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On path-factor critical deleted (or covered) graphs

Sizhong Zhou, Jiancheng Wu, and Qiuxiang Bian

Abstract. Let k ≥ 2 be an integer. A P≥k-factor of a graph G is its spanning subgraph each
of whose components is a path of order at least k. A graph G is P≥k-factor covered if for
any edge e of G, G has a P≥k-factor containing e. A graph G is P≥k-factor deleted if for any
edge e of G, G has a P≥k-factor excluding e. A graph G is (P≥k, n)-factor critical covered
if for any Q ⊆ V (G) with |Q| = n, the graph G − Q is P≥k-factor covered. A graph G
is (P≥k, n)-factor critical deleted if for any Q ⊆ V (G) with |Q| = n, the graph G − Q is
P≥k-factor deleted. Zhou et al. (Contribut Dis Math 14(1): 167–174, 2019) introduced the
sun toughness of a graph G, which is denoted by s(G) and defined by

s(G) = min

{ |X|
sun(G − X)

: X ⊆ V (G), sun(G − X) ≥ 2

}

if G is not a complete graph; otherwise, s(G) = +∞. In this article, we prove that (i) an

(n + r + 2)-connected graph G is (P≥3, n)-factor critical deleted if s(G) > n+r+3
2(r+2)

, where

n ≥ 0 and r ≥ 0 are two integers; (ii) an (n + r + 1)-connected graph G is (P≥3, n)-factor

critical covered if s(G) > n+r+1
2r+1

, where n ≥ 0 and r ≥ 1 are two integers.
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1. Introduction

We consider only undirected finite graphs without loops or multiple edges,
unless explicitly stated otherwise. Let G be a graph, and let V (G) and E(G)
denote the sets of vertices and edges of G, respectively. The degree of a vertex
x in G, denoted by dG(x), is the number of vertices adjacent to x in G. We
use i(G) and ω(G) to denote the number of isolated vertices and connected
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components of G, respectively. Let X be a vertex set of G and E′ be an edge
set of G. Then G − X denotes the resulting graph after removing the vertices
of X from G, and G − E′ denotes the subgraph derived from G by removing
E′. For notational simplicity, we write G − x = G − {x} for x ∈ V (G) and
G − e = G − {e} for e ∈ E(G). A vertex set X of G is independent if no
two elements in X are adjacent. Let G1 and G2 be two graphs. We denote
by G1 ∪ G2 and G1 ∨ G2 the union and the join of G1 and G2, respectively.
Let Pn, Cn and Kn denote the path, the cycle and the complete graph with n
vertices, respectively.

A path-factor is a spanning subgraph F of G such that every component of
F is a path. Let k ≥ 2 be an integer. A P≥k-factor of a graph G is its spanning
subgraph each of whose components is a path of order at least k. A graph G
is P≥k-factor covered if for any edge e of G, G has a P≥k-factor containing e.
A graph G is P≥k-factor deleted if for any edge e of G, G has a P≥k-factor
excluding e. A graph G is said to be (P≥k, n)-factor critical covered if for any
Q ⊆ V (G) with |Q| = n, the graph G − Q is P≥k-factor covered. A graph G is
said to be (P≥k, n)-factor critical deleted if for any Q ⊆ V (G) with |Q| = n,
the graph G − Q is P≥k-factor deleted.

Bazgan, Benhamdine, Li and Woźniak [1] verified that a 1-tough graph G
of order at least 3 admits a P≥3-factor. Kano, Lu and Yu [5] justified that
a graph G contains a P≥3-factor if i(G − X) ≤ 2

3 |X| for all X ⊆ V (G).
Wang [7] claimed that a bipartite graph G admits a P≥3-factor if and only if
i(G − X − M) ≤ 2|X| + |M | for any X ⊆ V (G) and independent M ⊆ E(G).
Kelmans [6] showed some sufficient conditions for graphs to have path-factors.
Zhou [10], Zhou, Bian and Sun [13] derived some sufficient conditions for graphs
to be P≥3-factor covered graphs. Gao, Wang and Chen [2] got some results
on the existence of P≥3-factor deleted graphs. Zhou [9], Zhou, Sun and Liu
[15] obtained some results on the P≥3-factor with given properties. Zhou [11],
Zhou, Bian and Pan [12] presented some sufficient conditions for graphs to be
(P≥3, n)-factor critical deleted graphs.

