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On isosceles orthogonality and some geometric constants
in a normed space
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Abstract. We study the James constant J(X), an important geometric quantity associated
with a normed space X, and explore its connection with isosceles orthogonality ⊥I . The
James constant is defined as J(X) := sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ X, ‖x‖ = ‖y‖ = 1}.
We prove that if J(X) is attained for unit vectors x, y ∈ X, then x ⊥I y. We also show
that if X is a two-dimensional polyhedral Banach space then J(X) is always attained at an
extreme point z of the unit ball of X, so that J(X) = ‖z + y‖ = ‖z − y‖, where ‖y‖ = 1
and z ⊥I y. This helps us to explicitly compute the James constant of a two-dimensional
polyhedral Banach space in an efficient way. We further study some related problems with
reference to several other geometric constants in a normed space.
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1. Introduction

There are various geometric constants associated with a normed space, which
are useful towards a quantitative understanding of the geometry of the space
and also play an important role in the study of some other related problems of
functional analysis. The James constant is one of the most prominent geomet-
ric constants associated with the space, which measures the “non-squareness”
of the unit ball of a normed space. Our motivation behind this article is to
illustrate the central role played by isosceles orthogonality, a natural gener-
alization of the usual orthogonality in an inner product space, in studying
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various geometric constants, including the James constant. Before proceeding
further, let us fix the notations and the terminologies.

Let X,Y denote real normed spaces. Let BX = {x ∈ X : ‖x‖ ≤ 1} and
SX = {x ∈ X : ‖x‖ = 1} denote the unit ball and the unit sphere of X,
respectively. For a non-empty convex subset S of X, an element z ∈ S is said
to be an extreme point of S if z = (1− t)x+ ty for some t ∈ (0, 1) and x, y ∈ S
implies that x = y = z. The set of all extreme points of BX is denoted by EX.
A normed space X is said to be strictly convex if EX = SX. An element x ∈ X

is said to be isosceles orthogonal [7] to an element y ∈ X, denoted as x ⊥I y, if
‖x+ y‖ = ‖x− y‖. Geometrically it means that the length of the two diagonal
vectors ‖x + y‖ and ‖x − y‖ of the parallelogram formed by two vectors x and
y are equal. We refer the readers to [1,2,8] for more information related to this
topic. An element x ∈ X is said to be approximate isosceles orthogonal [5] to
y if for ε ∈ [0, 1), |‖x + y‖2 − ‖x − y‖2| ≤ 4ε‖x‖‖y‖, and is written as x ⊥ε

I y.
Note that approximate isosceles orthogonality is symmetric, and therefore, so
is exact isosceles orthogonality.

We now mention the definitions of the following geometric constants, to be
studied throughout this paper.

Definition 1.1. [6] Let X be a normed space.
(i) The James constant, denoted by J(X), is defined as

J(X) = sup
{

min
{‖x + y‖, ‖x − y‖} : x, y ∈ SX

}
.

(ii) For x ∈ SX, the local James constant, denoted by β(x), is defined as

β(x) = sup
{

min
{‖x + y‖, ‖x − y‖} : y ∈ SX

}
.

(iii) The Schäffer constant, denoted by S(X), is defined as

S(X) = inf
{

max
{‖x + y‖, ‖x − y‖} : x, y ∈ SX

}
.

(iv) For each x ∈ SX, the local Schäffer constant at x, denoted by α(x), is
defined as

α(x) = inf
{

max
{‖x + y‖, ‖x − y‖} : y ∈ SX

}
.

We note from [6] that for a given normed space X,
√

2 ≤ J(X) ≤ 2. More-
over, X is said to be uniformly non-square if and only if J(X) < 2. It is also
known that J(X) =

√
2 whenever X is an inner product space but the con-

verse is not true, in general. In [9], the authors studied the normed spaces with
James constant

√
2.

Generalizations of the notions of the James constant and the local James
constant, were introduced in [11] in the following way. For λ ∈ (0, 1), the
generalized James constant, denoted by J(λ,X), is defined as

J(λ,X) = sup
{

min
{‖λx + (1 − λ)y‖, ‖λx − (1 − λ)y‖} : x, y ∈ SX

}
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and for x ∈ SX, the generalized local James constant, denoted by β(λ, x), is
defined as

β(λ, x) = sup
{

min
{‖λx + (1 − λ)y‖, ‖λx − (1 − λ)y‖} : y ∈ SX

}
.

