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Abstract. In this paper, some results involving isoptic curves and constant φ-width curves
are given for any closed curve. The non-convex case, as well as non-simple shapes with
or without cusps are considered. Relating the construction of isoptics to the construction
given in Holditch’s theorem, a kind of curves is defined: the isochordal-viewed curves. The
explicit expression of these curves is given together with some examples. Integral formulae
on the area of their isoptics are obtained and a Barbier-type theorem is derived. Finally, a
characterization for isochordal-viewed hedgehogs and curves of constant φ-width is given in
terms of an angle function.
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1. Introduction

1.1. Definition of isoptic curves

Consider first a regular convex planar curve α : [0, 2π] → R
2 defined by a

support function h ∈ C2. This is,

α(t) = h(t) (cos t, sin t) + h′(t) (− sin t, cos t).

Denote by t and n = Jt the tangent and normal vectors, respectively, of α at
α(t).

Given φ ∈ ]0, π[, the φ-isoptic of α is the locus of points from which the
curve α is seen under a constant angle π − φ (see for instance [4] and [5]).
For each t ∈ [0, 2π], the supporting lines that contain the curve α under this
constant angle π − φ are those that touch the curve at the points α(t) and
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Figure 1. Definition of the φ-isoptic αφ of α

α(t+φ) (see Fig. 1). Denote by λ1(t, φ) the distance from α(t) to the φ-isoptic
and by λ2(t, φ) the same from α(t + φ).

Thus, the φ-isoptic of α can be written in two different ways as a curve
αφ : [0, 2π] → R

2 defined by:

αφ(t) = α(t) + λ1(t, φ) t(t)

= α(t + φ) − λ2(t, φ) t(t + φ). (1.1)

Isoptic curves have been studied thoroughly for smooth convex curves in
the last decades (see for instance the cited papers [4] and [5], among many
others by the same authors). If α is a strictly convex curve, then for any point
in the outside region determined by α there exists a unique pair of tangents
to α. This is essential to properly define isoptic curves. The angle φ in the
definition of its φ-isoptic can be computed easily as the angle between these
two tangents.

Nevertheless, only few references on isoptics for non-convex curves are found
in the literature. In the paper [7] a symbolic study on the isoptics of an astroid
was performed. Astroid curves are examples of non-convex curves with cusps.
In this example it was shown that there exist points where three tangents
to the astroid are found. If a pre-defined angle is considered, namely φ, the
third tangent is irrelevant as it is pointed out in the same paper. Doing a
careful study of the astroid example, we can see that the angle between the
tangents does not remain exactly constant. See Fig. 2: at the beginning, the
angle between the tangents is indeed φ, but when one of the tangents passes
through one of the cusps, then the angle between the tangents turns into π−φ.
This would go against the definition of an isoptic which demands the curve
to be seen under a constant angle. In order to avoid this issue for non-convex
curves, we take the definition of an isoptic given in recent papers such as [7]
or [8], which can be stated in the following manner.

Definition 1.1. (Isoptic curve) Given a planar curve α and an angle φ ∈ ]0, π[,
define the φ-isoptic of α as the curve defined by the locus of points through
which a pair of tangents to α pass making an angle of φ.
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φ

π – φ

Figure 2. The astroid curve
(
cos3 t, sin3 t

)
and its φ-isoptic,

for φ = π/3. The angle between the tangent lines is piecewise-
constant equal to π/3 or 2π/3

Note that this definition allows the angle between the tangents to be φ or
π − φ.

1.2. Sliding a constant length chord seen under a constant angle

In the non-convex case, the definition of the φ-isoptic with the distance func-
tions λ1 or λ2 as in (1.1) must be written carefully, since these two distance
functions may include sign changes. The consideration of these sign changes is
essential for non-convex curves, because they may happen due to non-simple
shapes or cusps, for example. The sign is dependent on the oriented angle from
one tangent to the other, which may be either φ or π − φ up to a multiple of
π. This will be discussed later in Proposition 2.1.

In [11], the authors worked with a special kind of convex bodies. Let K be
a strictly convex body in R

2 with differentiable boundary and let φ ∈ ]0, π[. A
straight segment connecting two points of this boundary is called a φ-chord if
the tangent lines to K at these two points intersect at an angle φ. In the cited
paper, the authors considered convex bodies with φ-chords of constant length.
Some interesting partial results were given (under some conditions) towards
the Euclidean disc being the only example of this kind of convex bodies (the
general result is still open).

In this paper, we will study precisely the kind of curves given by the bound-
ary of such sets, but not restricted to the convex case. Recall that the sliding
of a constant length chord around a given curve corresponds to the famous
setting studied by Hamnet Holditch in 1858, [10], and by many other authors
in papers such as [1,6] or, more recently, in the works [3,14] and [17]. In fact,
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in [3] the reader can find some results on sliding chords in the construction
of isoptics and a new result on areas of ring domains in a modified Holditch
construction.

To sum up, we will give a name to the kind of curves to be considered in
this work.

