Aequat. Math. 97 (2023), 489–500 -c The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023 0001-9054/23/030489-12 *published online* February 28, 2023 https://doi.org/10.1007/s00010-023-00944-3 **Aequationes Mathematicae**

Some sufficient conditions for path-factor uniform graphs

Sizhong Zhou, Zhiren Sun, and Hongxia Liu

Abstract. For a set H of connected graphs, a spanning subgraph H of G is called an H -factor of G if each component of H is isomorphic to an element of H . A graph G is called an H -factor uniform graph if for any two edges e_1 and e_2 of G, G has an H-factor covering e_1 and excluding e₂. Let each component in H be a path with at least d vertices, where $d \geq 2$ is an integer. Then an H -factor and an H -factor uniform graph are called a $P_{\geq d}$ -factor and a $P_{\geq d}$ -factor uniform graph, respectively. In this article, we verify that (i) a 2-edge-connected graph G is a $P_{\geq 3}$ -factor uniform graph if $\delta(G) > \frac{\alpha(G)+4}{2}$; (ii) a $(k+2)$ -connected graph G of order n with $n \geq 5k+3-\frac{3}{5\gamma-1}$ is a $P_{\geq 3}$ -factor uniform graph if $|N_G(A)| > \gamma(n-3k-2)+k+2$ for any independent set A of G with $|A| = \lfloor \gamma(2k+1) \rfloor$, where k is a positive integer and γ is a real number with $\frac{1}{3} \leq \gamma \leq 1$.

Mathematics Subject Classification. 05C70, 05C38.

Keywords. Graph, Minimum degree, Independence number, Neighborhood, P≥3-factor, P≥3 factor uniform graph.

1. Introduction

The graphs considered here are finite, undirected and simple. Let G be a graph with edge set $E(G)$ and vertex set $V(G)$. We use $i(G)$, $\omega(G)$, $\alpha(G)$ and $\delta(G)$ to denote the number of isolated vertices, the number of connected components, the independence number and the minimum degree of G , respectively. Let $N_G(x)$ denote the set of neighbours of a vertex x in G. By $d_G(x)$ we mean $|N_G(x)|$ and we call it the degree of a vertex x in G. For any $X \subseteq V(G)$ or $X \subseteq E(G)$ the symbol $G[X]$ denotes the subgraph of G induced by X. We write $N_G(X) = \bigcup_{x \in X} N_G(x)$ and $G - X = G[V(G) \setminus X]$ for $X \subseteq V(G)$, and denote by $G - X$ the subgraph derived from G by deleting edges of X for $X \subseteq E(G)$. The edge joining vertices x and y is denoted by xy. A vertex subset X of G is called an independent set if $X \cap N_G(X) = \emptyset$. Let P_n and K_n denote the path and the complete graph with n vertices, respectively. We

B Birkhäuser

denote by $K_{m,n}$ the complete bipartite graph with the bipartition (X, Y) , where $|X| = m$ and $|Y| = n$. Let G_1 and G_2 be two graphs. By $G_1 \cup G_2$ we mean a graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. By $G_1 \vee G_2$ we mean a graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2) \cup \{e = xy : x \in V(G_1), y \in V(G_2)\}\)$. Recall that $|r|$ is the greatest integer with $|r| \leq r$, where r is a real number.

A subgraph of G is spanning if the subgraph includes all the vertices of G. For a set H of connected graphs, a spanning subgraph H of G is called an H-factor of G if each component of H is isomorphic to an element of H . A graph G is called an H -factor covered graph if G admits an H -factor covering e for any $e \in E(G)$. A graph G is called an H -factor uniform graph if $G - e$ is an H-factor covered graph for any $e \in E(G)$. Let each component in H be a path with at least d vertices, where $d \geq 2$ is an integer. Then an H -factor, an H-factor covered graph and an H-factor uniform graph are called a $P_{\geq d}$ -factor, a $P_{\geq d}$ -factor covered graph and a $P_{\geq d}$ -factor uniform graph, respectively.