To characterize graphs admitting P≥3-factors, Kaneko [3] introduced the
concept of a sun. If R − x admits a perfect matching for any x ∈ V (R), then
R is called a factor-critical graph. Let R be a factor-critical graph with vertex
set V (R) = {x1, x2, · · · , xn}. By adding new vertices y1, y2, · · · , yn together
with new edges x1y1, x2y2, · · · , xnyn to R, we derive a new graph H, which is
called a sun. By Kaneko, K1 and K2 are also suns. Especially, a sun with at
least six vertices is called a big sun. We denote by sun(G) the number of sun
components of G.

Kaneko [3] posed a criterion for a graph to have a P≥3-factor. Kano, Katona
and Király [4] came up with a simple proof.

Theorem 1. ([3,4]). A graph G contains a P≥3-factor if and only if

sun(G − X) ≤ 2|X|
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for all X ⊆ V (G).

Later, Zhang and Zhou [8] extended Theorem 1, and derived a characteri-
zation for P≥3-factor covered graphs.

Theorem 2. ([8]). A connected graph G is a P≥3-factor covered graph if and
only if

sun(G − X) ≤ 2|X| − ε(X)

for all X ⊆ V (G), where ε(X) is defined by
ε(X)

=

⎧⎨
⎩

2, if X is not an independent set;
1, if X is a nonempty independent set and G − X has a non − sun component;
0, otherwise.

Zhou, Sun and Liu [16] introduced the sun toughness of a graph G, which
is denoted by s(G) and defined by

s(G) = min
{ |X|

sun(G − X)
: X ⊆ V (G), sun(G − X) ≥ 2

}

if G is not a complete graph; otherwise, s(G) = +∞. Then they showed two sun
toughness conditions for graphs to be P≥3-factor deleted graphs or P≥3-factor
covered graphs.

Theorem 3. ([16]). A 2-edge-connected graph G is a P≥3-factor deleted graph
if its sun toughness s(G) ≥ 1.

Theorem 4. ([16]). A connected graph G of order at least 3 is a P≥3-factor
covered graph if its sun toughness s(G) ≥ 1.

Zhou, Bian and Pan [12] presented a binding number condition for graphs
to be (P≥3, n)-factor critical deleted graphs.

Theorem 5. ([12]). Let n be a nonnegative integer, and let G be an (n + 2)-
connected graph. If bind(G) > 3+n

2 , then G is (P≥3, n)-critical deleted.

Zhou and Sun [14] gave a binding number condition for graphs to be
(P≥3, n)-factor critical covered graphs.

Theorem 6. [14]. Let n be an integer with n ≥ 1, and let G be an (n + 1)-
connected graph with |V (G)| ≥ n + 3. If bind(G) ≥ 4+n

3 , then G is (P≥3, n)-
factor-critical covered.

In this article, we pose sun toughness conditions for graphs to be (P≥3, n)-
factor critical deleted graphs or (P≥3, n)-factor critical covered graphs, respec-
tively. Our main results are two generalizations of Theorems 3 and 4.

Theorem 7. An (n + r + 2)-connected graph G is a (P≥3, n)-factor critical
deleted graph if its sun toughness s(G) > n+r+3

2(r+2) , where n and r are two non-
negative integers.
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Theorem 8. An (n + r + 1)-connected graph G is a (P≥3, n)-factor critical
covered graph if its sun toughness s(G) > n+r+1

2r+1 , where n ≥ 0 and r ≥ 1 are
integers.

2. Proof of Theorem 7

We first show the following lemma, which will be used in the proof of Theo-
rem 7.

Lemma 1. Let n and r be two nonnegative integers, let G be an (n + r + 2)-
connected graph, and let H = G − Q − e for any Q ⊆ V (G) with |Q| = n and
any e ∈ E(G−Q). If sun(H −X) ≥ 2|X|+1 for X ⊆ V (H), then |X| ≥ r+2.

Proof. Assume that sun(H − X) ≥ 2|X| + 1. Then X 	= ∅ since otherwise
G − Q is 2-connected and so H = G − Q − e is a sun having at most two end-
vertices, but every big sun has at least 3 end-vertices. Thus ω(G − Q − X) ≥
ω(G − Q − X − e) − 1 ≥ sun(H − X) − 1 ≥ 2|X| ≥ 2. Thus |X| ≥ r + 2 since
G is (n + r + 2)-connected. �

Proof of Theorem 7. Theorem 7 obviously holds for a complete graph. Next,
we assume that G is not a complete graph. Let Q ⊆ V (G) with |Q| = n and
e = uv ∈ E(G − Q), and let H = G − Q − e. It suffices to justify that H
contains a P≥3-factor. For a contradiction, suppose that H has no P≥3-factor.
Then by Theorem 1, there exists a vertex set X of H that satisfies

sun(H − X) ≥ 2|X| + 1. (1)

�

Claim 1. s(G) ≤ n+|X|+1
2|X| .