We also need two other well-known geometric constants, modulus of smooth-
ness and modulus of convexity, which are denoted by ρX(ε) and δX(ε), respec-
tively, and are defined as

ρX(ε) = sup
{

1 − ‖x + y‖
2

: x, y ∈ SX, ‖x − y‖ ≤ ε
}

,

δX(ε) = inf
{

1 − ‖x + y‖
2

: x, y ∈ SX, ‖x − y‖ ≥ ε
}

,

where ε ∈ [0, 2]. We note from [10, Cor. 5] that δX is a continuous function on
[0, 2) whereas from [14], ρX is continuous on [0, 2]. The modulus of smoothness
is also defined as:

ρ′
X
(ε) = sup

x,y∈SX

{‖x + εy‖ + ‖x − εy‖
2

− 1
}

.

or (equivalently)

ρ′
X
(ε) =

{‖x + y‖ + ‖x − y‖
2

− 1 : ‖x‖ = 1, ‖y‖ ≤ ε
}

.

Observe that ρ′
X
(ε) is not equivalent to ρX(ε) (see [3, Th. 1]).

Given any x, y ∈ X, we denote by [x, y〉 the ray passing through y and
starting from x, i.e., [x, y〉 = {(1−t)x+ty : t ≥ 0} and [x, y] denotes the closed
convex line segment between x and y, i.e., [x, y] = {(1 − t)x + ty : 0 ≤ t ≤ 1}.
Another important concept to be used in this paper is that of orientation.
Following [4], we say that x precedes y in a two-dimensional Banach space X,
if x1y2 − x2y1 > 0, where x = (x1, y1), y = (y1, y2) ∈ X and in this case we
write that x ≺ y. Of course, here X is identified with R

2 in the obvious way.
We note from [8, Cor.2.4] that for any x ∈ SX there exists a unique (except
for the sign) y ∈ SX such that x ⊥I y. In particular, whenever it is given that
x ⊥I y, without loss of generality we can assume that −y ≺ x ≺ y. We also
consider the attainment set MJ(X) of the James constant:

MJ(X) = {(x, y) ∈ SX × SX : min{‖x + y‖, ‖x − y‖} = J(X)}.

When X is finite-dimensional it is easy to see that MJ(X) 
= ∅.
We explore the attainment problem for the generalized James constant

and also study its converse. We illustrate the crucial role played by isosceles
orthogonality in the whole scheme of things. In two-dimensional polyhedral
Banach spaces, we make an observation which is computationally effective for
finding the values of the James constant in each case. We also study approx-
imate isosceles orthogonality from a geometric point of view and discuss its
connections with the modulus of convexity.
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We end this section by mentioning the following known results, which are
essential in our present work.

Lemma 1.2. [12, Prop. 31] Let X be a two-dimensional Banach space. Let
x, y, z 
= θ, x 
= z, with [0, y〉 lying in between [0, x〉 and [0, z〉, and suppose
that ‖y‖ = ‖z‖. Then ‖x − y‖ ≤ ‖x − z‖. In particular, if X is strictly convex,
then we always have strict inequality.

Lemma 1.3. [6, Lemma 2.2] Let X be a two-dimensional Banach space and let
x ∈ SX. Then there exists a unique y ∈ SX such that α(x) = β(x) = ‖x + y‖ =
‖x − y‖.

Theorem 1.4. [6, Th. 3.3] Let X be a normed space. Then

J(X) = sup
{
ε : ε < 2 − 2δX(ε)}.

Proposition 1.5. [6, Prop. 2.8] Let X be two-dimensional Banach space. If SX

is affinely homeomorphic to a convex symmetric body in the two-dimensional
Euclidean space R

2 which is invariant under a rotation of π
4 , then J(X) =

√
2.

Theorem 1.6. [8, Th. 2.3] Let X be a two-dimensional Banach space and let
x ∈ X be non-zero. Then for each number 0 ≤ r ≤ ‖x‖, there exists a unique
y ∈ rSX (except for the sign) such that x ⊥I y.

Moreover, if X is strictly convex then for each r ∈ [0,+∞), there exists a
unique y ∈ rSX (except for the sign) such that x ⊥I y.

2. Main Results

In [6], Gao and Lau proved that in a two-dimensional Banach space X if
x, y ∈ SX are such that x ⊥I y, then β(x) = β(y) = ‖x − y‖ = ‖x + y‖.
We begin with a proposition by establishing a similar result in the case of the
generalized local James constant β(λ, x), from which the above result follows
directly as a particular case (λ = 1

2 ).

Proposition 2.1. Let X be a two-dimensional Banach space and x, y ∈ SX. If
x ⊥I ( 1−λ

λ )y, where λ ∈ (0, 1), then β(λ, x) = ‖λx+(1−λ)y‖ = ‖λx−(1−λ)y‖.

Proof. Let x ⊥I ( 1−λ
λ )y. Then we get, ‖λx + (1 − λ)y‖ = ‖λx − (1 − λ)y‖.