Amahashi and Kano [\[1](#page-10-0)] derived a characterization for a graph with a $\{K_{1,l}:$ $1 \leq l \leq m$ ²-factor. Kano and Saito [\[11\]](#page-10-1) posed a sufficient condition for the existence of $\{K_{1,l} : m \leq l \leq 2m\}$ -factors in graphs. Kano, Lu and Yu [\[10\]](#page-10-2) investigated the existence of ${K_{1,2}, K_{1,3}, K_5}$ -factors and $P_{\geq 3}$ -factors in graphs depending on the number of isolated vertices. Bazgan et al. [\[2](#page-10-3)] put forward a toughness condition for a graph to have a $P_{\geq 3}$ -factor. Zhou, Bian and Pan [\[22\]](#page-10-4), Zhou, Wu and Bian [\[28\]](#page-11-0), Zhou, Wu and Xu [\[30\]](#page-11-1), Wang and Zhang [\[13](#page-10-5)], Zhou [\[20\]](#page-10-6) obtained some results on $P_{\geq 3}$ -factors in graphs with given properties. Johansson [\[7](#page-10-7)] presented a sufficient condition for a graph to have a pathfactor. Gao, Chen and Wang [\[4](#page-10-8)] showed an isolated toughness condition for the existence of $P_{\geq 3}$ -factors in graphs with given properties. Kano, Lee and Suzuki [\[9\]](#page-10-9) verified that each connected cubic bipartite graph with at least eight vertices admits a $P_{\geq 8}$ -factor. Wang and Zhang [\[14](#page-10-10)], Zhou and Liu [\[23\]](#page-10-11) presented some degree conditions for the existence of graph factors. Zhou, Wu and Liu [\[29\]](#page-11-2), Zhou [\[21\]](#page-10-12), Yuan and Hao [\[16](#page-10-13)] established some relationships between independence numbers and graph factors. Enomoto, Plummer and Saito $[3]$, Zhou, Liu and Xu $[25]$ $[25]$, Zhou $[18,19]$ $[18,19]$ $[18,19]$, Zhou and Sun $[26]$ derived some neighborhood conditions for the existence of graph factors. some other results on graph factors can be found in Wang and Zhang [\[15](#page-10-18)], Zhou and Liu [\[24\]](#page-10-19).

A graph H is factor-critical if $H - x$ has a perfect matching for each $x \in$ $V(H)$. To characterize a graph with a $P_{\geq 3}$ -factor, Kaneko [\[8](#page-10-20)] introduced the concept of a sun. A sun is a graph formed from a factor-critical graph H by adding n new vertices x_1, x_2, \ldots, x_n and n new edges $y_1x_1, y_2x_2, \ldots, y_nx_n$, where $V(H) = \{y_1, y_2, \ldots, y_n\}$. According to Kaneko, K_1 and K_2 are also suns. A sun with at least six vertices is called a big sun. A component of G is called a sun component if it is isomorphic to a sun. Let $sun(G)$ denote the number of sun components of G. Kaneko $[8]$ put forward a criterion for a graph with a $P_{\geq 3}$ -factor.

Theorem 1.1. [\[8](#page-10-20)]. A graph G admits a $P_{\geq 3}$ -factor if and only if

$$
sun(G - X) \le 2|X|
$$

for all $X \subseteq V(G)$ *.*

Later, Zhou and Zhang [\[17](#page-10-21)] *improved Theorem* [1.1](#page-2-0) *and acquired a criterion for a* ^P≥³*-factor covered graph.*

Theorem 1.2. [\[17\]](#page-10-21)*. Let* G *be a connected graph. Then* G *is a* $P_{\geq 3}$ -factor covered *graph if and only if*

$$
sun(G - X) \le 2|X| - \varepsilon(X)
$$

for any vertex subset X *of* G, where $\varepsilon(X)$ *is defined by*

$$
\varepsilon(X) = \begin{cases} 2, if X is not an independent set; \\ 1, if X is a nonempty independent set and $G - X$ has a non-sum component; \\ 0, otherwise. \end{cases}
$$

Zhou and Sun [\[27\]](#page-11-4) *got a binding number condition for the existence of* ^P≥³ *factor uniform graphs. Gao and Wang* [\[5](#page-10-22)]*, Liu* [\[12\]](#page-10-23) *improved the above result on* ^P≥³*-factor uniform graphs. Hua* [\[6](#page-10-24)] *investigated the relationship between isolated toughness and* ^P≥³*-factor uniform graphs. It is natural and interesting to put forward some new sufficient conditions to guarantee that a graph is a* ^P≥³*-factor uniform graph. In this article, we proceed to study* ^P≥³*-factor uniform graphs and pose some new graphic parameter conditions for the existence of* ^P≥³*-factor uniform graphs, which are shown in the following.*

Theorem 1.3. *Let* G *be a 2-edge-connected graph. If* G *satisfies*

$$
\delta(G) > \frac{\alpha(G)+4}{2},
$$

then G *is a* $P_{\geq 3}$ *-factor uniform graph.*

Theorem 1.4. Let k be a positive integer and γ be a real number with $\frac{1}{3} \leq \gamma \leq$ 1*, and let* G *be a* $(k+2)$ -connected graph of order n with $n \geq 5k+3-\frac{3}{5\gamma-1}$. *If*

$$
|N_G(A)| > \gamma (n - 3k - 2) + k + 2
$$

for any independent set A *of* G *with* $|A| = \lfloor \gamma(2k+1) \rfloor$, then G is a $P_{\geq 3}$ -factor *uniform graph.*

