and neighborhood, and so on) and the existence of P≥3-
factor uniform graphs. The theorems derived in this article belong to existence
theorems, that is, under what kind of conditions the path-factor uniform graph
exists. However, in a specific computer network, it needs to use a certain algo-
rithm to determine the values of some graphic parameters of the fix network
graph and show the eligible path-factor uniform graph from the algorithm
point of view. The problems of such algorithms are worthy of consideration in
future research.

So far, results on the existence of path-factor uniform graphs are very few.
There are many problems on graphs which can be considered for path-factor
uniform graphs. For example, we can consider the structures and properties
of path-factor uniform graphs. In what follows, we put forward open problems
as the end of our article.
Problem 1. Find the necessary and sufficient conditions for a graph to be a
path-factor uniform graph.
Problem 2. Find relationships between other graphic parameters and path-
factor uniform graphs.
Problem 3. What are the structures and properties in path-factor uniform
graphs?
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