Clearly, for any z 
= ±y we have (1 − λ)z 
= ±(1 − λ)y. Consider the following
four sets :

C1 = {(1 − λ)
(1 − t)x + ty

‖(1 − t)x + ty‖ : 0 ≤ t ≤ 1},

C2 = {(1 − λ)
(1 − t)y − tx

‖(1 − t)y − tx‖ : 0 ≤ t ≤ 1},

C3 = {(1 − λ)
−(1 − t)x − ty

‖ − (1 − t)x − ty‖ : 0 ≤ t ≤ 1},
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C4 = {(1 − λ)
−(1 − t)y + tx

‖ − (1 − t)y + tx‖ : 0 ≤ t ≤ 1},

whose union is the circle of radius |1 − λ| and the sets Ci intersect only at
±(1 − λ)x,±(1 − λ)y. Observe that for any z ∈ SX, we have (1 − λ)z ∈ Ci, for
some i, 1 ≤ i ≤ 4. Let us assume that (1 − λ)z ∈ C1. Then applying Lemma
1.2 it is straightforward to observe that ‖λx + (1 − λ)z‖ ≥ ‖λx + (1 − λ)y‖
whereas ‖λx − (1 − λ)z‖ ≤ ‖λx − (1 − λ)y‖. Therefore, we obtain, min{‖λx −
(1−λ)y‖, ‖λx+(1−λ)y‖} = ‖λx− (1−λ)y‖ ≥ ‖λx− (1−λ)z‖ ≥ min{‖λx−
(1−λ)z‖, ‖λx+(1−λ)z‖}. If (1−λ)z ∈ Ci, for some i ∈ {2, 3, 4} then we can
proceed similarly to conclude that min{‖λx − (1 − λ)y‖, ‖λx + (1 − λ)y‖} ≥
min{‖λx− (1−λ)z‖, ‖λx+(1−λ)z‖}. As z ∈ SX is arbitrary, we get β(λ, x) =
min{‖λx − (1 − λ)y‖, ‖λx + (1 − λ)y‖} = ‖λx + (1 − λ)y‖ = ‖λx − (1 − λ)y‖.

�

To determine the value of J(λ,X) of a normed space X, we observe the
following:

Remark 2.2. Following Proposition 2.1, it is easy to observe that for a given
λ ∈ (0, 1),

J(λ,X) = sup
{

‖λx + (1 − λ)y‖ : x, y ∈ SX, x ⊥I (
1 − λ

λ
)y

}

= sup
{

‖λx − (1 − λ)y‖ : x, y ∈ SX, x ⊥I (
1 − λ

λ
)y

}
.

Therefore, to find the generalized James constant J(λ,X), for a given λ ∈ (0, 1),
we only need to consider the subset {(x, y) ∈ SX×SX : x ⊥I ( 1−λ

λ )y} ⊆ SX×SX.

In the following theorem, we study the converse of Proposition 2.1.

Theorem 2.3. Let X be a strictly convex normed space and x ∈ SX, λ ∈ (0, 1).
If β(λ, x) = min{‖λx + (1 − λ)y‖, ‖λx − (1 − λ)y‖}, for some y ∈ SX, then
x ⊥I ( 1−λ

λ )y.

Proof. Clearly x 
= ±y. Since x, y are linearly independent consider the two-
dimensional subspace Y = span {x, y}. If possible let us assume that x 
⊥I

( 1−λ
λ )y. Then either ‖x + (1−λ

λ )y‖ > ‖x − (1−λ
λ )y‖ or ‖x − ( 1−λ

λ )y‖ > ‖x +
(1−λ

λ )y‖. Without loss of generality we assume that ‖x + (1−λ
λ )y‖ > ‖x −

(1−λ
λ )y‖ so that β(λ, x) = ‖λx− (1−λ)y‖. Applying Theorem 1.6, there exists

a unique z ∈ SY (except for the sign) such that x ⊥I
1−λ

λ z. Observe that either
(i) the ray [0, (1 − λ)y〉 lies in between the rays [0, λx〉 and [0, (1 − λ)z〉 or
(ii) the ray [0, (1 − λ)y〉 lies in between the rays [0, λx〉 and [0,−(1 − λ)z〉.
Assume that (i) holds. Since λx, (1 − λ)y, (1 − λ)z 
= θ and ‖(1 − λ)y‖ =

‖(1−λ)z‖ applying Lemma 1.2, together with the assumption that X is strictly
convex, we conclude that ‖λx− (1−λ)y‖ < ‖λx− (1−λ)z‖ = ‖λx+(1−λ)z‖.
This implies that β(λ, x) < min{‖λx−(1−λ)z‖, λx+(1−λ)z‖, a contradiction
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to the definition of β(λ, x). If (ii) holds then also we can proceed similarly.
Thus we must have x ⊥I ( 1−λ

λ )y. �

It is easy to see that β( 12 , x) = 1
2β(x), for any x ∈ SX. Therefore, taking

λ = 1
2 , we state the following result as a particular case of Theorem 2.3 that

studies the converse of [6, Lemma 2.2(i)].