The proofs of Theorems [1.3](#page-2-1) *and* [1.4](#page-2-2) *will be given in Sections 2 and 3.*

2. The proof of Theorem [1.3](#page-2-1)

Proof of Theorem [1.3.](#page-2-1) For any $e = xu \in E(G)$, let $G' = G - e$. To verify Theorem [1.3,](#page-2-1) we only need to prove that G' is a $P_{\geq 3}$ -factor covered graph. Suppose, to the contrary, that G' is not a $P_{\geq 3}$ -factor covered graph. Then it follows from Theorem [1.2](#page-2-3) that

$$
sun(G' - X) \ge 2|X| - \varepsilon(X) + 1 \tag{2.1}
$$

for some vertex subset X of G' . Claim 1. $X \neq \emptyset$.

Proof. Assume that $X = \emptyset$. Then from [\(2.1\)](#page-3-0) and $\varepsilon(X) = 0$ we have $sun(G') \ge$ 1. On the other hand, since G is 2-edge-connected, G' is connected, which implies that $\omega(G') = 1$. Thus, we derive that $1 \leq \text{sun}(G') \leq \omega(G') = 1$, that is, $sun(G') = 1$. Note that $|V(G')| = |V(G)| \geq 3$ by G being a 2-edgeconnected graph. Hence, G' is a big sun, which implies that there exist at least three vertices x_1, x_2, x_3 with $d_{G'}(x_i) = 1, i = 1, 2, 3$. Thus, there exists at least one vertex with degree 1 in G , which contradicts that G is 2-edge-connected. Claim 1 is proved. \Box

Claim 2. $|X| \ge 2$.

Proof. Let $|X| \leq 1$. Combining this with Claim 1, we get $|X| = 1$.

If $G' - X$ admits a non-sun component, then $\varepsilon(X) = 1$ by the definition of $\varepsilon(X)$. According to (2.1) and $\varepsilon(X) = 1$, we obtain

$$
sun(G' - X) \ge 2|X| - \varepsilon(X) + 1 = 2|X| = 2.
$$
\n(2.2)

Note that $G'-X$ includes a non-sun component. Combining this with (2.2) , we get

$$
\alpha(G') \ge \operatorname{sun}(G' - X) + 1. \tag{2.3}
$$

Since $G' = G - e$, we deduce $\alpha(G) \geq \alpha(G') - 2$. Then using [\(2.2\)](#page-3-1) and [\(2.3\)](#page-3-2), we infer

$$
\alpha(G) \ge \alpha(G') - 2 \ge \text{sun}(G' - X) - 1 \ge 2 - 1 = 1. \tag{2.4}
$$

By virtue of (2.2) , $G' - X$ has at least two sun components, which implies that $G - X$ admits one vertex v with $d_{G-X}(v) = 1$. Thus, we derive

$$
\delta(G) \le d_G(v) \le d_{G-X}(v) + |X| = |X| + 1 = 2. \tag{2.5}
$$

It follows from [\(2.4\)](#page-3-3), [\(2.5\)](#page-3-4) and $\delta(G) > \frac{\alpha(G)+4}{2}$ that

$$
2 \ge \delta(G) > \frac{\alpha(G) + 4}{2} \ge \frac{5}{2},
$$

which is a contradiction.

If $G' - X$ does not admit a non-sun component, then $\varepsilon(X) = 0$ by the definition of $\varepsilon(X)$. By means of (2.1) , $|X| = 1$ and $\varepsilon(X) = 0$, we get

$$
\alpha(G') \ge \text{sun}(G' - X) \ge 2|X| + 1 = 3. \tag{2.6}
$$

From (2.6) , we have

$$
\alpha(G) \ge \alpha(G') - 2 \ge 3 - 2 = 1. \tag{2.7}
$$

Note that $sun(G - X) > sun(G' - X) - 2 > 3 - 2 = 1$ by [\(2.6\)](#page-4-0), which implies that $G - X$ has at least one vertex v with $d_{G-X}(v) \leq 1$. Thus, we infer

$$
\delta(G) \le d_G(v) \le d_{G-X}(v) + |X| \le |X| + 1 = 2. \tag{2.8}
$$

In terms of [\(2.7\)](#page-4-1), [\(2.8\)](#page-4-2) and $\delta(G) > \frac{\alpha(G)+4}{2}$, we derive