Definition 1.2. (Isochordal-viewed curve) Given φ ∈ ]0, π[ and � > 0, a planar
curve α is said to be (φ, �)-isochordal viewed if the φ-isoptic of α, αφ, is such
that the chord joining the contact points with α of its supporting lines meeting
at αφ has constant length �.

The obvious example of a curve where a constant length chord can travel
around and which can always be seen under a constant angle is the circle
(and it might be the only convex example, but this is just a conjecture for
now). Nevertheless, in the non-convex case other examples different from the
circle can be given and the definition does not become trivial. In fact, in
Examples 3.2, 3.3 we will study two hedgehogs which are isochordal-viewed.
Moreover, a 1-parameter family of examples will be given in Example 3.4.

The paper is structured as follows. First, in Sect. 2, the general setting
for isochordal-viewed curves is addressed and the explicit expression for the
φ-isoptic of a given closed curve is obtained (Proposition 2.1). The proof of
this expression leads to a generalization of the so-called sine-theorem for isop-
tics (Remark 2.2). In Sect. 3, the definition of curves of constant φ-width is
recalled and some examples of (φ, �)-isochordal-viewed curves and curves of
constant φ-width are constructed. After that, in Sect. 4 we derive some formu-
lae on the area of the isoptics of isochordal-viewed curves (Propositions 4.2 and
4.4), together with a Barbier-type theorem for isochordal-viewed curves (The-
orem 4.6). Finally, in Sect. 5 a characterization of when an isochordal-viewed
hedgehog is a curve of constant φ-width is given (Theorem 5.4).

2. General setting for isochordal-viewed curves

Henceforth, let α : I → R
2 be a piecewise-regular closed planar curve, where I

is some real interval (and assume that the curve can be extended to the whole
R by periodicity). Recall that the Holditch function f : I → f(I), see [14], is
defined as the homeomorphism that given the rear endpoint α(t) of the sliding
chord produces the front one, α

(
f(t)

)
. Note that the definition of f depends on

the chosen parameterization of α and it assumes that no retrograde movements
are done by the moving chord.

Henceforth, given a curve α : I → R
2 and an angle φ ∈ ]0, π[, we will

define f : I → f(I) such that α(t) and α
(
f(t)

)
are the contact points of

α where two tangent lines to α meet at an angle φ. This function will be
called the Holditch function for the parameterization α and the angle φ. For
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Figure 3. Definition of the Holditch function f , the angles
ν, μ and φ, and the distance functions d, λ1 and λ2

(φ, �)-isochordal-viewed hedgehogs parameterized by a support function, this
Holditch function is just a translation by the angle φ: f(t) = t + φ.

Define the distance function d : I → [0,+∞[ as

d(t) :=
∥
∥
∥α

(
f(t)

) − α(t)
∥
∥
∥.

In the situation we are addressing, where the constant length is �, we have
the constraint:

d(t) :=
∥
∥
∥α

(
f(t)

) − α(t)
∥
∥
∥ = �, for all t ∈ I. (2.1)

We will call this constraint as the isochordal condition.
Define ν(t) as the oriented angle function from t(t) to α

(
f(t)

) − α(t) and
μ(t) as the oriented angle function from α

(
f(t)

) − α(t) to t
(
f(t)

)
. Assume

that the starting angle at inf I is oriented in ] − π, π]. Note that, again, the
angles ν and μ depend on the chosen parameterization α. From now on, ν and
μ will denote these two oriented angle functions with respect to the chosen
parameterization (see Fig. 3 for a visualization of these angle functions).

By the definition of ν, we have:

α
(
f(t)

) − α(t) = d(t)
(
cos ν(t) t(t) + sin ν(t)n(t)

)
. (2.2)

Analogously, by the definition of μ we can deduce:

α
(
f(t)

) − α(t) = d(t)
(
cos μ(t) t

(
f(t)

) − sin μ(t)n
(
f(t)

))
. (2.3)

Define

φ̃(t) := ν(t) + μ(t).
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We have that φ̃ is a piecewise-constant function (either φ or π − φ up to a
multiple of π), which gives an oriented angle from t(t) to t

(
f(t)

)
. Thus,

t
(
f(t)

)
= cos φ̃(t) t(t) + sin φ̃(t)n(t),

n
(
f(t)

)
= − sin φ̃(t) t(t) + cos φ̃(t)n(t). (2.4)

The relation between φ̃ and φ is the following:

φ =
∣
∣φ̃(t) mod π

∣
∣, for any t ∈ I.

In the convex case, φ̃(t) = φ for all t ∈ I.
The functions λ1 and λ2 can be computed geometrically by the cosine

rule (see Fig. 3). Nevertheless, the computations must be carried out carefully
because of possible changes in angles and signs. Instead, we will derive the
expression of the φ-isoptic of α by finding the intersection point between the
tangent lines at α(t) and α

(
f(t)

)
. We will do it in the general scenario of any

curve, not necessarily verifying the isochordal condition.

Proposition 2.1. Let � > 0, φ ∈ ]0, π[ and let α : I → R
2 be a regular curve.

