Aequat. Math. 96 (2022), 795–802 -c The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 0001-9054/22/040795-8 *published online* November 2, 2021 https://doi.org/10.1007/s00010-021-00852-4 **Aequationes Mathematicae**

On path-factor critical deleted (or covered) graphs

Sizhong Zhou, Jiancheng Wu, and Qiuxiang Bian

Abstract. Let $k \geq 2$ be an integer. A $P_{\geq k}$ -factor of a graph G is its spanning subgraph each of whose components is a path of order at least ^k. A graph ^G is ^P≥*k*-factor covered if for any edge e of G, G has a $P_{\geq k}$ -factor containing e. A graph G is $P_{\geq k}$ -factor deleted if for any edge e of G, G has a $P_{\geq k}$ -factor excluding e. A graph G is $(P_{\geq k}, n)$ -factor critical covered if for any $Q \subseteq V(G)$ with $|Q| = n$, the graph $G - Q$ is $P_{\geq k}$ -factor covered. A graph G is $(P_{\geq k}, n)$ -factor critical deleted if for any $Q \subseteq V(G)$ with $|Q| = n$, the graph $G - Q$ is $P_{\geq k}$ -factor deleted. Zhou et al. (Contribut Dis Math 14(1): 167–174, 2019) introduced the sun toughness of a graph G , which is denoted by $s(G)$ and defined by

$$
s(G) = \min\left\{\frac{|X|}{\text{sun}(G - X)} : X \subseteq V(G), \text{sun}(G - X) \ge 2\right\}
$$

if G is not a complete graph; otherwise, $s(G)=+\infty$. In this article, we prove that (i) an $(n + r + 2)$ -connected graph G is $(P_{\geq 3}, n)$ -factor critical deleted if $s(G) > \frac{n+r+3}{2(r+2)}$, where $n \geq 0$ and $r \geq 0$ are two integers; (ii) an $(n + r + 1)$ -connected graph G is $(P_{\geq 3}, n)$ -factor critical covered if $s(G) > \frac{n+r+1}{2r+1}$, where $n \geq 0$ and $r \geq 1$ are two integers.

Mathematics Subject Classification. 05C70, 05C38, 90B10.

Keywords. Graph, Sun toughness, Connectivity, $(P_{\geq 3}, n)$ -factor critical deleted graph, $(P_{\geq 3}, n)$ -factor critical covered graph.

1. Introduction

We consider only undirected finite graphs without loops or multiple edges, unless explicitly stated otherwise. Let G be a graph, and let $V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively. The degree of a vertex x in G, denoted by $d_G(x)$, is the number of vertices adjacent to x in G. We use $i(G)$ and $\omega(G)$ to denote the number of isolated vertices and connected

This work is supported by Six Talent Peaks Project in Jiangsu Province, China (Grant No. JY–022).

components of G , respectively. Let X be a vertex set of G and E' be an edge set of G. Then $G - X$ denotes the resulting graph after removing the vertices of X from G, and $G - E'$ denotes the subgraph derived from G by removing E'. For notational simplicity, we write $G - x = G - \{x\}$ for $x \in V(G)$ and $G - e = G - \{e\}$ for $e \in E(G)$. A vertex set X of G is independent if no two elements in X are adjacent. Let G_1 and G_2 be two graphs. We denote by $G_1 \cup G_2$ and $G_1 \vee G_2$ the union and the join of G_1 and G_2 , respectively. Let P_n , C_n and K_n denote the path, the cycle and the complete graph with n vertices, respectively.

A path-factor is a spanning subgraph F of G such that every component of F is a path. Let $k \geq 2$ be an integer. A $P_{\geq k}$ -factor of a graph G is its spanning subgraph each of whose components is a path of order at least k . A graph G is $P_{\geq k}$ -factor covered if for any edge e of G, G has a $P_{\geq k}$ -factor containing e. A graph G is $P_{\geq k}$ -factor deleted if for any edge e of G, G has a $P_{\geq k}$ -factor excluding e. A graph G is said to be $(P_{\geq k}, n)$ -factor critical covered if for any $Q \subseteq V(G)$ with $|Q| = n$, the graph $G - Q$ is $P_{\geq k}$ -factor covered. A graph G is said to be $(P_{\geq k}, n)$ -factor critical deleted if for any $Q \subseteq V(G)$ with $|Q| = n$, the graph $G - Q$ is $P_{\geq k}$ -factor deleted.

