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Regular polygons on isochordal-viewed hedgehogs
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Abstract. A curve α is said to be isochordal viewed if there is a smooth motion of a constant
length chord with its endpoints along α such that their tangents to the curve at these points
form a constant angle. In this paper some properties of isochordal-viewed hedgehogs and
Holditch curves are studied. It is proved that, under some conditions, the construction of
some closed regular polygons whose vertices move smoothly along the curve α is possible.
The property is illustrated with some examples. Moreover, Holditch curves of isochordal-
viewed hedgehogs are considered and it is seen that they feature similar regular polygon
properties although they are, in general, not parameterized by a support function. Finally,
a recursive iteration of some Holditch curves for isochordal-viewed hedgehogs is shown to
converge to the curve of polygon centers.
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1. Introduction

Given φ ∈ ]0, π[ and a planar closed curve α : S1 → R
2, the φ-isoptic of α

is defined as a curve αφ : S1 → R
2 from which the curve α is seen under a

constant angle π−φ (see for instance [3], [4] or [7]). For general curves (convex
or not) the φ-isoptic of α is understood as the locus of points through which
a pair of supporting lines to α pass making an angle of φ (see Fig. 1). If the
φ-isoptic of α has constant curvature (i.e., if it is circular), then α is said to
be of constant φ-width [13].

We say that the curve α is (φ, �)-isochordal viewed if the chord joining
the contact points of the supporting lines that define the φ-isoptic of α has
constant length � (see Fig. 1). For an introduction to this kind of curves and
some of their properties, the reader can see [6] and [15].
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Figure 1. Definition of the φ-isoptic of α, αφ. If the length
� is constant, then α is (φ, �)-isochordal viewed.

In this paper we will consider (φ, �)-isochordal-viewed hedgehogs param-
eterized by a support function. A hedgehog α (see e.g. [8] or [9]) is a curve
which has one and only one tangent line in each oriented direction. Its param-
eterization in terms of a support function h can be written follows:

α(t) = h(t) (cos t, sin t) + h′(t) (− sin t, cos t), t ∈ S
1.

Henceforth, we will identify S
1 with the interval [0, 2π], where a curve

defined there will be assumed to be extendable by periodicity.
Convex curves are particular cases of hedgehogs without singularities. A

hedgehog is called projective if its support function h is such that h(t) +
h(t + π) = 0. Later on, we will show some examples of projective hedgehogs
which are also isochordal-viewed. But isochordal-viewed hedgehogs are not
necessarily projective (see Example 2).

The motion of a constant length chord along a curve, as it happens with
isochordal-viewed curves, corresponds to the kind of kinematics considered in
Holditch’s theorem and some related scenarios. Works like [1] or [17], as well
as some recent works, such as [2], [11], [12] or [14], are found in the literature
where this type of motion is studied. In particular, another curve is generated
from the initial one, the so-called Holditch curve. Given p ∈ [0, 1] and the
motion of a chord of constant length � around a closed curve α, the p-Holditch
curve of α for the chord length � is the locus of points dividing the length � in
the ratio p : 1 − p (see Fig. 2).

If the chord movement can be done without retrograde motion, then the
Holditch function for a parameterization α : S1 → R

2 is defined as the home-
omorphism f : S1 → S

1 that for each t ∈ S
1, if α(t) is the rear endpoint of the

moving chord, it produces the front one as α
(
f(t)

)
(see [11] and Fig. 2).

In general, Holditch functions are very difficult to compute analytically.
However, for a (φ, �)-isochordal-viewed curve, the Holditch function for a chord
length � becomes trivial as it is just a translation: f(t) = t + φ.
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Figure 2. A closed curve α and its p-Holditch curve Hp for
a chord length �.

In this paper, (φ, �)-isochordal-viewed hedgehogs and their Holditch curves
for the chord length � are considered. The main result of Sect. 2 is Proposi-
tion 2.1 where it is shown that, under certain conditions, in addition to the
chord of constant length �, a whole regular polygon of side length � can trav-
el smoothly around the curve. Some examples exhibiting this property are
shown in Examples 1 and 2. Later, in Sect. 3, thanks to the regular polygon
property, we show in Theorem 3.1 that Holditch curves of Holditch curves
still maintain the Holditch function being a translation, so that they are also
easy to compute, although any p-Holditch curve of α is parameterized by a
support function (Proposition 3.3 and Corollary 3.4). Finally, in Sect. 4, the
construction of new regular polygons from a given one maintaining the same
polygon center (Proposition 4.1) allows us to relate the recursive generation
of new polygons with the recursive computation of Holditch curves. As a con-
sequence, the sequence of Holditch curves is shown to be convergent to the
curve of polygon centers (Theorem 4.3).