The φ-isoptic of α can be written as

αφ(t) = α(t) + λ1(t, φ) t(t)

= α
(
f(t)

) − λ2(t, φ) t
(
f(t)

)
,

where f : I → f(I) is the Holditch function for the parameterization α and
the angle φ,

λ1(t, φ) =
d(t) sin μ(t)

sin φ̃(t)
and λ2(t, φ) =

d(t) sin ν(t)
sin φ̃(t)

,

with d(t) being the distance from α(t) to α
(
f(t)

)
and with φ̃(t) = ν(t) + μ(t).

Proof. By definition,

d(t) :=
∥
∥
∥α

(
f(t)

) − α(t)
∥
∥
∥.

Let α(t) =
(
x(t), y(t)

)
. The tangent vector of α at α(t) can be written as

t(t) =

(
x′(t)

√
x′2(t) + y′2(t)

,
y′(t)

√
x′2(t) + y′2(t)

)

.

The condition to find the intersection point between the tangent lines to α at
α(t) and α

(
f(t)

)
, namely

α(t) + λ1(t, φ) t(t) = α
(
f(t)

) − λ2(t, φ) t
(
f(t)

)
,
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produces a system of two equations with unknowns λ1(t, φ) and λ2(t, φ). By
solving it, we find the expression of λ1(t, φ):

√
x′2(t) + y′2(t)

(
−(

y
(
f(t)

) − y(t)
)
x′(f(t)

)
+

(
x
(
f(t)

) − x(t)
)
y′(f(t)

))

x′(t) y′(f(t)
) − y′(t)x′(f(t)

) ,

and that of λ2(t, φ):
√

x′2(f(t)
)

+ y′2(f(t)
) (

−(
y
(
f(t)

) − y(t)
)
x′(t) +

(
x
(
f(t)

) − x(t)
)
y′(t)

)

y′(t)x′(f(t)
) − x′(t) y′(f(t)

) .

These two expressions can be simplified. The first one can be written as

λ1(t, φ) =
−∥

∥α′(t)
∥
∥

〈
α
(
f(t)

) − α(t), Jα′(f(t)
)〉

−
〈
α′(t), Jα′(f(t)

)〉

=

〈
α
(
f(t)

) − α(t), n
(
f(t)

)〉

〈
t(t), n

(
f(t)

)〉 .

From Eqs. (2.3) and (2.4), we get
〈
α
(
f(t)

) − α(t), n
(
f(t)

)〉
= −d(t) sin μ(t)

and
〈
t(t), n

(
f(t)

)〉
= − sin φ̃(t).

Therefore, we conclude

λ1(t, φ) =
d(t) sin μ(t)

sin φ̃(t)
.

Similarly, with Eqs. (2.2) and (2.4), we get

λ2(t, φ) =
−

∥
∥
∥α′(f(t)

)∥∥
∥

〈
α
(
f(t)

) − α(t), Jα′(t)
〉

−
〈
α′(f(t)

)
, Jα′(t)

〉

=

〈
α
(
f(t)

) − α(t), n(t)
〉

〈
t
(
f(t)

)
, n(t)

〉 =
d(t) sin ν(t)

sin φ̃(t)
.

That completes the proof. �

Remark 2.2. (Sine-theorem for isoptics) Notice that the computation of the
distance functions λ1 and λ2 in Proposition 2.1 constitutes a generalization to
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any closed curve of the sine-theorem for convex isoptics given in [4]: it holds
that

d(t)
sin φ̃(t)

=
λ1(t, φ)
sin μ(t)

=
λ2(t, φ)
sin ν(t)

.

Moreover, notice that the φ-isoptic of a piecewise-C2 curve is piecewise-C2.

Remark 2.3. For (φ, �)-isochordal-viewed curves, the conclusion of Proposi-
tion 2.1 is the same but for a constant length function d(t) = �, i.e.

λ1(t, φ) =
� sin μ(t)
sin φ̃(t)

and λ2(t, φ) =
� sin ν(t)
sin φ̃(t)

.

Remark 2.4. Since

φ̃(t) =

⎧
⎪⎨

⎪⎩

φ + k π, k ∈ Z,

or
π − φ + k π, k ∈ Z,

we can write

sin φ̃(t) = ε(t) sinφ,

where ε is a sign function. The use of this alternative expression for the sine
of φ̃(t) in terms of the sign function ε(t) will be useful later in Sect. 4.

3. Curves of constant φ-width and some examples

An oval is defined as a closed convex C2 curve with non-vanishing curvature.
In Equation (5.7) of [4] the expression of the curvature of the φ-isoptic of an
oval α was given for a parameterization by a support function. Following the
same notation as the authors, this curvature can be written as

κα,φ(t) = sinφ κφ(t), (3.1)

where

κφ(t) =
2
∣
∣q(t)

∣
∣2 − [

q(t), q′(t)
]

∣
∣q(t)

∣
∣3

,

with q(t) = α(t) − α(t + φ) and [a + b i, c + d i] = a d − b c.
In this setting, Mozgawa gave in [16] a generalized notion of constant width

based on the definition of a curve of constant angle (the reader can see [9] and
[13]). Given an oval α and a φ-isoptic of α, with 0 < φ < π, the function κφ

above is called the sine-curvature of the φ-isoptic of α. An oval α is said to be
of constant φ-width if κφ is constant.