Bazgan, Benhamdine, Li and Wozniak $[1]$ $[1]$ verified that a 1-tough graph G of order at least 3 admits a $P_{\geq 3}$ -factor. Kano, Lu and Yu [\[5](#page-7-1)] justified that a graph G contains a $P_{\geq 3}$ -factor if $i(G - X) \leq \frac{2}{3}|X|$ for all $X \subseteq V(G)$. Wang [\[7](#page-7-2)] claimed that a bipartite graph G admits a $P_{\geq 3}$ -factor if and only if $i(G - X - M) \leq 2|X| + |M|$ for any $X \subseteq V(G)$ and independent $M \subseteq E(G)$. Kelmans [\[6\]](#page-7-3) showed some sufficient conditions for graphs to have path-factors. Zhou [\[10](#page-7-4)], Zhou, Bian and Sun [\[13\]](#page-7-5) derived some sufficient conditions for graphs to be $P_{\geq 3}$ -factor covered graphs. Gao, Wang and Chen [\[2](#page-7-6)] got some results on the existence of $P_{\geq 3}$ -factor deleted graphs. Zhou [\[9](#page-7-7)], Zhou, Sun and Liu [\[15\]](#page-7-8) obtained some results on the $P_{\geq 3}$ -factor with given properties. Zhou [\[11\]](#page-7-9), Zhou, Bian and Pan [\[12\]](#page-7-10) presented some sufficient conditions for graphs to be $(P_{\geq 3}, n)$ -factor critical deleted graphs.

To characterize graphs admitting $P_{\geq 3}$ -factors, Kaneko [\[3](#page-7-11)] introduced the concept of a sun. If $R - x$ admits a perfect matching for any $x \in V(R)$, then R is called a factor-critical graph. Let R be a factor-critical graph with vertex set $V(R) = \{x_1, x_2, \dots, x_n\}$. By adding new vertices y_1, y_2, \dots, y_n together with new edges $x_1y_1, x_2y_2, \dots, x_ny_n$ to R, we derive a new graph H, which is called a *sun*. By Kaneko, K_1 and K_2 are also suns. Especially, a sun with at least six vertices is called a big sun. We denote by $sun(G)$ the number of sun components of G.

Kaneko $[3]$ posed a criterion for a graph to have a $P_{\geq 3}$ -factor. Kano, Katona and Király $[4]$ $[4]$ came up with a simple proof.

Theorem 1. $([3, 4])$ $([3, 4])$ $([3, 4])$ $([3, 4])$ $([3, 4])$. A graph G contains a P>3-factor if and only if

$$
sun(G-X) \leq 2|X|
$$

for all $X \subseteq V(G)$ *.*

Later, Zhang and Zhou [\[8\]](#page-7-13) extended Theorem [1,](#page-1-0) and derived a characterization for $P_{\geq 3}$ -factor covered graphs.

Theorem 2. *(* β *)).* A connected graph G is a P_{>3}-factor covered graph if and *only if*

$$
sun(G - X) \le 2|X| - \varepsilon(X)
$$

for all $X \subseteq V(G)$ *, where* $\varepsilon(X)$ *is defined by*

 $\varepsilon(X)$

- \int $2, if X is not an independent set;$
- = ⎩ ¹, if X is a nonempty independent set and G [−] X has a non [−] sun component; 0, otherwise.

Zhou, Sun and Liu $[16]$ $[16]$ introduced the sun toughness of a graph G , which is denoted by $s(G)$ and defined by

$$
s(G) = \min\left\{\frac{|X|}{\sin(G-X)} : X \subseteq V(G), \sin(G-X) \ge 2\right\}
$$

if G is not a complete graph; otherwise, $s(G)=+\infty$. Then they showed two sun toughness conditions for graphs to be $P_{\geq 3}$ -factor deleted graphs or $P_{\geq 3}$ -factor covered graphs.

Theorem 3. *(* $[16]$ *).* A 2-edge-connected graph G is a P>3-factor deleted graph *if its sun toughness* $s(G) \geq 1$ *.*

Theorem 4. *(* $[16]$ *).* A connected graph G of order at least 3 is a P>3-factor *covered graph if its sun toughness* $s(G) \geq 1$ *.*

Zhou, Bian and Pan [\[12](#page-7-10)] presented a binding number condition for graphs to be $(P_{\geq 3}, n)$ -factor critical deleted graphs.