Theorem 2.4. Let X be a strictly convex normed space and let x0 ∈ SX. If
y0 ∈ SX is such that β(x0) = min{‖x0 − y0‖, ‖x0 + y0‖}, then x0 ⊥I y0.

The following example illustrates that the condition of strict convexity in
the above theorem cannot be relaxed in general.

Example 2.5. Let X = 	2∞ and let x0 = (1, 0) ∈ SX. To compute β((1, 0)), we
observe that any y ∈ S�2∞ can be written as either y = (α,±1) or y = (±1, α),
where −1 ≤ α ≤ 1. It is straightforward to observe that whenever y = (α,±1),
min{‖x0 − y‖∞, ‖x0 + y‖∞} = 1. On the other hand, min{‖x0 − y‖∞, ‖x0 +
y‖∞} = |α| ≤ 1, when y = (±1, α). Therefore, β((1, 0)) = 1. Clearly, for any
y = (α,±1) with 0 < α < 1, we have that

min{‖x0 − y‖∞, ‖x0 + y‖∞} = min{1, |1 + α|} = 1 = β((1, 0)).

In particular, we observe that isosceles orthogonality is not a necessary condi-
tion for the attainment of β(x), where x ∈ SX.

Remark 2.6. For another local constant α(x), introduced in [6], using similar
arguments as in Theorem 2.4, we conclude that if x0, y0 ∈ SX with max{‖x0 −
y0‖, ‖x0 + y0‖} = α(x0) then x0 ⊥I y0, provided X is strictly convex.

Regarding the attainment of the local James constant β(x) in an arbitrary
Banach space, we have already noticed that if there exist x0, y0 ∈ SX such
that min{‖x0 − y0‖, ‖x0 + y0‖} = β(x0) then x0 
⊥I y0, in general. However,
as illustrated in the following theorem, we are going to observe a stronger
behavior with respect to isosceles orthogonality, in the case of attainment of
the corresponding global constant J(X).

Theorem 2.7. Let X be a normed space. Let u, v ∈ SX be such that min{‖u −
v‖, ‖u + v‖} = J(X). Then u ⊥I v.

Proof. We prove the theorem by considering the following two possible cases.
Case (i): Let us assume that J(X) = 2. Then min{‖u − v‖, ‖u + v‖} = 2.

It is trivial to see that max{‖x + y‖, ‖x − y‖ : x, y ∈ SX} ≤ 2. Therefore, it
necessarily follows that ‖u + v‖ = ‖u − v‖, i.e., u ⊥I v.

Case (ii): Suppose that J(X) < 2. Consider the set S = {ε ∈ [0, 2) : ε <

2 − 2δX(ε)}, where δX(ε) = inf{1 − ‖x+y‖
2 : x, y ∈ SX and ‖x − y‖ ≥ ε}. From

Theorem 1.4, we observe that supS = J(X) < 2. Suppose on the contrary
that u 
⊥I v. Without loss of generality, let us assume that ‖u + v‖ > ‖u − v‖.
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Also, let ‖u − v‖ = ε0 = J(X) < 2. Then, 1 − ‖u+v‖
2 < 1 − ε0

2 implies that
δX(ε0) < 1 − ε0

2 , i.e., ε0 < 2 − 2δX(ε0). Therefore, ε0 ∈ S. Now, from [10, Cor.
5], we note that δX(ε) is a continuous function on [0, 2). Therefore, it is easy
to verify that S is an open set in R, with its usual topology. Since ε0 ∈ S and
S is open, it follows that there exists μ0 > 0 such that ε0 + μ0 ∈ S, which
contradicts our assumption that supS = J(X) = ε0. Hence ‖u − v‖ = ‖u + v‖,
i.e., u ⊥I v, as claimed. �

Remark 2.8. For x ∈ SX and ε ∈ [0, 1), let us consider the set A(x, ε) = {y ∈
SX : x ⊥ε

I y}. Now it is easy to see that for any ε > 0, if z ∈ {X \ A(x, ε)} ∩ SX

then min{‖x + z‖, ‖x − z‖} < J(X). For, otherwise, from Theorem 2.7 we
obtain x ⊥I z, which contradicts z ∈ {X \ A(x, ε)} ∩ SX.