Note that this definition implies the following: an oval α is of constant φ-
width if and only if its φ-isoptic is a circle. This holds true even for the case
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φ = π, which corresponds to the classical constant width curves (see [16] for
more details). The characterization above motivates the next definition for any
closed curve, convex or not.

Definition 3.1. (Curve of constant φ-width) A closed curve is called a curve of
constant φ-width if its φ-isoptic is a circle.

Green showed in [9] that there are examples, different from the circle, of
curves of constant angle. But what happens if instead of imposing that κφ is
constant, we set the isochordal condition (2.1)? In the next examples we show
that there are examples different from the circle too.

Example 3.2. Consider the hedgehog α : [0, π] → R
2 defined by the support

function h(t) = cos(3 t) and let φ = π/2. Since π − φ = φ, the angle φ can
be recovered easily as the angle between the tangents t(t) and t(t + φ) for all
t ∈ I.

We have that the isochordal condition is satisfied: the chord joining α(t)
and α(t + φ) for each t ∈ [0, π] has constant length � = 4, i.e.

� =
∥
∥α(t + φ) − α(t)

∥
∥ = 4.

Hence, α is a (φ, �)-isochordal-viewed curve. Nevertheless, α is different from
a circle (see Fig. 4).

Notice that in this case the curve α is negatively (clockwise) oriented. The
oriented angle functions ν and μ can be computed explicitly:

μ(t) = arccos

⎛

⎝−
cot(t)

(
cot2(t) − 3

) √
sin2(3 t)

3 cot2(t) − 1

⎞

⎠ − π,

ν(t) = arccos

(

− tan(t)
(
tan2(t) − 3

) √
cos2(3 t)

3 tan2(t) − 1

)

− π.

The angle function μ is increasing while ν is decreasing and they are both
piecewise-linear functions. We have that

φ̃(t) =

⎧
⎨

⎩

− 3π
2 , if t ≤ π

6 or π
3 < t ≤ π

2 or 2π
3 < t ≤ 5π

6 ,

−π
2 , if π

6 < t ≤ π
3 or π

2 < t ≤ 2π
3 or t > 5π

6 .

In this case, α exhibits three cusps in [0, π], namely, at t = π/6, t = π/2
and t = 5π/6. This makes a change of orientation in the tangent vector of
α when crossing each cusp. In addition, at t = π/3, t = 2π/3 and t = π,
the other tangent goes through each cusp and there, the first tangent crosses
on the other side of the tangent line defined by the second one (see Fig. 4).
That produces a change of sign in the definition of the φ-isoptic of α which is
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(t)t

(t+φ)t
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α(t+φ) αφ(t)

�

α(t+φ) (t+φ)t

α(t)(t)t

αφα
αφ(t) �

(t +φ)t

α(t+φ)

α

αφ

�

αφ(t)
(t)t

α(t)

Figure 4. The curve α is (π/2, 4)-isochordal viewed and it
is different from a circle. The pointing of the tangent vectors
of α change when crossing each cusp and it produces a change
of sign in the definition of the π/2-isoptic απ/2 of α, which
turns out to be a circle of radius 1

contained in the definition of φ̃. By Proposition 2.1, the φ-isoptic of α can be
written as

αφ(t) = α(t) +
� sin μ(t)
sin φ̃(t)

t(t).

In this case, the φ-isoptic of α turns out to be a circle (counterclockwise
oriented and double traced), so that α is also a curve of constant φ-width.
Moreover, its isoptic coincides with the Holditch curve generated by the mid-
point of the moving chord (see Fig. 5). The midpoint Holditch curve can be
written as

Hα(t) =
1
2

(
α(t) + α(t + φ)

)
.

In this example, the relation between the parametric curves Hα and αφ is the
following:

Hα

(
t −

(
−2 arctan

(
1 −

√
2
))

+
π

2

)
= αφ(t).

Example 3.3. Consider the hedgehog α : [0, π] → R
2 defined by the support

function h(t) = cos(5 t) and let φ = π/3. The curve α is negatively (clockwise)
oriented.

The isochordal condition is satisfied:

� =
∥
∥α(t + φ) − α(t)

∥
∥ = 3

√
3.

Hence, α is (φ, �)-isochordal-viewed, which is a curve different from a circle
too (see Fig. 6).
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αφ

Hα

α

Figure 5. The φ-isoptic of α, αφ, coincides with the Holditch
curve of α, Hα. The relation between both parameterizations
is just a translation

(t)t

t(t+φ)

α(f(t)) – α(t)

α

αφ
α

αφ

(t)t

t(t+φ)

α(f(t)) – α(t)

Figure 6. The curve α is (π/3, 3
√

3)-isochordal viewed and
it is different from a circle. When crossing each cusp, the angle
between the tangent vectors varies between either φ or π − φ

The φ-isoptic of α can be computed, by Proposition 2.1, as

αφ(t) = α(t) +
� sin μ(t)
sin φ̃(t)

t(t).