Theorem 5. *(* $[12]$ *). Let n be a nonnegative integer, and let G be an* $(n + 2)$ *connected graph. If* $\text{bind}(G) > \frac{3+n}{2}$ *, then G is* ($P_{\geq 3}$, *n*)*-critical deleted.*

Zhou and Sun [\[14](#page-7-15)] gave a binding number condition for graphs to be $(P_{\geq 3}, n)$ -factor critical covered graphs.

Theorem 6. [\[14\]](#page-7-15)*.* Let n be an integer with $n \geq 1$, and let G be an $(n + 1)$ *connected graph with* $|V(G)| \geq n+3$ *. If bind*(*G*) $\geq \frac{4+n}{3}$ *, then G is* ($P_{\geq 3}$ *, n*)*factor-critical covered.*

In this article, we pose sun toughness conditions for graphs to be $(P_{\geq 3}, n)$ factor critical deleted graphs or $(P_{\geq 3}, n)$ -factor critical covered graphs, respectively. Our main results are two generalizations of Theorems 3 and 4.

Theorem 7. An $(n + r + 2)$ -connected graph G is a $(P_{\geq 3}, n)$ -factor critical deleted graph if its sun toughness $s(G) > \frac{n+r+3}{2(r+2)}$, where n and r are two non*negative integers.*

Theorem 8. An $(n + r + 1)$ -connected graph G is a $(P_{\geq 3}, n)$ -factor critical *covered graph if its sun toughness* $s(G) > \frac{n+r+1}{2r+1}$, where $n \geq 0$ and $r \geq 1$ are *integers.*

2. Proof of Theorem [7](#page-2-0)

We first show the following lemma, which will be used in the proof of Theorem [7.](#page-2-0)

Lemma 1. Let n and r be two nonnegative integers, let G be an $(n + r + 2)$ *connected graph, and let* $H = G - Q - e$ *for any* $Q \subseteq V(G)$ *with* $|Q| = n$ *and any* $e \in E(G-Q)$ *.* If $sun(H-X) ≥ 2|X|+1$ for $X ⊆ V(H)$ *, then* $|X| ≥ r+2$ *.*

Proof. Assume that $sun(H - X) > 2|X| + 1$. Then $X \neq \emptyset$ since otherwise $G - Q$ is 2-connected and so $H = G - Q - e$ is a sun having at most two endvertices, but every big sun has at least 3 end-vertices. Thus $\omega(G - Q - X) \ge$ $\omega(G - Q - X - e) - 1 \ge \text{sum}(H - X) - 1 \ge 2|X| \ge 2$. Thus $|X| \ge r + 2$ since G is $(n + r + 2)$ -connected. G is $(n + r + 2)$ -connected.

Proof of Theorem [7.](#page-2-0) Theorem [7](#page-2-0) obviously holds for a complete graph. Next, we assume that G is not a complete graph. Let $Q \subseteq V(G)$ with $|Q| = n$ and $e = uv \in E(G - Q)$, and let $H = G - Q - e$. It suffices to justify that H contains a $P_{\geq 3}$ -factor. For a contradiction, suppose that H has no $P_{\geq 3}$ -factor. Then by Theorem [1,](#page-1-0) there exists a vertex set X of H that satisfies

$$
sun(H - X) \ge 2|X| + 1.
$$
\n⁽¹⁾

$$
\qquad \qquad \Box
$$

Claim 1. $s(G) \leq \frac{n+|X|+1}{2|X|}$.

Proof. It is obvious that

$$
sun(G - Q - X - e) \leq sun(G - Q - X) + 2.
$$

Thus we prove Claim 1 by considering the following two cases.

Case 1. $sun(G - Q - X - e) \leq sun(G - Q - X) + 1$. Because of (1) and Lemma 1, we obtain

$$
sun(G - Q - X) \geq sun(G - Q - X - e) - 1 = sun(H - X) - 1
$$

\n
$$
\geq 2|X| \geq 2(r + 2).
$$

Thus, we derive

$$
s(G) \le \frac{|Q \cup X|}{\sin(G - Q - X)} \le \frac{n + |X|}{2|X|} < \frac{n + |X| + 1}{2|X|}.
$$

Case 2. $sun(G - Q - X - e) = sun(G - Q - X) + 2$.