In view of the Example 2.5, it is natural to speculate whether strict con-
vexity is essential for Theorem 2.4. We negate this by means of the following
explicit example, constructed with the help of Theorem 2.7.

Let us recall from [9] that for each θ ∈ R, the θ-rotation matrix R(θ) is
given by

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

A norm ‖.‖ on R
2 is said to be θ-invariant if R(θ) is an isometry on (R2, ‖.‖).

Example 2.9. Let X be the two-dimensional Banach space, identified as R
2,

endowed with the norm ‖(x, y)‖ = max{|x|, |y|, 2−1/2(|x|+|y|)} for any (x, y) ∈
R

2. It is easy to verify that SX is a regular octagon, with vertices ±v1 =
±(1,

√
2 − 1),±v2 = ±(

√
2 − 1, 1),±v3 = ±(1 − √

2, 1),±v4 = ±(−1,
√

2 − 1).
The unit sphere is shown in the following figure:

v1

v2v3

v4

−v1

−v2 −v3

−v4

It is easy to see that the given norm on R
2 is π

4 -invariant. Let E1 be the
edge joining the vertices −v4, v1. Therefore, the following two conditions are
equivalent.
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(i) If for any x̃ ∈ E1 there exists an ỹ ∈ SX such that min{‖x̃−ỹ‖, ‖x̃+ỹ‖} =
β(x̃) then x̃ ⊥I ỹ.

(ii) If for any x̃ ∈ SX there exists an ỹ ∈ SX such that min{‖x̃ − ỹ‖, ‖x̃ +
ỹ‖} = β(x̃) then x̃ ⊥I ỹ.

We will show that (i) holds true. Any u ∈ E1 can be written as u = (1, γ),
where |γ| ≤ √

2−1. Also, given any u = (1, γ) ∈ E1, we have v = ±(−γ, 1) ∈ SX

such that u ⊥I v. From Lemma 1.3, we obtain that β(v) = ‖u − v‖ =
√

2. On
the other hand, from Proposition 1.5 it follows that J(X) =

√
2. This implies

that (u, v) ∈ MJ(X).

Since β(x̃) =
√

2 for any x̃ ∈ E1, it is easy to see that min{‖x̃ + ỹ‖, ‖x̃ −
ỹ‖} = β(x̃) implies that (x̃, ỹ) ∈ MJ(X). Now applying Theorem 2.7, we con-
clude that x̃ ⊥I ỹ.

In particular, Theorem 2.4 may indeed hold true for certain Banach spaces
which are not strictly convex.

As a complementary notion of the James constant, we may also consider
the Schäffer constant, in view of Theorem 2.7. It can be shown similarly by
using the method from [6, Th. 3.3] that:

S(X) = inf{ε : ε > 2 − 2ρX(ε)}.

Recall that ρX(ε) is continuous and convex (see [14]) on [0, 2]. Therefore, apply-
ing similar methods as used in the Theorem 2.7 we obtain the following result.

Theorem 2.10. Let X be a normed space. Let u, v ∈ SX be such that min{‖u −
v‖, ‖u + v‖} = S(X). Then u ⊥I v.

Next we show that in a two-dimensional polyhedral Banach space, the
James constant is always attained at one of the extreme points of the unit
ball. To achieve this we need the following lemma.

Lemma 2.11. Let X be a two-dimensional Banach space. Let v1, v2 ∈ SX be
such that v1 
= ±v2 and v1 ≺ v2. Suppose that w1, w2 ∈ SX are such that
vi ⊥I wi and −wi ≺ vi ≺ wi, for i ∈ {1, 2}. Then w1 ≺ w2.

Proof. It follows from Theorem 1.6 that w1 
= ±w2. Suppose on the contrary
that w1 
≺ w2. Then w2 ≺ w1. Therefore, the only possibility is that v1 ≺
v2 ≺ w2 ≺ w1 ≺ −v1. This implies that the ray [0, w2〉 lies in between the
rays [0, v1〉 and [0, w1〉 and the ray [0, v2〉 lies in between the rays [0, v1〉 and
[0, w2〉. Now applying Lemma 1.2 we get,

‖v1 − w2‖ ≤ ‖v1 − w1‖ = ‖v1 + w1‖ ≤ ‖v1 + w2‖,

and

‖v1 − w2‖ = ‖w2 − v1‖ ≥ ‖w2 − v2‖ = ‖w2 + v2‖ ≥ ‖w2 + v1‖ = ‖v1 + w1‖.

Thus ‖v1 + w2‖ = ‖v1 − w2‖, which shows that v1 is isosceles orthogonal to
w2. This is a contradiction as w1 
= ±w2. Therefore, w1 ≺ w2, as desired. �
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The following important remark, which is immediate from the above lemma,
is also relevant for the proof of our next theorem.