2. Closed polylines on isochordal-viewed curves

By its definition, we know that a chord of constant length � is allowed to
move smoothly (without retrograde motion) along a (φ, �)-isochordal-viewed
hedgehog α parameterized by a support function. The aim of this section is
to show that actually, under some conditions, not only this chord can move
along the curve α, but also a closed equilateral polyline. The main result is
presented below.

Proposition 2.1. Let � > 0, φ ∈ ]0, π[ and let α be a piecewise-C2 (φ, �)-
isochordal-viewed hedgehog parameterized by a support function h ∈ C3. For
each t ∈ S

1, consider the polyline Γ(t) obtained by joining the vertices α(t),
α(t + φ), α(t + 2φ), etc. Then:
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(i) The polyline Γ(t) is formed by segments of constant length �.
(ii) If there exist m ∈ Z and n ∈ N, relatively prime, such that φ = m

n π,
(assuming α is projective if m is odd), then the polyline Γ(t) is closed
and has n sides.

(iii) If α is also a curve of constant φ-width, then the angle between two
consecutive segments of Γ(t) is constant.

Proof. The hedgehog α is defined by

α(t) = h(t) (cos t, sin t) + h′(t) (− sin t, cos t)

and the isochordal condition is satisfied by the hypothesis:
∥
∥α(t + φ) − α(t)

∥
∥ = �, for all t ∈ S

1.

Notice that thanks to the isochordal condition we also have
∥
∥α(t + 2φ) − α(t + φ)

∥
∥ = �

and
∥
∥α(t + 3φ) − α(t + 2φ)

∥
∥ = �,

etc. In fact, in general, for any k ∈ Z we have
∥
∥
∥α(t + k φ) − α

(
t + (k − 1)φ

)∥∥
∥ = �, for all t ∈ S

1.

This procedure generates a polyline of side length � with its vertices on the
curve α, which is Γ(t), so that (i) is proved. Such a polyline will be closed if
there exists n ∈ N such that

α(t + nφ) = α(t), for all t ∈ S
1.

A simple computation shows that

α′(t + nφ) − α′(t) =
(
h(t) + h′′(t)

)
(sin t, − cos t)

− (
h(t + nφ) + h′′(t + nφ)

) (
sin(t + nφ), − cos(t + nφ)

)
.

There are only two ways for this expression to be equal to zero. The first
option is that nφ = π m, for some even integer m. The second option is that
nφ = π m for an odd integer m and, in addition, α is a projective hedgehog,
so that

h(t) + h(t + π m) = 0.

In any case, we deduce that φ must be of the form

φ =
m

n
π,

which is fulfilled by hypothesis. Finally, notice that

α(t + nφ) = α(t + mπ) = α(t).

The last equality is immediate if m is even. If m is odd, it holds because α is
assumed to be projective. An irreducible fraction m

n leads to a denominator n
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Figure 3. The angle between two consecutive segments of
Γ(t) can be written in terms of the angles μ(t) and ν(t + φ).

which is the lowest natural number that satisfies the property above, so that
it is the number of sides of the closed polyline Γ(t). Thus, we have proved (ii).

Suppose now that α is of constant φ-width. The cosine of the angle between
two consecutive segments of Γ(t) is given by

1
�2

〈
α
(
t + (k + 2)φ

) − α
(
t + (k + 1)φ

)
, α(t + k φ) − α

(
t + (k + 1)φ

)〉
,

where k ∈ Z. We will show geometrically that the angle is constant.
By the definition of oriented angle functions ν and μ introduced in [15] (see

Fig. 3 in the case k = 0), the angle will be equal to

π −
(
μ(t + k φ) + ν

(
t + (k + 1)φ

))
. (2.1)

Now, since α is of constant φ-width, by Theorem 5.4 of [15] we know that
ν′(t) = a and μ′(t) = −a are constant. This directly implies (2.1) being con-
stant because its derivative is equal to zero. Thus, we have proved (iii). �

Thanks to Proposition 2.1 we can construct a regular polygon (closed,
equilateral and equiangular polyline) which moves smoothly along a (φ, �)-
isochordal-viewed hedgehog of constant φ-width. These polygons can be either
convex or star as we will see in Examples 1 and 2 below.