In this case, we may assume that $e = uv$ joins two sun components D_1 and D_2 of $G - Q - X - e$, where $u \in V(D_1)$ and $v \in V(D_2)$. Then it follows from (1) that $sun(G - Q - X - v) \geq sun(G - Q - X - e) - 1 = sun(H - X) - 1 \geq$ $2|X| \geq 2(r+2)$, which implies

$$
s(G) \le \frac{|Q \cup X \cup \{v\}|}{\sup(G - Q - X - v)} \le \frac{n + |X| + 1}{2|X|}.
$$

This completes the proof of Claim 1.

Using Claim 1 and Lemma 1, we deduce

$$
s(G)\leq \frac{n+|X|+1}{2|X|}=\frac{1}{2}+\frac{n+1}{2|X|}\leq \frac{1}{2}+\frac{n+1}{2(r+2)}=\frac{n+r+3}{2(r+2)},
$$

which contradicts $s(G) > \frac{n+r+3}{2(r+2)}$. We have verified Theorem [7.](#page-2-0)

Remark 1. Now, we explain that the condition on $s(G)$ in Theorem [7](#page-2-0) is sharp.

Let *n* and *r* be two nonnegative integers with $n \geq r+1$, let H_1 and H_2 be two big suns, and let $G = K_{n+r+2} \vee ((2r+3)K_1 \cup H_1 \cup H_2 \cup \{e\})$, where $e = uv, u \in V(H_1)$ and $v \in V(H_2)$. We know that G is $(n + r + 2)$ -connected and $s(G) = \frac{|V(K_{n+r+2}) \cup \{v\}|}{\sin(G - (V(K_{n+r+2}) \cup \{v\}))} = \frac{n+r+3}{2(r+2)}$. Let $Q \subseteq V(K_{n+r+2}) \subseteq V(G)$ with $|Q| = n$. Then $G - Q - e = K_{r+2} \vee ((2r+3)K_1 \cup H_1 \cup H_2)$. Let $X =$ $V(K_{r+2}) \subseteq V(G-Q-e)$. Then we obtain

$$
sun(G - Q - e - X) = 2r + 5 > 2(r + 2) = 2|X|.
$$

From Theorem [1,](#page-1-0) $G-Q-e$ has no $P_{\geq 3}$ -factor, and so G is not $(P_{\geq 3}, n)$ -factor critical deleted.

Remark 2. Now, we claim that the condition of $(n + r + 2)$ -connectedness in Theorem [7](#page-2-0) is the best possible.

Let $G = K_{n+r+1} \vee ((2r+1)K_1 \cup P_3)$, where *n* and *r* are two integers with $n-2 \ge r \ge 0$. Let $P_3 = x_1x_2x_3$. We know that G is $(n+r+1)$ -connected and $s(G) = \frac{|V(K_{n+r+1}) \cup \{x_2\}|}{\sin(G - (V(K_{n+r+1}) \cup \{x_2\}))} = \frac{n+r+2}{2r+3} > \frac{n+r+3}{2(r+2)}.$ Let $Q \subseteq V(K_{n+r+1}) \subseteq$ $V(G)$ with $|Q| = n$ and $e \in E(P_3)$. Then $G-Q-e = K_{r+1} \vee ((2r+2)K_1 \cup K_2)$. Let $X = V(K_{r+1}) \subseteq V(G - Q - e)$. Then we have

$$
sun(G - Q - e - X) = 2r + 3 > 2(r + 1) = 2|X|.
$$

Using Theorem [1,](#page-1-0) $G-Q-e$ has no $P_{\geq 3}$ -factor, and so G is not $(P_{\geq 3}, n)$ -factor critical deleted.

3. The proof of Theorem [8](#page-3-0)

Proof of Theorem [8.](#page-3-0) Theorem [8](#page-3-0) obviously holds for a complete graph. Next, we always assume that G is not complete. Let $Q \subseteq V(G)$ with $|Q| = n$, and let $H = G - Q$. It suffices to prove that H is $P_{\geq 3}$ -factor covered. For a

 \Box

contradiction, suppose that H is not $P_{\geq 3}$ -factor covered. Then by Theorem [2,](#page-2-1) we have

 $sun(H - X) > 2|X| - \varepsilon(X) + 1$ (2)

for some vertex set X of H .