Remark 2.12. Let X be a two-dimensional Banach space. Let v1, v2 ∈ SX be
such that v1 
= ±v2 and let w1, w2 ∈ SX be such that vi ⊥I wi and let
−wi ≺ vi ≺ wi, for i ∈ {1, 2}. Without loss of generality we can assume that
v1 ≺ v2. Suppose v ∈ SX is such that the ray [0, v〉 lies in between the rays
[0, v1〉 and [0, v2〉, which implies that v1 ≺ v ≺ v2. From Lemma 2.11, it can
be concluded that w1 ≺ w ≺ w2. In other words, the ray [0, w〉 lies in between
the rays [0, w1〉 and [0, w2〉, where v ⊥I w.

We are now in a position to prove the following result.

Theorem 2.13. Let X be a two-dimensional polyhedral Banach space. Then
there exists z ∈ EX such that β(z) = J(X), i.e., ‖z + y‖ = ‖z − y‖ = J(X),
where y ∈ SX and z ⊥I y.

Proof. Let v1, v2 be two extreme points of BX such that v1 ≺ v2 and tv1 +
(1 − t)v2 ∈ SX, for all t ∈ [0, 1]. Then there exist w1, w2 ∈ SX such that
v1 ⊥I w1, v2 ⊥I w2 and w1 ≺ w2, by using Lemma 2.11. We consider the
following two cases:

Case 1 : At first we consider that λw1 + (1 − λ)w2 ⊂ SX, for all λ ∈ [0, 1].
For any v ∈ [v1, v2], we can write v = t0v1+(1−t0)v2, for some t0 ∈ [0, 1]. Take
w ∈ SX such that v ⊥I w. By virtue of Remark 2.12, it follows that the ray
[0, w〉 lies in between the rays [0, w1〉 and [0, w2〉. Now, if w = t0w1+(1−t0)w2,
then using Lemma 1.3, we get

β(v) = ‖v − w‖
= ‖t0v1 + (1 − t0)v2 − t0w1 − (1 − t0)w2‖
≤ t0‖v1 − w1‖ + (1 − t0)‖v2 − w2‖
= t0β(v1) + (1 − t0)β(v2).

If w 
= t0w1 + (1 − t0)w2 then either ‖v − w‖ ≤ ‖v − (t0w1 + (1 − t0)w2)‖ or
‖v−w‖ > ‖v−(t0w1+(1−t0)w2)‖. Applying Lemma 1.2, it is straightforward to
see that in the latter case we have ‖v+w‖ ≤ ‖v+t0w1+(1−t0)w2‖. Therefore,
we get,

β(v) = ‖v ± w‖
= ‖t0v1 + (1 − t0)v2 ± w‖
≤ ‖t0v1 + (1 − t0)v2 ± (t0w1 − (1 − t0)w2)‖
≤ t0‖v1 ± w1‖ + (1 − t0)‖v2 ± w2‖
= t0β(v1) + (1 − t0)β(v2).

Therefore, β(v) ≤ max{β(v1), β(v2)}.
Case 2 : Let {λw1 + (1 − λ)w2 : λ ∈ [0, 1]} 
⊂ SX. Assume that there exist

k extreme points x1, x2, . . . , xk lying in between the rays [0, w1〉 and [0, w2〉
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such that w1 ≺ x1 ≺ x2 ≺ . . . ≺ xk ≺ w2. Then following Remark 2.12,
we get z1, z2, . . . , zk ∈ [v1, v2] such that v1 ≺ z1 ≺ z2 ≺ . . . ≺ zk ≺ v2 and
zi ⊥I xi, for 1 ≤ i ≤ k. Considering the segments [v1, z1], [z1, z2], . . . , [zk, v2]
in place of [v1, v2] and applying similar arguments as in Case 1, we get, for any
v ∈ [v1, v2],

β(v) ≤ max{β(v1), β(z1), . . . , β(zk), β(v2)}
= max{β(v1), β(x1), . . . , β(xk), β(v2)}.

Therefore, we observe that for any v ∈ [v1, v2], there exists z ∈ EX such that
β(v) ≤ β(z). As v1, v2 are chosen arbitrarily, we can conclude that for any
v ∈ SX there exists z ∈ EX such that β(v) ≤ β(z). This completes the proof of
the theorem. �

The following remark is immediate from Theorem 2.13.

Remark 2.14. Let X be a two-dimensional polyhedral Banach space. Suppose
that ±v1,±v2, . . . ,±vm are the extreme points of BX. From Theorem 2.13, it
can be easily seen that to find the James constant J(X), we only need to deal
with the extreme points of the unit ball of X. Indeed, we can compute the
James constant J(X) in a more efficient way by the formula:

J(X) = max
1≤i≤m

β(vi) = max{‖vi + wi‖ : 1 ≤ i ≤ m,wi ∈ SX and vi ⊥I wi}.