We remark that many examples of this kind of curves can be given, so that
the hypothesis on the curve is not very restrictive. In fact, finding an example
of a (φ, �)-isochordal-viewed hedgehog which is not of constant φ-width or to
prove a relation between these two types of curves is still an open problem (see
Remark 5.5 of [15]). In the convex case, for φ ∈ ]0, π[, it can be proved that
the circle is the only example of a (φ, �)-isochordal-viewed curve of constant
φ-width (see Theorem 2 of [6]), but this is not the case for non-convex curves.

From now on, if the angle φ is of the kind given in Proposition 2.1-(ii), we
will call it admissible.
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Figure 4. The length �̃ is constant by the cosine rule.

Corollary 2.2. Let � > 0 and suppose that φ ∈ ]0, π[ is admissible. Let α be
a C2-piecewise (φ, �)-isochordal-viewed hedgehog parameterized by a support
function h ∈ C3 which is also a curve of constant φ-width. Then α is also
(2φ, �̃)-isochordal-viewed, where

�̃ =
√

2 �
√

1 − cos θ,

with θ being the constant angle of the regular polygon associated with α.

Proof. By Proposition 2.1, for each t ∈ S
1 we have a regular polygon Γ(t) with

vertices at α(t), α(t + φ), α(t + 2φ), etc. Since Γ(t) has constant side lengths
and angles, we have that

∥
∥α(t) − α(t + 2φ)

∥
∥

is also constant for all t ∈ S
1 by the cosine rule (see Fig. 4), which yields the

expression of the statement. �

Next, we are going to consider a 1-parameter family of examples. In Exam-
ple 1 we will consider projective hedgehogs and we will make the computations
in detail. Later, in Example 2, examples of isochordal-viewed hedgehogs which
are not projective will also be shown.

Example 1. Let n be an odd natural number, i.e. n = 2 k + 1 for k ∈ Z.
Consider the curve αn : S1 → R

2 parameterized by the support function

hn(t) = sin(n t).

First, let’s compute all the possible angles φ that make αn an isochordal-
viewed curve. It can be computed explicitly that

d
dt

∥
∥α(t + φ) − α(t)

∥
∥2

= 16 k (k + 1) (2 k + 1) sin(k φ) sin
(
(k + 1)φ

)
sin

(
(2 k + 1

) (
2 t + φ)

)
.

The curve αn is isochordal viewed if the expression above is equal to zero
for all t ∈ S

1. This happens if and only if

φ =
m

k
π or φ =

m

k + 1
π
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for any m ∈ Z. The length of the isoptic chord,

� =
∥
∥αn(t + φ) − αn(t)

∥
∥,

can be explicitly computed. If φ = mπ/k, then

� = 2 |k|
∣
∣
∣sin

(mπ

k

)∣
∣
∣ = 2 |k|sin(φ);

and if φ = mπ/(k + 1), then

� = 2 |k + 1|
∣
∣
∣
∣sin

(
k mπ

k + 1

)∣
∣
∣
∣ = 2 |k + 1|sin(k φ).

In addition, it can be proved that for any of the φ values above, the curve
αn is of constant φ-width. The calculations are a bit complicated but it can
be seen that

A(t) =
〈
αn(t + φ) − αn(t), Jα′

n(t) − Jα′
n(t + φ)

〉

= −8 k (k + 1)2 sin2

(
k mπ

k + 1

)

is constant. This is a sufficient condition for αn to be a curve of constant φ-
width. The interested reader can see the expression of the curvature of the
φ-isoptic of α in Equation (5.4) of [15], which comes from Equation (5.7) of
[3].

For each t ∈ S
1, consider now the polyline Γ(t) defined in Proposition 2.1.

By construction, its segments have a constant length � and it is equiangular.
Moreover, in this case, if φ = mπ/k, for k ∈ N, then

αn

(
t + k φ

)
= αn(t),

so that Γ(t) is a regular polygon of k sides. If φ = mπ/(k+1), for k ∈ N, then

αn

(
t + (k + 1)φ

)
= αn(t)

and Γ(t) is a regular polygon of k + 1 sides. See in Fig. 5 some frames of the
movement of the regular polygon Γ(t) in a particular example with k = 5.

That Γ(t) is closed can also be deduced using Proposition 2.1(ii), because
notice that for any odd integer n, αn is a projective hedgehog. Indeed, we have
h(t) + h(t + π) = 0. This means that the curves αn are examples of “curves of
constant width 0” and they are traced out twice in [0, 2π].