In the following, we discuss four cases by the value of $|X|$.

Case 1. $|X| = 0$.

Obviously, $\varepsilon(X) = 0$. According to (1), $sun(H) \geq 1$. Note that G is $(n +$ $r+1$ -connected, and so $|V(G)| \geq n+r+2$. Hence, H is $(r+1)$ -connected, which implies $\omega(H) = 1$. Thus, we get

$$
1 \le \operatorname{sun}(H) \le \omega(H) = 1,
$$

namely,

$$
sun(H) = \omega(H) = 1.
$$

Combining this with $|V(H)| = |V(G)| - |Q| \ge (n + r + 2) - n = r + 2 \ge 3$, we know that H is a big sun. Then there exists a vertex x in H such that $d_H(x) = 1$, and so

$$
d_G(x) \le d_{G-Q}(x) + |Q| = d_H(x) + n = n + 1,
$$

which contradicts that G is $(n + r + 1)$ -connected.

Case 2. $|X| = 1$.

In this case, $\varepsilon(X) \leq 1$. In light of (1), we get

$$
\omega(G - Q - X) = \omega(H - X) \ge \sup(H - X) \ge 2|X|
$$

-
$$
\varepsilon(X) + 1 \ge 2|X| = 2 > 1 = \omega(G),
$$

which implies that G is at most $(n + 1)$ -connected, which contradicts that G is $(n + r + 1)$ -connected.

Case 3.
$$
2 \leq |X| \leq r
$$
. From (1), $\varepsilon(X) \leq 2$ and $\omega(G) = 1$, we derive\n
$$
\omega(G - Q - X) = \omega(H - X) \geq \sup(H - X) \geq 2|X|
$$
\n
$$
-\varepsilon(X) + 1 \geq 2|X| - 1 \geq 4 - 1 = 3 > 1 = \omega(G),
$$

which implies that G is at most $(n + r)$ -connected, which contradicts that G is $(n + r + 1)$ -connected.

Case 4. $|X| \geq r + 1$.

It follows from (1), $\varepsilon(X) \leq 2$ and $r \geq 1$ that

$$
sun(G - Q - X) = sun(H - X) \ge 2|X| - \varepsilon(X)
$$

+1 \ge 2|X| - 1 \ge 2(r + 1) - 1 = 2r + 1 \ge 3.

Combining this with the definition of $s(G)$, we infer

$$
s(G) \le \frac{|Q \cup X|}{\sin(G - Q - X)} \le \frac{n + |X|}{2|X| - 1} = \frac{1}{2} + \frac{n + \frac{1}{2}}{2|X| - 1}
$$

$$
\le \frac{1}{2} + \frac{n + \frac{1}{2}}{2(r + 1) - 1} = \frac{n + r + 1}{2r + 1},
$$

which contradicts $s(G) > \frac{n+r+1}{2r+1}$. This completes the proof of Theorem [8.](#page-3-0) \Box

Remark 3. We now show that the condition $s(G) > \frac{n+r+1}{2r+1}$ in Theorem [8](#page-3-0) cannot be replaced by $s(G) \geq \frac{n+r+1}{2r+1}$.

Let $G = K_{n+r+1} \vee ((2r+1)K_1)$, where $n \geq 0$ and $r \geq 1$ are two integers. We easily see that G is $(n + r + 1)$ -connected and $s(G) = \frac{|V(K_{n+r+1})|}{\sin(G - V(K_{n+r+1}))}$ $\frac{n+r+1}{2r+1}$. Let $Q \subseteq V(K_{n+r+1}) \subseteq V(G)$ with $|Q| = n$. Then $G - Q = K_{r+1} \vee$ $((2r+1)K_1)$. Select $X = V(K_{r+1})$ in $G - Q$. Then $\varepsilon(X) = 2$ by the definition of $\varepsilon(X)$. Thus, we derive

$$
sun(G - Q - X) = 2r + 1 > 2(r + 1) - 2 = 2|X| - \varepsilon(X).
$$

In light of Theorem [2,](#page-2-1) $G - Q$ is not $P_{\geq 3}$ -factor covered. So G is not $(P_{\geq 3}, n)$ factor critical covered.