In the following example, we will show the applicability of Theorem 2.13
towards explicitly computing the James constant, as described in Remark 2.14.

Example 2.15. Consider a two-dimensional polyhedral Banach space X whose
unit sphere is an irregular hexagon, as shown in the following figure:

v1

v2

v3

−v1

−v2

−v3
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The vertices of BX are ±v1 = ±(1,−1),±v2 = ±(1, 1),±v3 = ±( 12 , 2).
Clearly, β(x) = β(−x), for any x ∈ X, so that we only need to calcu-
late β(1,−1), β(1, 1), β(12 , 2). By a straightforward computation, we have
(1,−1) ⊥I ±( 9

13 , 21
13 ), (1, 1) ⊥I ±(− 5

17 , 25
17 ) and (12 , 2) ⊥I ±(1,− 2

7 ). Using
Lemma 1.3, we obtain that

β(1,−1) = ‖(1,−1) + (
9
13

,
21
13

)‖ = ‖(
22
13

,
8
13

)‖ =
22
13

,

β(1, 1) = ‖(1, 1) + (− 5
17

,
25
17

)‖ = ‖(
12
17

,
42
17

)‖ =
22
17

,

β(
1
2
, 2) = ‖(

1
2
, 2) + (1,−2

7
) = ‖(

3
2
,
12
7

)‖ =
11
7

.

Thus J(X) = max{ 22
13 , 22

17 , 11
7 } = 22

13 .

The above example illustrates that the problem of finding the James con-
stant in a two-dimensional polyhedral Banach space X is equivalent to cal-
culating the local constant β(x) only for the finitely many extreme points of
BX.

In the rest of the article, we study approximate isosceles orthogonality and
its role in the attainment of the modulus of convexity, an important geometric
constant associated with a given normed space. We begin with the following
basic observation.

Proposition 2.16. Let X be a normed space and let x, y ∈ SX with x 
= ±y.
Then there exists an ε ∈ [0, 1) such that x ⊥ε

I y.

Proof. If x ⊥I y then we are done by taking ε = 0. Suppose that x 
⊥I y. Since
x 
= ±y, it follows that |‖x + y‖2 − ‖x − y‖2| = 4 − ε0, for some 0 < ε0 < 4.
Therefore, choosing ε ∈ [4−ε0

4 , 1) we conclude that |‖x + y‖2 − ‖x − y‖2| ≤ 4ε,
i.e., x ⊥ε

I y. �

For a given ε ∈ [0, 2], let us define the set:

MδX(ε) =
{

(x, y) ∈ SX × SX : 1 − ‖x + y‖
2

= δX(ε)
}

.

MδX(ε) is called the attainment set of δX(ε), for any ε ∈ [0, 2]. It is clear that
whenever X is finite-dimensional, MδX(ε) 
= ∅. Our next result shows that the
attainment of δX(ε) is closely related to approximate isosceles orthogonality.

Theorem 2.17. Let X be a normed space. Let MδX(ε) 
= ∅, for some ε ∈ (0, 2).
Then there exists (u0, v0) ∈ MδX(ε) such that u0 ⊥ε0

I v0, where ε0 = |1+δX(ε)2−
2δX(ε) − ε2

4 | ∈ [0, 1).

Proof. Suppose that (u, v) ∈ MδX(ε). Since ε ∈ (0, 2), it is clear that u 
= ±v.
Consider the set Pu = {w ∈ SX : ‖u−w‖ = ε}. We claim that there exists w′ ∈
Pu such that (u,w′) ∈ MδX(ε). If v ∈ Pu then our claim holds true. Let us now
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assume that v /∈ Pu. Suppose on the contrary that the claim is not true. Then
clearly, δX(ε) < 1− ‖u+w‖

2 for all w ∈ Pu, i.e., ‖u+v‖ > ‖u+w‖. Considering the
two-dimensional subspace Y = span{u, v} and applying Lemma 1.2, we obtain
that ‖u − v‖ ≤ ‖u − w‖ for all w ∈ Pu. As v /∈ Pu, we have ‖u − v‖ < ‖u − w‖
for all w ∈ Pu, which is a contradiction to the fact that ‖u − v‖ ≥ ε. This
establishes our claim. It is now easy to observe that there exists (u0, v0) ∈
MδX(ε) such that ‖u0 − v0‖ = ε. This implies that |‖u0 + v0‖2 − ‖u0 − v0‖2| =
4|1+ δX(ε)2 − 2δX(ε)− ε2

4 |. Let ε0 = |1+ δX(ε)2 − 2δX(ε)− ε2

4 |. Then 0 ≤ ε0 < 1
and |‖u0 + v0‖2 − ‖u0 − v0‖2| = 4ε0, which shows that u0 ⊥ε0

I v0. �

In case X is strictly convex, we have the following corollary to the above
theorem.

