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associated to Bernstein–Kantorovich–Choquet operators is proved. The paper also includes
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1. Introduction

Choquet’s theory of integrability (as described by Denneberg [8], Grabisch [12]
and Wang and Klir [16]) emphasizes the importance of a new class of nonlinear
operators that verify a mix of conditions characteristic of Choquet’s integral.
Its technical definition is detailed as follows.

Given a Hausdorff topological space X, we will denote by F(X) the vector
lattice of all real-valued functions defined on X endowed with the pointwise
ordering. Two important vector sublattices of it are

C(X) = {f ∈ F(X) : f continuous}
and

Cb(X) = {f ∈ F(X) : f continuous and bounded} .

With respect to the sup norm, Cb(X) becomes a Banach lattice. See [15] for
the theory of these spaces.
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As is well known, all norms on the N -dimensional real vector space R
N are

equivalent. See Bhatia [2], Theorem 13, p. 16. When endowed with the sup
norm and the coordinate-wise ordering, RN can be identified (algebraically,
isometrically and in order) with the space C ({1, . . . , N}), where {1, . . . , N}
carries the discrete topology.

Suppose that X and Y are two Hausdorff topological spaces and E and
F are respectively ordered vector subspaces of F(X) and F(Y ). An operator
T : E → F is said to be a Choquet type operator (respectively a Choquet type
functional when F = R) if it satisfies the following three conditions:
(Ch1) (Sublinearity) T is subadditive and positively homogeneous, that is,

T (f + g) ≤ T (f) + T (g) and T (af) = aT (f)

for all f, g in E and a ≥ 0;
(Ch2) (Comonotone additivity) T (f+g) = T (f)+T (g) whenever the functions

f, g ∈ E are comonotone in the sense that

(f(s) − f(t)) · (g(s) − g(t)) ≥ 0 for all s, t ∈ X;

(Ch3) (Monotonicity) f ≤ g in E implies T (f) ≤ T (g).
All the aforementioned conditions are independent of each other.
If a nonlinear operator T is monotone and positively homogeneous then

necessarily

T (0) = 0 and f ≥ 0 implies T (f) ≥ 0;

the converse works for linear operators but not in the general case.
The Choquet integral associated to a vector capacity with values in R

N is
a natural source of Choquet type operators. See Remark 4. For more examples
(important in approximation theory) see [10], where the following extension of
Korovkin’s approximation theorem to the framework of Choquet type opera-
tors was proved.

Theorem 1. (The nonlinear extension of Korovkin’s theorem: the several vari-
ables case) Suppose that X is a locally compact subset of the Euclidean space
R

N and E is a vector sublattice of F(X) that contains the 2N + 2 test func-
tions 1, ±pr1, . . . , ±prN and

∑N
k=1 pr2k. (Here prk : (x1, . . . , xN ) → xk

(k = 1, . . . , N) denote the canonical projections on R
N ).

(i) If (Tn)n is a sequence of monotone and sublinear operators from E into
E such that

lim
n→∞ Tn(f) = f uniformly on the compact subsets of X

for each of the 2N +2 aforementioned test functions, then the above limit
property also holds for all nonnegative functions f in E ∩ Cb(X).

(ii) If, in addition, each operator Tn is comonotone additive, then (Tn(f))n

converges to f uniformly on the compact subsets of X, for every f ∈
E ∩ Cb (X).
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Notice that in both cases (i) and (ii) the family of testing functions can
be reduced to 1, −pr1, . . . , −prN and

∑N
k=1 pr2k when K is included in the

positive cone of RN . Also, the convergence of (Tn(f))n to f is uniform on X
when f ∈ E is uniformly continuous and bounded on X.

In this paper we prove a quantitative estimate concerning the above
Korovkin-type theorem in the case of Bernstein-Kantorovich-Choquet opera-
tors but our argument works also for the Szász-Mirakjan-Kantorovich-Choquet
operators, the Baskakov-Kantorovich-Choquet operators etc. See Theorem 4,
which is based on a generalization of the Cauchy-Bunyakovsky-Schwarz
inequality for Choquet type operators (stated as Lemma 1).