The oriented angle functions ν and μ are again piecewise-linear and can be
computed explicitly. Thus, computing the angle function φ̃(t) = ν(t) + μ(t),
we can see that it is equal to either π

3 or 2π
3 up to a multiple of π. The curve

αφ turns out to be a circle (counterclockwise and triple traced), so that α is a
curve of constant π/3-width.
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α
αφ

Hα

α

αφ

Hα

Figure 7. The curve α, its φ-isoptic αφ and its midpoint
Holditch curve Hα. On the left for φ = π/3 and on the right
for φ = π/2

In this case, the φ-isoptic of α does not coincide with any Holditch curve
of α (see an example in Fig. 7-left).

If we consider the same example but for φ = π/2, then the computations
are quite easy and it can be shown that α is (π/2, 4)-isochordal viewed. In
such a case, its φ-isoptic is again a circle (clockwise and double traced), so
that α is also a curve of constant π/2-width. The midpoint Holditch curve is
a clockwise and double-traced circle but of a greater radius (see Fig. 7-right).

Example 3.4. Following the idea of the two examples above, we are going to
give now a 1-parameter family of hedgehogs which are isochordal-viewed. Let
n ∈ N, φ ∈ ]0, π[ and consider the family of hedgehogs

αn(t) = h(t)
(
cos t, sin t) + h′(t) (− sin t, cos t)

defined by the support function h(t) = cos(n t).
It is straightforward to compute the squared distance function by

d2(t) =
∥
∥αn(t + φ) − αn(t)

∥
∥2

.

Its derivative can be simplified and written as

d′
2(t) = 2n

(
n2 − 1

) (
cos(nφ) − cos φ

)
sin

(
n (2 t + φ)

)
.

If we take φ = π/2, then

cos(nφ) − cos φ = cos
(π n

2

)
.

This equals zero if n = 2k + 1 for any k ∈ Z.
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α

γ

α(t)

γ(t)

w(t)
p(t)

(t)t

Figure 8. Example of a curve γ generated from α according
to an angle function w(t) and a distance function p(t)

Therefore, the family of hedgehogs given by φ = π/2 and n = 2 k + 1, for
all k ∈ Z, are examples of isochordal-viewed curves. Moreover, they are also
curves of constant φ-width. Indeed, it can be seen (see Eq. 5.4 below) that the
curvature of the φ-isoptic is constant. In particular (with the same notation
as in Eq. 5.4 below), we have that

A(t) = 2 − 2 (−1)k (1 + 2 k).

A similar discussion can be done for other angles, for instance φ = π/3,
where n = 5, n = 7, n = 11, n = 13, etc. also giving examples of isochordal-
viewed curves.

4. Integral formulae and areas of isoptics

Given a curve α, generate from α(t) another one at a distance p(t) following
directions given by an oriented angle function w(t) with t(t) (see Fig. 8).

Some properties of this curve, say γ, generated from α, have been given
both in the plane (see [18]) and in constant curvature surfaces (see [19] and
[15]) when the involved curves are closed and simple. Notice that if α is closed
and γ is wanted to be closed, then the functions p and w must be extendable
continuously by periodicity.

Although it is common to assume simple closed curves to define areas, the
notion of area can be extended to any non-simple closed curve as well. Given
a closed curve α (not necessarily simple), the algebraic area of α is referred to
as the area enclosed by α counted by sign and multiplicity. More specifically,
the algebraic area of α is defined by

A(α) =
∫∫

R2
Wind

(
(x, y), α

)
d(x, y), (4.1)
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where Wind
(
(x, y), α

)
is the winding number of α around the point (x, y) ∈ R

2.
Of course, if α is simple and counterclockwise oriented, we have

A(α) =
∫∫

D

d(x, y),

where D is the region of R
2 enclosed by α. Thus, in this case the algebraic

area coincides with the geometric area (positive value).
In addition to Eq. (4.1), thanks to the homological version of Green’s the-

orem (see Theorem 6.8 of [2]), the algebraic area can also be computed with
the usual expression:

A(α) =
∫

α

x dy.

Let’s write now the general formula given in [18] for the area of a generated
curve γ in the plane but extended to any closed curve (not necessarily simple).
We need this extension since, as seen in the examples above, the isochordal-
viewed curves may not be simple. The proof is essentially the same but uses
the definition of algebraic area.

Lemma 4.1. Let α : I → R
2 be a piecewise-regular closed curve parameterized

by arc-length. Suppose γ to be the generated curve from α (where it can be
defined) with a length function p and directions given by a function β : I → R

2

defined by

β(s) = cos w(s) t(s) + sin w(s)n(s).

Suppose that p and β can be continuously extended by periodicity (γ is closed).
Then

A(γ) = A(α) −
∫

I

p(s) sinw(s) ds +
1
2

∫

I

p2(s)
(
w′(s) + κ(s)

)
ds,

where w(s) is the oriented angle function from t(s) to β(s) and κ(s) the cur-
vature function of α.

Notice that φ-isoptics are a particular case of the generated curves, where

w(t) = 0 and p(t) = λ1(t, φ) =
d(t) sin μ(t)

sin φ̃(t)
.

Therefore, from Lemma 4.1, an integral formula relating the area of a (φ, �)-
isochordal-viewed curve α and the area of its φ-isoptic αφ can be deduced.