The same example is considered in Fig. 6 but for different admissible φ
values, where different regular polygons are produced.

Example 2. Let n be an even natural number, i.e. n = 2 k for k ∈ Z. Consider
the curve αn : S1 → R

2 parameterized by the same support function as in the
previous example:

hn(t) = sin(n t).
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Figure 5. Example of α11 with φ = π/5, where Γ(t) is a
regular pentagon moving along α11.

Figure 6. Examples of α11 with φ = π/6, φ = π/3, φ = π/2
and φ = 2π/5.

The main difference now is that αn is not a projective hedgehog. A similar
discussion to that of Example 1 can be done and it can be seen that for angles
of the kind

φ =
2mπ

1 − 2 k
, or φ =

2mπ

1 + 2 k
,
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Figure 7. Some regular polygons on non-projective
isochordal-viewed hedgehogs αn.

for any m ∈ Z, the expression

� =
∥
∥αn(t + φ) − αn(t)

∥
∥

is constant, so that αn is (φ, �)-isochordal viewed. Moreover, it can also be
seen that every αn is a curve of constant φ-width.

See in Fig. 7 some examples of the curves αn (for different k values) and
the regular polygons defined in Proposition 2.1 for different angles (of the kind
above).

3. Holditch curves of isochordal-viewed curves

In addition to the very interesting feature of (φ, �)-isochordal-viewed hedgehogs
of constant φ-width presented in Proposition 2.1 and visualized in Examples 1
and 2, we also have a direct consequence regarding the behaviour of their
Holditch curves.

As it has been said, because of the parameterization by a support function
of (φ, �)-isochordal-viewed curves, we already know that their Holditch curves
for a chord length � are easy to compute. This is because the Holditch function
turns out to be just a translation by the angle φ: f(t) = t+φ. But what about
the Holditch curves of a Holditch curve? The following theorem essentially
states that in this case the iterated Holditch curves for a particular chord
length are also easy to compute because the Holditch function is still the same
translation.

Theorem 3.1. For each t ∈ S
1, suppose that Γ(t) is a regular polygon of con-

stant side length � with vertices α(t), α(t+φ), α(t+2φ), etc. lying on a closed
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piecewise-C2 curve α : S1 → R
2. Then every p-Holditch curve of α, Hp, for a

chord length � satisfies that
∥
∥Hp(t + φ) − Hp(t)

∥
∥ (3.1)

is constant.

Proof. The p-Holditch curve Hp of α for the chord length � can be parameter-
ized as

Hp(t) = (1 − p)α(t) + pα(t + φ).

We have that
∥
∥Hp(t + φ) − Hp(t)

∥
∥2

=
∥
∥
∥(1 − p)

(
α(t + φ) − α(t)

)
+ p

(
α(t + 2φ) − α(t + φ)

)∥∥
∥
2

= (1 − p)2
∥
∥α(t + φ) − α(t)

∥
∥2 + p2

∥
∥α(t + 2φ) − α(t + φ)

∥
∥2

+ 2 p (1 − p)
〈
α(t + φ) − α(t), α(t + 2φ) − α(t + φ)

〉
. (3.2)

Since Γ(t) is a regular polygon, its segments have constant length � and
two consecutive segments subtend a constant angle. In particular, this means
that

∥
∥α(t + φ) − α(t)

∥
∥ = �,

∥
∥α(t + 2φ) − α(t + φ)

∥
∥ = �

and
〈
α(t + φ) − α(t), α(t + 2φ) − α(t + φ)

〉

is constant. Therefore, the expression (3.2) is constant. �

Corollary 3.2. Let � > 0, φ ∈ ]0, π[ and let α be a piecewise-C2 (φ, �)-isochordal-
viewed hedgehog parameterized by a support function h ∈ C3. If α is of constant
φ-width, then every p-Holditch curve of α, Hp, for a chord length � satisfies
that ∥

∥Hp(t + φ) − Hp(t)
∥
∥

is constant.

Proof. Use Proposition 2.1 to define the regular polygon Γ(t) and then use
Theorem 3.1. �

See in Fig. 8 an example of a Holditch curve for a (φ, �)-isochordal-viewed
curve of constant φ-width. The constant length chord for Hp given in Theo-
rem 3.1 or Corollary 3.2 is also shown.