A large generalization of Hölder’s inequality within the framework of mono-
tone and sublinear operators acting on spaces of continuous functions makes
the objective of Theorem 3.

For the convenience of the reader, we devoted Sect. 2 to an overview of
basic facts about monotone capacities and the Choquet integral.

2. Preliminaries on Choquet’s integral

Given a nonempty set X, by a lattice of subsets of X we mean any collection
Σ of subsets that contains ∅ and X and is closed under finite intersections and
unions. A lattice Σ is an algebra if in addition it is closed under complemen-
tation. An algebra closed under countable unions and intersections is called a
σ-algebra.

Of special interest is the case where X is a compact Hausdorff space
and Σ is either the lattice Σ+

up(X) of all upper contour closed sets S =
{x ∈ X : f(x) ≥ t} , or the lattice Σ−

up(X) of all upper contour open sets
S = {x ∈ X : f(x) > t} associated to pairs f ∈ C(X) and t ∈ R.

When X is a compact metrizable space, Σ+
up(X) coincides with the lattice

of all closed subsets of X (and Σ−
up(X) coincides with the lattice of all open

subsets of X).
In what follows Σ denotes a lattice of subsets of an abstract set X.

Definition 1. A set function μ : Σ → [0,∞) is called a capacity if it verifies
the following two conditions:
(C1) μ(∅) = 0; and
(C2) μ(A) ≤ μ(B) for all A,B ∈ Σ, with A ⊂ B (monotonicity).
The capacity μ is called normalized if μ(X) = 1.

If Σ is an algebra of subsets of X, then to every capacity μ defined on Σ,
one can attach a new capacity μ, the dual of μ, which is defined by the formula

μ(A) = μ(X) − μ(X \ A).
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Notice that (μ̄) = μ.
The capacities provide a non additive generalization of probability measures,

that is, of capacities μ having the property of σ-additivity,

μ
(⋃∞

n=1
An

)
=

∑∞
n=1

μ(An)

for every sequence A1, A2, A3, . . . of disjoint sets belonging to Σ such that
∪∞

n=1An ∈ Σ.
Some other classes of capacities exhibiting extensions of the properties of

additivity or σ-additivity are listed below.
A capacity μ is called submodular (or strongly subadditive) if

μ(A ∪ B) + μ(A ∩ B) ≤ μ(A) + μ(B) for all A,B ∈ Σ. (2.1)

Every additive measure is also submodular, but the converse fails. A normal-
ized submodular capacity μ defined on an algebra Σ of sets has the property

μ(A) = 0 implies μ(�A) = 1. (2.2)

A capacity μ is called lower continuous (or continuous by ascending
sequences) if

lim
n→∞ μ(An) = μ(

⋃∞
n=1

An)

for every nondecreasing sequence (An)n of sets in Σ such that ∪∞
n=1An ∈

Σ; μ is called upper continuous (or continuous by descending sequences) if
limn→∞ μ(An) = μ (∩∞

n=1An) for every nonincreasing sequence (An)n of sets
in Σ such that ∩∞

n=1An ∈ Σ. If μ is an additive capacity defined on a σ-algebra,
then its upper/lower continuity is equivalent to the property of σ-additivity.

If Σ is a σ-algebra, then a capacity μ : Σ → [0, 1] is lower (upper continuous)
if and only if its dual μ̄ is upper (lower) continuous.

There are several standard procedures to attach to a probability measure
certain not necessarily additive capacities. So is the case of distorted probabili-
ties, μ(A) = u(P (A)), obtained from a given probability measure P : Σ → [0, 1]
and applying to it a distortion u : [0, 1] → [0, 1], that is, a nondecreasing and
continuous function such that u(0) = 0 and u(1) = 1. For example, one may
chose u(t) = ta with α > 0. When the distortion u is concave (for example,
when u(t) = ta with 0 < α < 1 or when u(t) = 2t

t+1 ), then μ is an example of
lower continuous submodular capacity.

The following concept of integrability with respect to a capacity μ : Σ →
[0,∞) was introduced by Choquet [5,6]. It concerns the class of upper measur-
able functions, that is, the functions f : X → R such that all upper contour
sets {x ∈ X : f(x) ≥ t} belong to Σ.