$$
2 \ge \delta(G) > \frac{\alpha(G) + 4}{2} \ge \frac{5}{2},
$$

which is a contradiction. This completes the proof of Claim 2. \Box

Suppose that there exist a isolated vertices, $b K_2$'s and c big sun components H_1, H_2, \ldots, H_c , where $|V(H_i)| \geq 6$, in $G' - X$, and so

$$
sun(G' - X) = a + b + c.
$$
\n
$$
(2.9)
$$

It follows from $(2.1), (2.9), \varepsilon(X) \leq 2$ and Claim 2 that

$$
a + b + c = \sup(G' - X) \ge 2|X| - \varepsilon(X) + 1 \ge 2|X| - 1 \ge 3. \tag{2.10}
$$

Claim 3. $\delta(G) \leq |X| + 1$.

Proof. If $a \neq 0$, then $d_{G'-X}(v) = 0$ for any $v \in V(aK_1)$. Note that $G' = G - e$. Thus, we infer $d_{G-X}(v) \leq 1$ for any $v \in V(aK_1)$, and so

$$
\delta(G)\leq d_G(v)\leq d_{G-X}(v)+|X|\leq |X|+1.
$$

If $a = 0$, then $b + c \neq 0$, which implies that $G' - X$ admits at least two vertices with degree 1, and so $G-X$ has at least one vertex v with $d_{G-X}(v) = 1$. Thus, we obtain

$$
\delta(G) \le d_G(v) \le d_{G-X}(v) + |X| = |X| + 1.
$$

This completes the proof of Claim 3. \Box

Next, we consider two cases by the value of $a + c$. **Case 1.** $a + c = 0$.

In this case, $b \geq 3$ by (2.10) . **Claim 4.** $\alpha(G) \geq b$.

Proof. If $x \notin V(bK_2)$ or $y \notin V(bK_2)$, then we easily see that $\alpha(G) \geq b$. If $x \in V(bK_2)$ and $y \in V(bK_2)$, then $G-X$ has $(b-2) K_2$'s and a P_4 component, and so we easily see that $\alpha(G) \ge (b-2) + 2 = b$. We have finished the proof of Claim 4. of Claim 4.

According to [\(2.10\)](#page-4-4), $a + c = 0$, Claim 4 and $\delta(G) > \frac{\alpha(G) + 4}{2}$, we deduce

$$
\delta(G) > \frac{\alpha(G) + 4}{2} \ge \frac{b+4}{2} = \frac{a+b+c+4}{2}
$$

$$
\ge \frac{2|X|-1+4}{2} = \frac{2|X|+3}{2} > |X|+1,
$$

which contradicts Claim 3.

Case 2. $a + c \neq 0$.

Subcase 2.1. $a \neq 0$.

If $x \notin V(aK_1)$ and $y \notin V(aK_1)$, then $d_{G-X}(v) = 0$ for any $v \in V(aK_1)$. Thus, we derive

$$
\delta(G) \le d_G(v) \le d_{G-X}(v) + |X| = |X|.
$$
\n(2.11)

It follows from [\(2.10\)](#page-4-4), [\(2.11\)](#page-5-0), $\delta(G) > \frac{\alpha(G)+4}{2}$ and $\alpha(G) \geq \text{sun}(G - X) \geq$ $sun(G' - X) - 2$ that

$$
|X| \ge \delta(G) > \frac{\alpha(G) + 4}{2} \ge \frac{\text{sum}(G' - X) - 2 + 4}{2} = \frac{\text{sum}(G' - X) + 2}{2}
$$

$$
\ge \frac{2|X| - 1 + 2}{2} = |X| + \frac{1}{2},
$$

which is a contradiction. In what follows, we discuss the case with $x \in V(aK_1)$ or $y \in V(aK_1)$. Without loss of generality, let $x \in V(aK_1)$. We write $Y =$ $V(H_1) \cup \cdots \cup V(H_c).$

Subcase 2.1.1. $y \in V(bK_2) \cup Y$.

In this subcase, we deduce $\alpha(G) \geq a + b + c$. Combining this with [\(2.10\)](#page-4-4) and $\delta(G) > \frac{\alpha(G)+4}{2}$, we infer

$$
\delta(G) > \frac{\alpha(G)+4}{2} \geq \frac{a+b+c+4}{2} \geq \frac{2|X|-1+4}{2} = \frac{2|X|+3}{2} > |X|+1,
$$

which contradicts Claim 3.

Subcase 2.1.2. $y \in V(G) \setminus (V(bK_2) \cup Y)$.