Proposition 4.2. Let φ ∈ ]0, π[ and let α be a piecewise-regular and closed
(φ, �)-isochordal-viewed curve parameterized by arc length. If αφ denotes the
φ-isoptic of α, then

A(αφ) = A(α) +
�2

2 sin2 φ

∫

I

sin2 μ(s)κ(s) ds,

where κ is the curvature function of α.
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Proof. It is just an application of Lemma 4.1 for the functions

w(s) = 0 and p(s) = λ1(s, φ) =
� sin μ(s)
sin φ̃(s)

= ε(s)
� sin μ(s)

sin φ
,

where ε is a sign function (see Remark 2.4). Of course, ε2(s) = 1. �

In the next lemma, we show the relationship between κ and κ ◦ f .

Lemma 4.3. Let φ ∈ ]0, π[, let α : I → R
2 be a piecewise-regular curve and let

f be the Holditch function for the parameterization α and the angle φ. Then

κ(t)
∥
∥α′(t)

∥
∥ = κ

(
f(t)

) ∥
∥α′(f(t)

)∥∥ f ′(t),

for all t ∈ I such that α is regular at α(t). In particular, if α is arc-length
parameterized where it is regular, then

κ(s) = κ
(
f(s)

)
f ′(s),

for all s ∈ I such that α is regular at α(s).

Proof. Let σ : I → R be the oriented angle function from the positive OX axis
to the tangent t(t) of the curve α at α(t). By definition (see Sect. 2),

φ̃(t) = σ
(
f(t)

) − σ(t) (4.2)

for all t ∈ I such that α is regular at α(t). The function φ̃(t) is piecewise-
constant, it is equal to φ or π − φ up to a multiple of π. Recall that σ′(t) =∥
∥α′(t)

∥
∥ κ(t). Thus, differentiating the expression (4.2), we get

0 = κ
(
f(t)

) ∥
∥α′(f(t)

)∥∥ f ′(t) − κ(t)
∥
∥α′(t)

∥
∥.

�

A similar integral formula to the one given in Proposition 4.2 can be derived
but generating the φ-isoptic of α from the parameterization α ◦ f of the curve
α.

Proposition 4.4. Let φ ∈ ]0, π[ and let α be a piecewise-regular and closed
(φ, �)-isochordal-viewed curve parameterized by arc length. If αφ denotes the
φ-isoptic of α, then

A(αφ) = A(α) +
�2

2 sin2 φ

∫

I

sin2 ν(s)κ(s) ds,

where κ is the curvature function of α.

Proof. Let f be the Holditch function for the parameterization α and the angle
φ. Let s be the arc-length parameter of α. Generate from (α◦f)(s) the φ-isoptic
of α with the angle w(s) = π and the distance function p(s) = λ2(s, φ). Notice
that κα◦f (s) = κ

(
f(s)

)
and that the new arc-length parameter of α ◦ f is

sα◦f (s) =
∫ s

s0

f ′(u) du.
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Hence, dsα◦f = f ′(s) ds. Thus, from Lemma 4.1, we find

A(αφ) = A(α) +
�2

2 sin2 φ

∫

I

sin2 ν(s)κ
(
f(s)

)
f ′(s) ds.

Finally, use Lemma 4.3 to write it as in the statement. �
As a consequence of Propositions 4.2 and 4.4 we can find an integral formula

involving the angle functions ν and μ and the curvature κ of the curve.

Corollary 4.5. Let φ ∈ ]0, π[. If α is a piecewise-regular and closed (φ, �)-
isochordal-viewed curve parameterized by arc length, then

∫

I

(
sin2 ν(s) − sin2 μ(s)

)
κ(s) ds = 0.

Next, we will give the explicit value for the total sine of the angle function
ν of an isochordal-viewed curve. Define chord revolutions as the number of
positive (counterclockwise) revolutions minus the number of negative (clock-
wise) revolutions done by the moving chord (seen as an indicatrix). If the
chord comes back to its former position without making any full revolution,
the chord revolutions are zero.

Theorem 4.6. Let α be a piecewise-regular and closed (φ, �)-isochordal-viewed
curve. Then ∫

I

sin ν(s) ds = π � n, (4.3)

where n is the number of chord revolutions.

Proof. Suppose that α is arc-length parameterized in its regular parts. We
will use Lemma 4.1 when the generated curve γ is the parameterization α ◦ f ,
with f being the Holditch function for the parameterization α and the angle
φ. Thus, with the notation of Lemma 4.1, we have A(α) = A(α ◦ f), p(s) = �
and w(s) = ν(s). Therefore,

�

∫

I

sin ν(s) ds − �2

2

∫

I

(
ν′(s) + κ(s)

)
ds = 0. (4.4)

Notice that ∫

I

ν′(s) ds = 2π m, and
∫

I

κ(s) ds = 2π I,

where m is the number of revolutions of the moving chord with respect to
the tangent vector of α and I is the rotation index of the regular parts of
α (without taking into account the jump angles at the cusps). Thus, from
Eq. (4.4) we find

∫

I

sin ν(s) ds = π � (m + I).