Remark 4. We now claim that the condition of $(n + r + 1)$ -connectedness in Theorem [8](#page-3-0) is sharp.

Let $G = K_{n+r} \vee ((2rK_1) \cup M)$, where $n > r \geq 1$ are two integers, and M is a connected graph not being a sun. Clearly, G is $(n + r)$ -connected and $s(G) = \frac{|V(K_{n+r})|}{\sup(G-V(K_{n+r}))} = \frac{n+r}{2r} > \frac{n+r+1}{2r+1}$. Let $Q \subseteq V(K_{n+r}) \subseteq V(G)$ with $|Q| = n$. Then $G - Q = K_r \vee ((2rK_1) \cup M)$. Choose $X = V(K_r)$ in $G - Q$. Then $1 \leq \varepsilon(X) \leq 2$ by the definition of $\varepsilon(X)$. Thus, we acquire

$$
sun(G - Q - X) = 2r > 2r - 1 \ge 2|X| - \varepsilon(X).
$$

It follows from Theorem [2](#page-2-1) that $G - Q$ is not $P_{\geq 3}$ -factor covered. Hence, G is not $(P_{\geq 3}, n)$ -factor critical covered.

Acknowledgements

The authors are indebted to the anonymous referees for their kind comments and constructive suggestions in improving this paper.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Bazgan, C., Benhamdine, A., Li, H., Woźniak, M.: Partitioning vertices of 1-tough graph into paths. Theoret. Comput. Sci. **263**, 255–261 (2001)
- [2] Gao, W., Wang, W., Chen, Y.: Tight bounds for the existence of path factors in network vulnerability parameter settings. Int. J. Intell. Syst. **36**, 1133–1158 (2021)
- [3] Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Combin. Theory Ser. B **88**, 195–218 (2003)
- [4] Kano, M., Katona, G.Y., Király, Z.: Packing paths of length at least two. Dis. Math. **283**, 129–135 (2004)
- [5] Kano, M., Lu, H., Yu, Q.: Component factors with large components in graphs. Appl. Math. Lett. **23**, 385–389 (2010)
- [6] Kelmans, A.: Packing 3-vertex paths in claw-free graphs and related topics. Dis. Appl. Math. **159**, 112–127 (2011)
- [7] Wang, H.: Path factors of bipartite graphs. J. Graph Theory **18**, 161–167 (1994)
- [8] Zhang, H., Zhou, S.: Characterizations for $P_{>2}$ -factor and $P_{>3}$ -factor covered graphs. Dis. Math. **309**, 2067–2076 (2009)
- [9] Zhou, S.: Remarks on path factors in graphs. RAIRO Oper. Res. **54**(6), 1827–1834 (2020)
- [10] Zhou, S.: Some results about component factors in graphs. RAIRO Oper. Res. **53**(3), 723–730 (2019)
- [11] Zhou, S.: Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory, <https://doi.org/10.7151/dmgt.2364>
- [12] Zhou, S., Bian, Q., Pan, Q.: Path factors in subgraphs. Dis. Appl. Math. (2021). [https://](https://doi.org/10.1016/j.dam.2021.04.012) doi.org/10.1016/j.dam.2021.04.012
- [13] Zhou, S., Bian, Q., Sun, Z.: Two sufficient conditions for component factors in graphs. Discuss. Math. Graph Theory. (2021). <https://doi.org/10.7151/dmgt.2401>
- [14] Zhou, S., Sun, Z.: Some existence theorems on path factors with given properties in graphs. Acta Mathe. Sinica English Ser. **36**(8), 917–928 (2020)
- [15] Zhou, S., Sun, Z., Liu, H.: Isolated toughness and path-factor uniform graphs. RAIRO Oper. Res. **55**(3), 1279–1290 (2021)
- [16] Zhou, S., Sun, Z., Liu, H.: Sun toughness and ^P≥3-factors in graphs. Contribut. Dis. Math. **14**(1), 167–174 (2019)

Sizhong Zhou, Jiancheng Wu and Qiuxiang Bian School of Science Jiangsu University of Science and Technology Zhenjiang 212100 Jiangsu China e-mail: zsz cumt@163.com

Received: May 28, 2021 Revised: October 15, 2021 Accepted: October 15, 2021