In this subcase, we have $sun(G - X) \geq sun(G' - X) - 1$. Combining this with [\(2.10\)](#page-4-4), $\alpha(G) \ge \text{sun}(G - X)$ and $\delta(G) > \frac{\alpha(G)+4}{2}$, we derive

$$
\delta(G) > \frac{\alpha(G) + 4}{2} \ge \frac{\operatorname{sun}(G - X) + 4}{2} \ge \frac{\operatorname{sun}(G' - X) - 1 + 4}{2}
$$

$$
= \frac{\operatorname{sun}(G' - X) + 3}{2} \ge \frac{2|X| - 1 + 3}{2} = |X| + 1,
$$

which contradicts Claim 3. **Subcase 2.2.** $c \neq 0$.

Obviously, $\alpha(G') \geq a+b+\sum_{i=1}^c$ $\frac{|V(H_i)|}{2} \ge a+b+3c$ by $|V(H_i)| \ge 6$. Combining this with (2.10) , $c \neq 0$ and $\alpha(G) \geq \alpha(G') - 2$, we obtain

$$
\alpha(G) \ge \alpha(G') - 2 \ge a + b + 3c - 2 \ge a + b + c \ge 2|X| - 1. \tag{2.12}
$$

By virtue of [\(2.12\)](#page-5-1), Claim 3 and $\delta(G) > \frac{\alpha(G)+4}{2}$, we deduce

$$
|X| + 1 \ge \delta(G) > \frac{\alpha(G) + 4}{2} \ge \frac{2|X| - 1 + 4}{2} = |X| + \frac{3}{2},
$$

which is a contradiction. This completes the proof of Theorem [1.3.](#page-2-1) \Box

3. The proof of Theorem [1.4](#page-2-2)

Proof of Theorem [1.4.](#page-2-2) For any $e \in E(G)$, we write $G' = G - e$. To prove Theorem [1.4,](#page-2-2) we only need to justify that G' is a $P_{\geq 3}$ -factor covered graph. Suppose, to the contrary, that G' is not a $P_{\geq 3}$ -factor covered graph. Then by Theorem [1.2,](#page-2-3) we have

$$
sun(G' - X) \ge 2|X| - \varepsilon(X) + 1 \tag{3.1}
$$

for some vertex subset X of G'. We write $a = i(G - X)$ and $b = \lfloor \gamma(2k + 1) \rfloor$.

Claim 1. $b \geq a+1$.

Proof. Let $b \le a$. We may choose b isolated vertices x_1, x_2, \ldots, x_b in $G - X$. Write $A = \{x_1, x_2, \ldots, x_b\}$. Then A is an independent set of G. Thus, we infer

$$
\gamma(n - 3k - 2) + k + 2 < |N_G(A)| \le |X|.\tag{3.2}
$$

It follows from [\(3.1\)](#page-6-0), [\(3.2\)](#page-6-1) and $\varepsilon(X) \leq 2$, $\frac{1}{3} \leq \gamma \leq 1$ and $n \geq 5k+3-\frac{3}{5\gamma-1}$ that

$$
0 \ge |X| + \sin(G' - X) - n \ge |X| + 2|X| - \varepsilon(X) + 1 - n
$$

\n
$$
\ge 3|X| - n - 1 > 3(\gamma(n - 3k - 2) + k + 2) - n - 1
$$

\n
$$
= (3\gamma - 1)n - 3\gamma(3k + 2) + 3k + 5
$$

\n
$$
\ge (3\gamma - 1)\left(5k + 3 - \frac{3}{5\gamma - 1}\right) - 3\gamma(3k + 2) + 3k + 5
$$

\n
$$
= (3\gamma - 1)(2k + 1) - \frac{3(3\gamma - 1)}{5\gamma - 1} + 3
$$

\n
$$
\ge 3 - \frac{3(3\gamma - 1)}{5\gamma - 1} > 3 - 3 = 0,
$$

which is a contradiction. We have finished the proof of Claim 1. \Box

In what follows, we consider four cases by the value of $|X|$ and derive a contradiction in each case.

Case 1. $|X| = 0$.

Note that $G' = G - e$ and G is $(k + 2)$ -connected. Hence, G' is $(k + 1)$ connected and $\omega(G') = 1$. Combining this with [\(3.1\)](#page-6-0) and $\varepsilon(X) = 0$, we obtain $1 = \omega(G') \geq \sup_{Q}(G') \geq 1$. Thus, we have $\sup(G') = \omega(G') = 1$. Then using $n \geq 5k + 3 - \frac{3}{5\gamma - 1} \geq 8 - \frac{3}{5\gamma \frac{1}{3} - 1} = \frac{7}{2} > 3$, we see that G' is a big sun, and

so G' has at least three vertices with degree 1, which contradicts that G' is a $(k+1)$ -connected graph.