Proof. It is obvious that

sun(G − Q − X − e) ≤ sun(G − Q − X) + 2.

Thus we prove Claim 1 by considering the following two cases.

Case 1. sun(G − Q − X − e) ≤ sun(G − Q − X) + 1.
Because of (1) and Lemma 1, we obtain

sun(G − Q − X) ≥ sun(G − Q − X − e) − 1 = sun(H − X) − 1
≥ 2|X| ≥ 2(r + 2).

Thus, we derive

s(G) ≤ |Q ∪ X|
sun(G − Q − X)

≤ n + |X|
2|X| <

n + |X| + 1
2|X| .

Case 2. sun(G − Q − X − e) = sun(G − Q − X) + 2.
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In this case, we may assume that e = uv joins two sun components D1 and
D2 of G − Q − X − e, where u ∈ V (D1) and v ∈ V (D2). Then it follows from
(1) that sun(G − Q − X − v) ≥ sun(G − Q − X − e) − 1 = sun(H − X) − 1 ≥
2|X| ≥ 2(r + 2), which implies

s(G) ≤ |Q ∪ X ∪ {v}|
sun(G − Q − X − v)

≤ n + |X| + 1
2|X| .

This completes the proof of Claim 1. �

Using Claim 1 and Lemma 1, we deduce

s(G) ≤ n + |X| + 1
2|X| =

1
2

+
n + 1
2|X| ≤ 1

2
+

n + 1
2(r + 2)

=
n + r + 3
2(r + 2)

,

which contradicts s(G) > n+r+3
2(r+2) . We have verified Theorem 7. �

Remark 1. Now, we explain that the condition on s(G) in Theorem 7 is sharp.
Let n and r be two nonnegative integers with n ≥ r + 1, let H1 and H2

be two big suns, and let G = Kn+r+2 ∨ ((2r + 3)K1 ∪ H1 ∪ H2 ∪ {e}), where
e = uv, u ∈ V (H1) and v ∈ V (H2). We know that G is (n + r + 2)-connected
and s(G) = |V (Kn+r+2)∪{v}|

sun(G−(V (Kn+r+2)∪{v})) = n+r+3
2(r+2) . Let Q ⊆ V (Kn+r+2) ⊆ V (G)

with |Q| = n. Then G − Q − e = Kr+2 ∨ ((2r + 3)K1 ∪ H1 ∪ H2). Let X =
V (Kr+2) ⊆ V (G − Q − e). Then we obtain

sun(G − Q − e − X) = 2r + 5 > 2(r + 2) = 2|X|.
From Theorem 1, G−Q− e has no P≥3-factor, and so G is not (P≥3, n)-factor
critical deleted.

Remark 2. Now, we claim that the condition of (n + r + 2)-connectedness in
Theorem 7 is the best possible.

Let G = Kn+r+1 ∨ ((2r + 1)K1 ∪ P3), where n and r are two integers with
n− 2 ≥ r ≥ 0. Let P3 = x1x2x3. We know that G is (n+ r +1)-connected and
s(G) = |V (Kn+r+1)∪{x2}|

sun(G−(V (Kn+r+1)∪{x2})) = n+r+2
2r+3 > n+r+3

2(r+2) . Let Q ⊆ V (Kn+r+1) ⊆
V (G) with |Q| = n and e ∈ E(P3). Then G−Q−e = Kr+1∨((2r+2)K1∪K2).
Let X = V (Kr+1) ⊆ V (G − Q − e). Then we have

sun(G − Q − e − X) = 2r + 3 > 2(r + 1) = 2|X|.
Using Theorem 1, G−Q−e has no P≥3-factor, and so G is not (P≥3, n)-factor
critical deleted.

3. The proof of Theorem 8

Proof of Theorem 8. Theorem 8 obviously holds for a complete graph. Next,
we always assume that G is not complete. Let Q ⊆ V (G) with |Q| = n,
and let H = G − Q. It suffices to prove that H is P≥3-factor covered. For a
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contradiction, suppose that H is not P≥3-factor covered. Then by Theorem 2,
we have

sun(H − X) ≥ 2|X| − ε(X) + 1 (2)

for some vertex set X of H.
In the following, we discuss four cases by the value of |X|.