Finally, notice that n = m + I is the number of chord revolutions. �
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Theorem 4.6 is a kind of Barbier-type theorem for isochordal-viewed curves.
Note that the classical Barbier theorem for constant width curves can be de-
duced from Lemma 4.1 when w(s) = π/2 and p(s) = � in the same way as
in the proof above. The fact is that for isochordal-viewed curves, the angle
function ν may not be constant and, thus, the left-hand side of Eq. (4.3) must
be written in an integral form.

Example 4.7. Let’s continue with Example 3.2 to check the integral formulae
given above. The curvature function of α is

κ(t) =

〈
α′′(t), Jα′(t)

〉

∥
∥α′(t)

∥
∥3 =

1
8
√

cos2(3 t)
.

In this example recall that φ = π/2 and � = 4. Moreover, we have that

A(α) = −2π, and A(αφ) = 2π.

The formulae of Propositions 4.2 and 4.4 can be easily checked, since it can
be seen explicitly that the integrals

A(α) +
�2

2 sin2 φ

∫ π

0

sin2 μ(t)κ(t)
∥
∥α′(t)

∥
∥ dt

and

A(α) +
�2

2 sin2 φ

∫ π

0

sin2 ν(t)κ(t)
∥
∥α′(t)

∥
∥ dt

are both equal to 2π, the area of the φ-isoptic of α.
The moving chord makes in [0, π] a full clockwise revolution. This means

that the chord revolutions here are n = −1. This number can be computed, as
seen in the proof of Theorem 4.6 as the sum of the number of revolutions of
the moving chord vector α(t + π) − α(t) with respect to t(t) and the number
I, which is the rotation index of the regular parts of α. The first number can
be computed as

m =
1
2π

∫ π

0

ν′(t) dt = −3
2
,

and the second one as

I =
1
2π

∫ π

0

κ(t)
∥
∥α′(t)

∥
∥ dt =

1
2
.

Therefore, on the one hand, n = m + I = − 3
2 + 1

2 = −1 and the right-hand
side of Eq. (4.3) is π � n = −4π. On the other hand, its left-hand side can be
computed explicitly:

∫ π

0

sin ν(t)
∥
∥α′(t)

∥
∥ dt = −4π,

so that Theorem 4.6 is checked in this example.
A similar discussion can be done for the curve of Example 3.3.
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5. Characterization for curves of constant φ-width

In the previous sections we have seen some examples of (φ, �)-isochordal-viewed
curves constructed as hedgehogs by a support function h. It happened that all
of them were examples of curves of constant φ-width too. In this section we
will prove a characterization on that fact in terms of the angle function ν.

Let α : [0, 2π] → R
2 be a regular hedgehog defined by a support function

h ∈ C2:

α(t) = h(t) (cos t, sin t) + h′(t) (− sin t, cos t).

Recall that h(t) is the signed distance from the origin to the supporting line
of α with exterior normal vector (cos t, sin t). The reader can see the works of
Mart́ınez-Maura on hedgehogs for a detailed discussion, e.g. [12].

In general, α is not a convex curve. We have that the radius R of curvature
verifies

R(t) =
∥
∥α′(t)

∥
∥ =

∣
∣h(t) + h′′(t)

∣
∣.

A singularity-free hedgehog is a convex curve. Thus, α is convex if and only if

h(t) + h′′(t) > 0, for all t ∈ [0, 2π].

To prove the characterization said above, we will need two lemmas.

Lemma 5.1. Let α : I → R
2 be a curve satisfying the isochordal condition (2.1)

for a Holditch function f and length � > 0. Then
∥
∥α′(t)

∥
∥ cos ν(t) = f ′(t)

∥
∥α′(f(t)

)∥∥ cos μ(t).

Proof. The isochordal condition can be written as
∥
∥α

(
f(t)

) − α(t)
∥
∥2 = �2.

Differentiating this equation, we get

f ′(t)
〈
α′(f(t)

)
, α

(
f(t)

) − α(t)
〉

=
〈
α′(t), α

(
f(t)

) − α(t)
〉
.

Thus,

f ′(t)
∥
∥α′(f(t)

)∥∥ � cos μ(t) =
∥
∥α′(t)

∥
∥ � cos ν(t).

Since � �= 0, we deduce the expression of the statement. �

Lemma 5.2. Let φ ∈ ]0, π[ and let α : I → R
2 be a piecewise-C2 (φ, �)-

isochordal-viewed hedgehog parameterized by a support function h ∈ C3. Then

�
(
ν′(t) + 1

)
cos μ(t) =

∥
∥α′(t)

∥
∥ sin φ̃(t)

for all t ∈ I such that α is regular at t.
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Proof. From the definition of ν, we have:
〈
α(t + φ) − α(t), t(t)

〉
= � cos ν(t).

Differentiating this expression and using
〈
α(t + φ) − α(t), n(t)

〉
= � sin ν(t),

we get
∥
∥α′(t + φ)

∥
∥ cos φ̃(t) − ∥

∥α′(t)
∥
∥ + κ(t)

∥
∥α′(t)

∥
∥ � sin ν(t) = −� sin ν(t) ν′(t).