Case 2. $1 \leq |X| \leq k$.

Note that $1 \leq |X| \leq k$ and G' is $(k+1)$ -connected. We derive $\omega(G'-X) = 1$. According to [\(3.1\)](#page-6-0) and $\varepsilon(X) \leq |X|$, we get

$$
1 = \omega(G' - X) \ge \text{sun}(G' - X) \ge 2|X| - \varepsilon(X) + 1 \ge |X| + 1 \ge 2,
$$

which is a contradiction.

Case 3. $|X| = k + 1$.

Since G is $(k+2)$ -connected, $G - X$ is connected, and so $\omega(G - X) = 1$. Note that $G' = G - e$. Thus, we deduce

$$
\omega(G'-X) \le \omega(G-X) + 1 = 2. \tag{3.3}
$$

By virtue of $(3.1), (3.3), k \ge 1$ and $\varepsilon(X) \le 2$, we infer

$$
2 \ge \omega(G' - X) \ge \sup(G' - X) \ge 2|X| - \varepsilon(X) + 1 \ge 2|X| - 1
$$

= 2(k + 1) - 1 = 2k + 1 \ge 3,

which is a contradiction.

Case 4. $|X| \ge k + 2$. In light of [\(3.1\)](#page-6-0), $\varepsilon(X) \leq 2$ and $\frac{1}{3} \leq \gamma \leq 1$, we derive $sun(G - X) \geq sun(G' - X) - 2 \geq 2|X| - \varepsilon(X) + 1 - 2 \geq 2|X| - 3$ $> 2(k+2) - 3 = 2k + 1 > \gamma(2k+1) > |\gamma(2k+1)| = b,$

which implies that $G - X$ admits an independent set of order at least b. Then using Claim 1, we may choose a isolated vertices x_1, x_2, \ldots, x_a and $(b - a)$ nonadjacent vertices $x_{a+1},...,x_b$ with $d_{G-X}(x_i) = 1$ for $a+1 \leq i \leq b$, in $G - X$. Set $A = \{x_1, x_2, \ldots, x_a, x_{a+1}, \ldots, x_b\}$. Then A is an independent set of G. Thus, we deduce

$$
\gamma(n-3k-2)+k+2<|N_G(A)|\leq |X|+b-a,
$$

that is,

$$
|X| > \gamma(n - 3k - 2) + k + 2 - b + a. \tag{3.4}
$$

It follows from [\(3.1\)](#page-6-0), [\(3.4\)](#page-7-1), $\varepsilon(X) \leq 2$ and $n \geq 5k + 3 - \frac{3}{5\gamma - 1}$ that

$$
0 \ge |X| + 2sum(G' - X) - i(G' - X) - n
$$

\n
$$
\ge |X| + 2(2|X| - \varepsilon(X) + 1) - (i(G - X) + 2) - n
$$

\n
$$
\ge |X| + 2(2|X| - 1) - (a + 2) - n
$$

\n
$$
= 5|X| - a - 4 - n
$$

\n
$$
> 5(\gamma(n - 3k - 2) + k + 2 - b + a) - a - 4 - n
$$

$$
= (5\gamma - 1)n - 5\gamma(3k + 2) + 5k + 10 - 5b + 4a - 4
$$

\n
$$
\geq (5\gamma - 1)\left(5k + 3 - \frac{3}{5\gamma - 1}\right) - 5\gamma(3k + 2) + 5k + 6 - 5b
$$

\n
$$
= 5\gamma(2k + 1) - 5b
$$

\n
$$
= 5\gamma(2k + 1) - 5[\gamma(2k + 1)]
$$

\n
$$
\geq 0,
$$

which is a contradiction. This completes the proof of Theorem [1.4.](#page-2-2) \Box

4. Remarks

Remark 1. Next, we show that the condition $\delta(G) > \frac{\alpha(G)+4}{2}$ in Theorem [1.3](#page-2-1) cannot be replaced by $\delta(G) \geq \frac{\alpha(G)+4}{2}$. We construct a graph $G = K_{3+t} \vee$ $(4 + 2t)K_2$, where t is a nonnegative integer. Then G is $(3 + t)$ -connected, $\delta(G) = 4 + t$ and $\alpha(G) = 4 + 2t$. Thus, we have $\delta(G) = \frac{\alpha(G)+4}{2}$. For any $e \in E((4+2t)K_2)$, let $G' = G - e = K_{3+t} \vee ((3+2t)K_2 \cup (2K_1))$. Select $X = V(K_{3+t}) \subseteq V(G')$. Then $|X| = 3+t$ and $\varepsilon(X) = 2$. Thus, we derive

$$
sun(G' - X) = 5 + 2t > 4 + 2t = 2(3 + t) - 2 = 2|X| - \varepsilon(X).
$$

By Theorem [1.2,](#page-2-3) G' is not a $P_{\geq 3}$ -factor covered graph, and so G is not a $P_{\geq 3}$ -factor uniform graph.