Corollary 2.18. Let X be a strictly convex normed space and let ε ∈ (0, 2). If
(u, v) ∈ MδX(ε) then u ⊥ε0

I v, where ε0 = |1 + δX(ε)2 − 2δX(ε) − ε2

4 | ∈ [0, 1).

Proof. Given ε ∈ (0, 2), we only need to show that for any (u, v) ∈ MδX(ε), it
necessarily follows that ‖u−v‖ = ε. Suppose on the contrary that ‖u−v‖ > ε.
Consider the set Pu = {w ∈ SX : ‖u−w‖ = ε}. Clearly, v 
∈ Pu and for any w ∈
Pu, we have that ‖u − v‖ > ‖u − w‖. Therefore, by Lemma 1.2, together with
strict convexity, we get ‖u+v‖ < ‖u+w‖ and so 1− 1

2‖u+v‖ > 1− 1
2‖u+w‖,

which contradicts the fact that δX(ε) = 1 − ‖u+v‖
2 . Now proceeding similarly

as in the proof of Theorem 2.17, we obtain the desired conclusion. �

In connection with the explicit computation of δX(ε), the following remark
seems relevant.

Remark 2.19. For ε ∈ (0, 2), let us consider the set :

Gε = {(u, v) ∈ SX × SX : u ⊥ε0
I v and ‖u − v‖ = ε},

where ε0 = |1 + δX(ε)2 − 2δX(ε) − ε2

4 |. Clearly, Gε is a closed set with respect
to the usual product topology defined on X × X. It can be readily seen that
whenever X is finite-dimensional, there exists (u1, v1) ∈ Gε such that δX(ε) =
1 − ‖u1+v1‖

2 . Therefore, we conclude that to find the value of δX(ε), for any
ε ∈ (0, 2), we only need to take into account the subset Gε.

In [13], the authors explored the geometric structure of the approximate
Birkhoff-James orthogonality set. Motivated by this, we study the same in
the case of approximate isosceles orthogonality, in our next theorem. For this
purpose, we consider the ε-approximate isosceles orthogonality set A(x, ε), cor-
responding to the vector x ∈ SX and ε ∈ [0, 1), as defined in Remark 2.8:

We end the present article with the following characterization of A(x, ε).

Theorem 2.20. Let X be a two-dimensional Banach space. Then for any x ∈
SX, A(x, ε) = D ∪ −D, where D is a connected subset of SX.
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Proof. We note from Theorem 1.6 that for x ∈ SX, there exists a unique (except
for the sign) y ∈ SX such that x ⊥I y. For each t ∈ [0, 1], let ut = (1−t)x+ty

‖(1−t)x+ty‖
and vt = −(1−t)x+ty

‖−(1−t)x+ty‖ . Consider the sets R = {t ∈ [0, 1] : x ⊥ε
I ut}, and

L = {t ∈ [0, 1] : x ⊥ε
I vt}. Clearly, R,L 
= ∅, since 1 ∈ R∩L. Next we prove that

R and L are closed. Suppose {tn}n∈N ∈ R is such that tn → t. Then x ⊥ε
I utn .

This implies that for every n ∈ N, we have |‖x + utn‖2 − ‖x − utn‖2| ≤ 4ε. As
n → ∞, |‖x + ut‖2 − ‖x − ut‖2| ≤ 4ε. Therefore, x ⊥ε

I ut. This proves that R
is closed. Similarly, it can be shown that L is also closed.

Let tR = inf R and let tL = inf L. Then using Lemma 1.2, for any t ∈ [0, 1]
with t ≥ tR, we get that ‖x − ut‖ ≥ ‖x − utR‖ and ‖x + ut‖ ≤ ‖x + utR‖. This
gives |‖x+ut‖2−‖x−ut‖2| ≤ |‖x+utR‖2−‖x−utR‖2| ≤ 4ε. Therefore, x ⊥ε

I ut.
Similarly, one can show that for any t ∈ [0, 1] with t ≥ tL, x ⊥ε

I vt. Consider

D =
{

sutR
+(1−s)utL

‖sutR
+(1−s)utL

‖ : 0 ≤ s ≤ 1
}

. Clearly, D is connected. Moreover, it is
easy to see that D∪ (−D) ⊂ A(x, ε). Also, the implication A(x, ε) ⊂ D∪ (−D)
is trivial from the description of the sets R and L. This completes the proof
of the theorem. �
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