Case 1. |X| = 0.
Obviously, ε(X) = 0. According to (1), sun(H) ≥ 1. Note that G is (n +

r + 1)-connected, and so |V (G)| ≥ n + r + 2. Hence, H is (r + 1)-connected,
which implies ω(H) = 1. Thus, we get

1 ≤ sun(H) ≤ ω(H) = 1,

namely,

sun(H) = ω(H) = 1.

Combining this with |V (H)| = |V (G)| − |Q| ≥ (n + r + 2) − n = r + 2 ≥ 3,
we know that H is a big sun. Then there exists a vertex x in H such that
dH(x) = 1, and so

dG(x) ≤ dG−Q(x) + |Q| = dH(x) + n = n + 1,

which contradicts that G is (n + r + 1)-connected.

Case 2. |X| = 1.
In this case, ε(X) ≤ 1. In light of (1), we get

ω(G − Q − X) = ω(H − X) ≥ sun(H − X) ≥ 2|X|
−ε(X) + 1 ≥ 2|X| = 2 > 1 = ω(G),

which implies that G is at most (n + 1)-connected, which contradicts that G
is (n + r + 1)-connected.

Case 3. 2 ≤ |X| ≤ r.
From (1), ε(X) ≤ 2 and ω(G) = 1, we derive

ω(G − Q − X) = ω(H − X) ≥ sun(H − X) ≥ 2|X|
−ε(X) + 1 ≥ 2|X| − 1 ≥ 4 − 1 = 3 > 1 = ω(G),

which implies that G is at most (n + r)-connected, which contradicts that G
is (n + r + 1)-connected.

Case 4. |X| ≥ r + 1.
It follows from (1), ε(X) ≤ 2 and r ≥ 1 that

sun(G − Q − X) = sun(H − X) ≥ 2|X| − ε(X)
+1 ≥ 2|X| − 1 ≥ 2(r + 1) − 1 = 2r + 1 ≥ 3.
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Combining this with the definition of s(G), we infer

s(G) ≤ |Q ∪ X|
sun(G − Q − X)

≤ n + |X|
2|X| − 1

=
1
2

+
n + 1

2

2|X| − 1

≤ 1
2

+
n + 1

2

2(r + 1) − 1
=

n + r + 1
2r + 1

,

which contradicts s(G) > n+r+1
2r+1 . This completes the proof of Theorem 8. �

Remark 3. We now show that the condition s(G) > n+r+1
2r+1 in Theorem 8

cannot be replaced by s(G) ≥ n+r+1
2r+1 .

Let G = Kn+r+1 ∨ ((2r + 1)K1), where n ≥ 0 and r ≥ 1 are two integers.
We easily see that G is (n + r + 1)-connected and s(G) = |V (Kn+r+1)|

sun(G−V (Kn+r+1))
=

n+r+1
2r+1 . Let Q ⊆ V (Kn+r+1) ⊆ V (G) with |Q| = n. Then G − Q = Kr+1 ∨

((2r + 1)K1). Select X = V (Kr+1) in G − Q. Then ε(X) = 2 by the definition
of ε(X). Thus, we derive

sun(G − Q − X) = 2r + 1 > 2(r + 1) − 2 = 2|X| − ε(X).

In light of Theorem 2, G − Q is not P≥3-factor covered. So G is not (P≥3, n)-
factor critical covered.

Remark 4. We now claim that the condition of (n + r + 1)-connectedness in
Theorem 8 is sharp.

Let G = Kn+r ∨ ((2rK1) ∪ M), where n > r ≥ 1 are two integers, and
M is a connected graph not being a sun. Clearly, G is (n + r)-connected and
s(G) = |V (Kn+r)|

sun(G−V (Kn+r))
= n+r

2r > n+r+1
2r+1 . Let Q ⊆ V (Kn+r) ⊆ V (G) with

|Q| = n. Then G − Q = Kr ∨ ((2rK1) ∪ M). Choose X = V (Kr) in G − Q.
Then 1 ≤ ε(X) ≤ 2 by the definition of ε(X). Thus, we acquire

sun(G − Q − X) = 2r > 2r − 1 ≥ 2|X| − ε(X).

It follows from Theorem 2 that G − Q is not P≥3-factor covered. Hence, G is
not (P≥3, n)-factor critical covered.
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