Remark 2. The conditions with a $(k + 2)$ -connected graph and $|N_G(A)| >$ $\gamma(n-3k-2)+k+2$ in Theorem [1.4](#page-2-2) cannot be replaced by a $(k+1)$ -connected graph and $|N_G(A)| \ge \gamma(n-3k-2) + k+1$. Let γ be a rational number such that $\frac{1}{3} \leq \gamma \leq 1$. Then we can write $\gamma = \frac{b}{2k+1}$ for nonnegative integers b and k. Let $G = K_{k+1} \vee ((2k+1)K_2)$, where k is a positive integer. Then G is $(k+1)$ connected and $n = |V(G)| = 5k + 3 > 5k + 3 - \frac{3}{5\gamma - 1}$. If A is an independent set of order $b = \gamma(2k + 1)$, then

$$
\gamma(n-3k-2) + k+2 > |N_G(A)| = \gamma(2k+1) + k+1 = \gamma(n-3k-2) + k+1.
$$

For any $e \in E((2k+1)K_2)$, let $G' = G - e = K_{k+1} \vee ((2k)K_2 \cup (2K_1))$. Select $X = V(K_{k+1}) \subseteq V(G')$. Then $|X| = k+1$ and $\varepsilon(X) = 2$. Thus, we infer

$$
sun(G' - X) = 2k + 2 > 2k = 2(k + 1) - 2 = 2|X| - \varepsilon(X).
$$

According to Theorem [1.2,](#page-2-3) G' is not a $P_{\geq 3}$ -factor covered graph, and so G is not a $P_{\geq 3}$ -factor uniform graph.

5. Conclusion

The concept of path-factor uniform graph was first presented by Zhou and Sun [\[27\]](#page-11-4), and they showed a binding number condition for the existence of $P_{\geq 3}$ -factor uniform graphs. Gao and Wang [\[5\]](#page-10-22), Liu [\[12\]](#page-10-23) improved Zhou and Sun's above result. Hua [\[6](#page-10-24)] gave toughness and isolated toughness conditions for graphs to be $P_{\geq 3}$ -factor uniform graphs. In our article, we study the relationships between some graphic parameters (for instance, minimum degree, independence number and neighborhood, and so on) and the existence of $P_{\geq 3}$ factor uniform graphs. The theorems derived in this article belong to existence theorems, that is, under what kind of conditions the path-factor uniform graph exists. However, in a specific computer network, it needs to use a certain algorithm to determine the values of some graphic parameters of the fix network graph and show the eligible path-factor uniform graph from the algorithm point of view. The problems of such algorithms are worthy of consideration in future research.

So far, results on the existence of path-factor uniform graphs are very few. There are many problems on graphs which can be considered for path-factor uniform graphs. For example, we can consider the structures and properties of path-factor uniform graphs. In what follows, we put forward open problems as the end of our article.

Problem 1. Find the necessary and sufficient conditions for a graph to be a path-factor uniform graph.

Problem 2. Find relationships between other graphic parameters and pathfactor uniform graphs.

Problem 3. What are the structures and properties in path-factor uniform graphs?

Acknowledgements

The authors would like to express their gratitude to the anonymous reviewer for his helpful comments and valuable suggestions in improving this paper.

Data Availability Statement My manuscript has no associated data.

Declaration

Conflict of interest The authors declare that they have no conflicts of interest to this work.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