Notice that the conclusion of Theorem 3.1 does not imply that the Holditch
curve of α is isochordal-viewed. This is because, in general, Holditch curves are
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Figure 8. The isochordal-viewed hedgehog given by h(t) =
sin(5 t) and φ = π/3 and its p-Holditch curve, Hp, for p = 1/3.

not parameterized by a support function. In the next proposition, we provide
a characterization of when this happens.

Proposition 3.3. Let � > 0, φ ∈ ]0, π] and let α be a piecewise-C2 (φ, �)-
isochordal-viewed hedgehog parameterized by a support function h ∈ C3. For
any p �= 0, the p-Holditch curve of α for a chord length � is parameterized by
a support function if and only if the supporting lines at α(t) and α(t + φ) are
parallel.

Proof. The condition of writing the p-Holditch curve of α in terms of a support
function a(t) can be set as follows:

Hp(t) = (1−p)α(t)+pα(t+φ) = a(t) (cos t, sin t)+b(t) (− sin t, cos t), (3.3)

where b(t) must be a′(t). The equality (3.3) produces a system of two equations
with two unknowns a(t) and b(t). The solution is

a(t) = −p sin(φ)h′(t + φ) + p cos(φ)h(t + φ) − p h(t) + h(t),

b(t) = p cos(φ)h′(t + φ) − (p − 1)h′(t) + p sin(φ)h(t + φ).

Now, we have that

a′(t) − b(t) = −p sin(φ)
(
h′′(t + φ) + h(t + φ)

)
.

Since p �= 0, this can only be equal to zero for all t ∈ S
1 if φ = π, which is

the limiting case where the supporting lines to α at α(t) and at α(t + φ) are
parallel for all t ∈ S

1. �

The result above can be easily related to constant width curves if we con-
sider curves of constant φ-width as a hypothesis.
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Figure 9. Illustration of a regular polygon Γ1(t) of side
length �̃ constructed from a regular polygon Γ(t) of side length
� and angle θ.

Corollary 3.4. Let � > 0, φ ∈ ]0, π] and let α be a piecewise-C2 (φ, �)-isochordal-
viewed hedgehog parameterized by a support function h ∈ C3 which is also a
curve of constant φ-width. For any p �= 0, the p-Holditch curve of α for a chord
length � is parameterized by a support function if and only if α is of constant
width �.

Proof. It is a direct consequence from Proposition 3.3 and the fact that a“curve
of π-width”corresponds to a classical constant width curve, which are examples
of“(π, �)-isochordal-viewed curves”(with � being the constant width). �

4. Iterated Holditch curves for an isochordal-viewed hedgehog

In this section we will see that the conclusion of Theorem 3.1 can be extended
to a recursive computation of some Holditch curves thanks to a recursive com-
putation of regular polygons starting from the one given by Proposition 2.1.
This is what we are about to see in the next proposition (see Fig. 9 for a
visualization in an example).

Proposition 4.1. Let p ∈ ]0, 1[. For all t ∈ S
1, let Γ(t) be a regular polygon of

side length � whose vertices lie on a closed curve α : S1 → R
2. Divide (following

an orientation) each segment of Γ(t) in the ratio p : 1 − p and let Γ1(t) be the
polyline obtained by joining the resulting points of these divisions (which lie on
the p-Holditch curve of α for a chord length �). Then Γ1(t) is also a regular
polygon and for each t ∈ S

1 it has the same polygon center as Γ(t).

Proof. Notice that, for any t ∈ S
1, the regular polygon Γ(t) realizes the position

of the moving chord at some points of α when generating any of its p-Holditch
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curves for the chord length �. Thus, by construction, the vertices of Γ1(t) lie
on the p-Holditch curve of α and Γ1(t) is closed.

Moreover, the length �̃ of the segments of Γ1(t) is constant. Indeed, if θ is
the constant angle of Γ(t), then by the cosine rule we have that

�̃ = �
√

p2 + (1 − p)2 − 2 p (1 − p) cos θ,

which is constant. Similarly, by simple trigonometry, the angle θ1 between two
consecutive segments of Γ1(t) is also constant (it only depends on p, � and θ).

Thus, the closed polyline Γ1(t) is in fact a regular polygon. Suppose that
P0(t), P1(t), . . . , Pn−1(t) are the n vertices of Γ(t) (consider Pn = P0). On the
one hand, the polygon center c(t) of Γ(t) can be computed as its centroid:

c(t) =
1
n

n−1∑

k=0

Pk(t).