Definition 2. The Choquet integral of an upper measurable function f on a
set A ∈ Σ is defined as the sum of two Riemann improper integrals,

(C)
∫

A

fdμ



Vol. 95 (2021) A note on the Choquet type operators 437

=
∫ +∞

0

μ ({x ∈ A : f(x) ≥ t}) dt +
∫ 0

−∞
[μ ({x ∈ A : f(x) ≥ t}) − μ(A)] dt.

Accordingly, f is said to be Choquet integrable if both integrals above are
finite.

Every upper measurable and bounded function is Choquet integrable. If
f ≥ 0, then the last integral in the formula appearing in Definition 2 is 0.

When Σ is a σ-algebra, the upper measurability and the Borel measur-
ability are equivalent and the Choquet integral coincides with the Lebesgue
integral for σ-additive measures besides, the inequality sign ≥ in the above
two integrands can be replaced by >; see [16], Theorem 11.1, p. 226.

The next remarks summarize the basic properties of the Choquet integral:

Remark 1. (a) If f and g are two upper measurable functions which are Cho-
quet integrable, then

f ≥ 0 implies (C)
∫

X

fdμ ≥ 0 (positivity)

f ≤ g implies (C)
∫

X

fdμ ≤ (C)
∫

X

gdμ (monotonicity)

(C)
∫

X

afdμ = a · (C)
∫

X

fdμ for all a ≥ 0 (positive homogeneity)

(C)
∫

X

1 · dμ(t) = μ(X) (calibration).

(b) In general, the Choquet integral is not additive but (as was noticed by
Dellacherie [7]), if f and g are comonotonic (that is, (f(ω) − f(ω′)) ·
(g(ω) − g(ω′)) ≥ 0, for all ω, ω′ ∈ X), then

(C)
∫

X

(f + g)dμ = (C)
∫

X

fdμ + (C)
∫

X

gdμ.

An immediate consequence is the property of translation invariance,

(C)
∫

X

(f + c)dμ = (C)
∫

X

fdμ + c · μ(X)

for all c ∈ R and all Choquet integrable functions f .
(c) If μ is a lower continuous capacity, then the Choquet integral is lower

continuous in the sense that

lim
n→∞

(

(C)
∫

X

fndμ

)

= (C)
∫

X

fdμ,

whenever (fn)n is a nondecreasing sequence of bounded random variables
that converges pointwise to the bounded variable f.
For (a) and (b), see Denneberg [8], Proposition 5.1, p. 64; (c) follows in
a straightforward way from the definition of the Choquet integral.
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(d) If μ ≤ ν are two capacities, then (C)
∫

X
fdμ ≤ (C)

∫
X

fdν, for all non-
negative measurable functions f.

(e) (C)
∫

A
−fdμ = −(C)

∫
A

fdμ. See [16], Theorem 11.7, p. 233.

Remark 2. (The Subadditivity Theorem) If μ is a submodular capacity, then
the associated Choquet integral is subadditive, that is,

(C)
∫

X

(f + g)dμ ≤ (C)
∫

X

fdμ + (C)
∫

X

gdμ

for all f and g integrable on X. See [8], Theorem 6.3, p. 75. In addition, the
following two integral analogs of the modulus inequality hold true,

|(C)
∫

X

fdμ| ≤ (C)
∫

X

|f |dμ

and

|(C)
∫

X

fdμ − (C)
∫

X

gdμ| ≤ (C)
∫

X

|f − g|dμ.

The last assertion is covered by Corollary 6.6, p. 82, in [8].

Remark 3. If μ is a submodular capacity, then the associated Choquet integral
is a submodular functional in the sense that

(C)
∫

A

sup {f, g} dμ + (C)
∫

A

inf{f, g}dμ ≤ (C)
∫

A

fdμ + (C)
∫

A

gdμ

for all f and g integrable on X. For this, integrate term by term the inequality

μ ({x : sup{f, g}(x) ≥ t}) + μ ({x : inf{f, g}(x) ≥ t})
≤ μ ({x : f(x) ≥ t}) + μ ({x : g(x) ≥ t}) .