- [1] Amahashi, A., Kano, M.: On factors with given components. Discrete Math. **42**, 1–6 (1982)
- [2] Bazgan, C., Benhamdine, A., Li, H., Woźniak, M.; Partitioning vertices of 1-tough graph into paths. Theor. Comput. Sci. **263**, 255–261 (2001)
- [3] Enomoto, H., Plummer, M., Saito, A.: Neighborhood unions and factor critical graphs. Discrete Math. **205**, 217–220 (1999)
- [4] Gao, W., Chen, Y., Wang, Y.: Network vulnerability parameter and results on two surfaces. Int. J. Intell. Syst. **36**, 4392–4414 (2021)
- [5] Gao, W., Wang, W.: Tight binding number bound for P≥3-factor uniform graphs. Inf. Process. Lett. **172**, 106162 (2021)
- [6] Hua, H.: Toughness and isolated toughness conditions for $P_{\geq 3}$ -factor uniform graphs. J. Appl. Math. Comput. **66**, 809–821 (2021)
- [7] Johansson, R.: An El-Zah´ar type condition ensuring path-factors. J. Graph Theory **28**, 39–42 (1998)
- [8] Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Comb. Theory Ser. B **88**, 195–218 (2003)
- [9] Kano, M., Lee, C., Suzuki, K.: Path and cycle factors of cubic bipartite graphs. Discuss. Math. Graph Theory **28**(3), 551–556 (2008)
- [10] Kano, M., Lu, H., Yu, Q.: Component factors with large components in graphs. Appl. Math. Lett. **23**, 385–389 (2010)
- [11] Kano, M., Saito, A.: Star-factors with large component. Discrete Math. **312**, 2005–2008 (2012)
- [12] Liu, H.: Binding number for path-factor uniform graphs. Proc. Romanian Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. **23**(1), 25–32 (2022)
- [13] Wang, S., Zhang, W.: Isolated toughness for path factors in networks. RAIRO Oper. Res. **56**(4), 2613–2619 (2022)
- [14] Wang, S., Zhang, W.: On k-orthogonal factorizations in networks. RAIRO Oper. Res. **55**(2), 969–977 (2021)
- [15] Wang, S., Zhang, W.: Research on fractional critical covered graphs. Probl. Inf. Transm. **56**, 270–277 (2020)
- [16] Yuan, Y., Hao, R.: Independence number, connectivity and all fractional (a, b, k) -critical graphs. Discuss. Math. Graph Theory **39**, 183–190 (2019)
- [17] Zhang, H., Zhou, S.: Characterizations for $P_{\geq 2}$ -factor and $P_{\geq 3}$ -factor covered graphs. Discrete Math. **309**, 2067–2076 (2009)
- [18] Zhou, S.: A neighborhood union condition for fractional (a, b, k) -critical covered graphs. Discrete Appl. Math. **323**, 343–348 (2022)
- [19] Zhou, S.: A result on fractional (a, b, k) -critical covered graphs. Acta Math. Appl. Sin. Engl. Ser. **37**(4), 657–664 (2021)
- [20] Zhou, S.: Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. (2022). <https://doi.org/10.1007/s10255-022-1096-2>
- [21] Zhou, S.: Remarks on restricted fractional (g, f) -factors in graphs. Discrete Appl. Math. (2022). <https://doi.org/10.1016/j.dam.2022.07.020>
- [22] Zhou, S., Bian, Q., Pan, Q.: Path factors in subgraphs. Discrete Appl. Math. **319**, 183– 191 (2022)
- [23] Zhou, S., Liu, H.: Discussions on orthogonal factorizations in digraphs. Acta Math. Appl. Sin. Engl. Ser. **38**(2), 417–425 (2022)
- [24] Zhou, S., Liu, H.: Two sufficient conditions for odd [1, b]-factors in graphs. Linear Algebra Appl. **661**, 149–162 (2023)
- [25] Zhou, S., Liu, H., Xu, Y.: A note on fractional ID- $[a, b]$ -factor-critical covered graphs. Discrete Appl. Math. **319**, 511–516 (2022)
- [26] Zhou, S., Sun, Z.: A neighborhood condition for graphs to have restricted fractional (g, f)-factors. Contrib. Discrete Math. **16**(1), 138–149 (2021)
- [27] Zhou, S., Sun, Z.: Binding number conditions for $P_{\geq 2}$ -factor and $P_{\geq 3}$ -factor uniform graphs. Discrete Math. **343**(3), 111715 (2020)
- [28] Zhou, S., Wu, J., Bian, Q.: On path-factor critical deleted (or covered) graphs. Aequ. Math. **96**(4), 795–802 (2022)
- [29] Zhou, S., Wu, J., Liu, H.: Independence number and connectivity for fractional (a, b, k) critical covered graphs. RAIRO Oper. Res. **56**(4), 2535–2542 (2022)
- [30] Zhou, S., Wu, J., Xu, Y.: Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. **106**(2), 195–202 (2022)

Sizhong Zhou School of Science Jiangsu University of Science and Technology Zhenjiang, 212100 Jiangsu China e-mail: zsz cumt@163.com

Zhiren Sun School of Mathematical Sciences Nanjing Normal University Nanjing, 210023 Jiangsu China

Hongxia Liu School of Mathematics and Information Sciences Yantai University Yantai, 264005 Shandong China

Received: May 30, 2022 Revised: January 27, 2023 Accepted: February 14, 2023