On the other hand, the centroid of Γ1(t) is

1
n

n−1∑

k=0

(
(1 − p)Pk(t) + pPk+1(t)

)
= (1 − p) c(t) + p c(t) = c(t),

which is coincident with that of Γ(t). �

Notice that Proposition 4.1 can be applied recursively for the next regular
polygon that is found at each step, so that we can find a sequence of regular
polygons {Γk(t)}k starting from a (φ, �)-isochordal-viewed curve of constant
φ-width (with Γ0(t) being the one provided in Proposition 2.1).

Similarly, we can compute Holditch curves of Holditch curves easily by
Theorem 3.1. At each step, the chord length �k changes according to Propo-
sition 4.1 and we have a free parameter pk ∈ ]0, 1[ to compute a particular
pk-Holditch curve. Thus, we have a sequence of chord lengths {�k}k, a se-
quence of free parameters {pk}k and the corresponding sequence {Hk

pk
}k of

Holditch curves. Each regular polygon Γk(t) is associated with a particular
iteration Hk

pk
of Holditch curves (see in Fig. 10 some steps of these sequences

in an example).
From now on, along the next two results, the sequences described above

will be considered following the same notation.

Lemma 4.2. Let {Γk(t)}k be the sequence of regular polygons Γk(t) of side
length �k. If {pk}k is a sequence that converges in ]0, 1[, then the sequence of
chord lengths {�k}k is convergent to zero.

Proof. As seen in the proof of Proposition 4.1, the side length �k+1 of Γk+1(t)
can be computed in terms of the side length �k, the constant angle θk and the
free parameter pk of the previous iteration Γk(t):

�k+1 = �k

√
p2k + (1 − pk)2 − 2 pk (1 − pk) cos θk. (4.1)
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Figure 10. A (φ, �)-isochordal-viewed hedgehog of constan-
t φ-width α and a recursive computation of Holditch curves
Hk

1/2. The curve c is the curve of the associated regular poly-
gon centers.

As we already know that each Γk(t) is a regular polygon with the same number
of sides, we actually have θk = θ, where θ is the angle of the first regular
polygon.

Since {pk}k is convergent to some p ∈ ]0, 1[, we have that

lim
k→+∞

�k+1

�k
=

√
2
(
1 + cos(θ)

)
p2 − 2

(
1 + cos(θ)

)
p + 1.

The expression inside the square root is a parabola for the variable p which
is always less than 1. Thus, since {�k}k is a sequence of positive real numbers
such that

lim
k→+∞

�k+1

�k
< 1,

by D’Alembert criterion, the sequence {�k}k is convergent to zero. �

As a consequence of Lemma 4.2 we have that, for each t ∈ S
1, the sequence

{Γk(t)}k is convergent to a single point (degenerated polygon):

c(t) = lim
k→+∞

Γk(t).

This point is the polygon center of all the regular polygons Γk(t), for k ∈ N.
Therefore, for each t ∈ S

1,

lim
k→+∞

Hk
pk

(t) = c(t).

We can state this as follows.

Theorem 4.3. The sequence {Hk
pk

}k of Holditch curves tends to the curve of
polygon centers.
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Figure 11. The curve of Example 2 for k = 1 and φ = 2π/3.
The sequence of Holditch curves tends to the curve of polygon
centers, which is a triple-traced circle of radius 1/2.

Remark 4.4. At each step k, since the parabola of Equation (4.1), namely

2
(
1 + cos(θ)

)
p2k − 2

(
1 + cos(θ)

)
pk + 1,

achieves its minimum at pk = 1/2, faster convergence will correspond to a
choice of the midpoint Holditch curve at each step.

See in Fig. 11 an example illustrating the convergence stated in Theo-
rem 4.3, where the curve of polygon centers turns out to be a circle (this can
also be seen in the example of Fig. 10).

Remark 4.5. (Open problems) There are still some open questions that are
interesting to answer. All the examples of isochordal-viewed hedgehogs that
we have considered have some rotational symmetry. But is every isochordal-
viewed curve rotationally symmetric? We have also seen in our examples that
the curve of polygon centers is always a circle. Will this always be the case or
further assumptions are needed to ensure it?

Finally, we want to remark that some of the results of this paper may
be extended to multihedgehogs, that is, to curves which have m cooriented
supporting lines in each direction (with m ∈ Z). In particular, any rosette
(see e.g. [5], [10] or [18]) is a multihedgehog. The interested reader to this and
further questions is referred to [16] for more details.
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[4] Cieślak, W., Mozgawa, W.: On curves with circles as their isoptics. Aequat. Math. 96(3),

653–667 (2022)
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