This can be rewritten as

� sin ν(t)
(
ν′(t) + 1

)
=

∥
∥α′(t)

∥
∥ − ∥

∥α′(t + φ)
∥
∥ cos φ̃(t), (5.1)

where we have used the fact:

κ(t)
∥
∥α′(t)

∥
∥ = 1.

Now, following the same procedure but for the equation
〈
α(t + φ) − α(t), t(t + φ)

〉
= � cos μ(t),

we arrive at

� sin μ(t)
(
μ′(t) − 1

)
=

∥
∥α′(t)

∥
∥ cos φ̃(t) − ∥

∥α′(t + φ)
∥
∥. (5.2)

Subtracting from (5.1) Eq. (5.2) multiplied by cos φ̃(t), we get

� sin ν(t)
(
ν′(t) + 1

) − � sin μ(t) cos φ̃(t)
(
μ′(t) − 1

)
=

∥
∥α′(t)

∥
∥ sin2 φ̃(t).

Now, since φ̃ is piecewise-constant, 0 = φ̃′(t) = ν′(t) + μ′(t), so that μ′(t) =
−ν′(t). Using this in the equation above, we get

�
(
ν′(t) + 1

) (
sin ν(t) + sin μ(t) cos φ̃(t)

)
=

∥
∥α′(t)

∥
∥ sin2 φ̃(t).

Equivalently,

�
(
ν′(t) + 1

)
cos μ(t) sin φ̃(t) =

∥
∥α′(t)

∥
∥ sin2 φ̃(t). (5.3)

Finally, since φ ∈ ]0, π[, by the definition of φ̃ we have that sin φ̃(t) �= 0 for all
t ∈ I. Thus, by dividing (5.3) by sin φ̃(t), the expression of the statement is
found. �

Proposition 5.3. Let α be a piecewise-C2 (φ, �)-isochordal-viewed hedgehog pa-
rameterized by a support function h ∈ C3. Then the curvature of the φ-isoptic
of α is

κα,φ(t) =
sin φ̃(t)

�

(
1 − ν′(t)

)
,

for all t ∈ I such that α is regular at t.
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Proof. Since φ̃′(t) = 0, the expression (3.1) for the curvature of the φ-isoptic
of a curve α still works for non-convex curves. This curvature can be written
as

κα,φ(t) =
sin φ̃(t)

�3
(
2 �2 − A(t)

)
, (5.4)

where

A(t) =
〈
α(t + φ) − α(t), Jα′(t) − Jα′(t + φ)

〉

= �
∥
∥α′(t)

∥
∥ sin ν(t) + �

∥
∥α′(t + φ)

∥
∥ sin μ(t).

By Lemma 5.1:
∥
∥α′(t)

∥
∥ cos ν(t) =

∥
∥α′(t + φ)

∥
∥ cos μ(t). (5.5)

This implies that if cos μ(t0) = 0 for some t0 ∈ I, then
∥
∥α′(t0)

∥
∥ = 0 (because

cos ν(t0) �= 0, otherwise φ = 0 or π). Therefore, if we are at a regular point t0
of α (not at a cusp), then cosμ(t0) �= 0.

Thus, if t ∈ I is such that α is regular at t, from Eq. (5.5):

∥
∥α′(t + φ)

∥
∥ =

∥
∥α′(t)

∥
∥ cos ν(t)

cos μ(t)
.

Substituting this in the expression of A(t) an simplifying, it is deduced

A(t) = �
∥
∥α′(t)

∥
∥ sin φ̃(t)

cos μ(t)
.

Now, use Lemma 5.2 to get

A(t) = �2
(
1 + ν′(t)

)
.

Therefore, Eq. (5.4) takes the form

κα,φ(t) =
sin φ̃(t)

�3
(
2 �2 − �2 − �2 ν′(t)

)

=
sin φ̃(t)

�

(
1 − ν′(t)

)
,

as in the statement. �

Immediately from Proposition 5.3, we have the following result, which
shows when an isochordal-viewed hedgehog is a curve of constant φ-width.

Theorem 5.4. Let α be a piecewise-C2 (φ, �)-isochordal-viewed hedgehog param-
eterized by a support function h ∈ C3. The curve α is of constant φ-width if
and only if ν′(t) is constant for all t ∈ I.
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For the curves of Examples 3.2 and 3.3, the angle function ν is piecewise-
linear, namely, of the kind ν(t) = a t + b, with the same slope where it can be
defined. This implies that ν′(t) = a is constant, so that by Theorem 5.4, they
are curves of constant φ-width.

Note that since ν′(t) = −μ′(t), the conclusion of Theorem 5.4 could be also
written in terms of the angle function μ(t).

Remark 5.5. (Open problems) The author has not found any explicit example
of a (φ, �)-isochordal-viewed hedgehog which is not a curve of constant φ-width.
In fact, no example of an isochordal-viewed curve which is not an hedhehog
has been found. It would be interesting to find such examples if they exist or
to see if a statement like “any piecewise-C2 (φ, �)-isochordal-viewed curve (or
hedgehog) is a curve of constant φ-width” is true.
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