The Choquet integral associated to any lower continuous capacity is a
comonotonically additive, monotone and lower continuous functional. The con-
verse also holds.

Theorem 2. Suppose that X is a compact Hausdorff space and I : C(X) → R

is a comonotonically additive and monotone functional such that I(1) = 1.
Then I is also lower continuous and there exists a unique lower continuous
normalized capacity μ : Σ−

up(X) → [0, 1] such that

I(f) =
∫ +∞

0

μ ({x ∈ X : f(x) > t}) dt +
∫ 0

−∞
[μ ({x ∈ X : f(x) > t}) − 1] dt

for all f ∈ C(X). Moreover, if I is submodular in the sense that

I(sup {f, g}) + I(inf {f, g}) ≤ I(f) + I(g) for all f, g ∈ C(X),

then μ is submodular too.
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Proof. Let (fn)n and f in C(X), with (fn) nondecreasing and limn→∞ fn(x) =
f(x), for all x ∈ X. Since I is monotone, it is immediate that

lim
n→∞ I(fn) ≤ I(f).

On the other hand, choose any arbitrary ε > 0 and take g = f − ε1, that
is f = g + ε1. Then, limn→∞ fn(x) = f(x) > g(x), for all x ∈ X. Since X
is compact and (fn) is a nondecreasing sequence of continuous functions, by
Dini’s theorem, there is an integer N , such that fn(x) > g(x) = f(x) − ε1, for
all x ∈ X and n ≥ N . Taking into account the comonotonic additivity and
monotonicity of I, we infer that

I(fn) ≥ I(f − ε1) = I(f) − εI(1)

for all n ≥ N. Passing to the limit, first as n → ∞ and next as ε → 0, we
obtain limn→∞ I(fn) ≥ I(f). Since the other inequality was already noticed,
we conclude that limn→∞ I(fn) = I(f).

The integral representation of I is part of a more general result due to
Cerreia-Vioglio et al. See [4], Proposition 17, p. 907. As concerns the corre-
spondence between the property of submodularity of I and μ, this follows by
adapting the argument in [4], Theorem 13 (c), p. 901. �

A result similar to Theorem 2, but for the comonotonically additive, mono-
tone and upper continuous functionals, was shown by Zhou [17].

Remark 4. (Vector capacities) The aforementioned theory of integration with
respect to a capacity can be easily extended by considering vector capacities. A
simple example is offered by the set functions µ defined on the lattice Σ+

up(X)
(associated to a compact Hausdorff space X) and taking values in the positive
cone of RN in such a way that

µ (∅) = 0 and µ(A) ≤ µ(B) if A ⊂ B.

The concepts of upper/lower continuity and submodularity extend verbatim to
the case of vector capacities. Moreover, a vector capacity µ is upper continuous
(lower continuous, submodular etc.) if and only if all its components μk =
prk ◦µ are scalar capacities in the sense of Definition 2, with the respective
property. Therefore, the integral with respect to a submodular vector capacity
µ,

(C)
∫

X

fdµ =
(

(C)
∫

X

fdμ1, . . . , (C)
∫

X

fdμN

)

,

defines a Choquet type operator from C(X) to R
N .

According to Theorem 2, this construction generates all Choquet type oper-
ators from C(X) to R

N . More general results concerning the theory of Choquet
type operators taking values in an arbitrary ordered Banach space are available
in [11].
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3. The extension of Hölder’s inequality

The extension of Hölder’s inequality to the framework of Choquet integral
was treated by numerous authors, see for example [1,3,13]. By adapting the
standard argument based on Young’s inequality (see, [14], section 1.2, pp. 11-
13), Hölder’s inequality for the range of parameters p ∈ (1,∞) and 1/p+1/q =
1 can be further extended to the general framework of sublinear and monotone
operators. Recall that Young’s inequality for this choice of parameters asserts
that for all nonnegative numbers u, v we have

uv ≤ up

p
+

vq

q
for all u, v ≥ 0 (3.1)

and the equality occurs if and only if up = vq.

Theorem 3. (Hölder’s inequality for p ∈ (1,∞) and 1/p + 1/q = 1) Suppose
that X and Y are two Hausdorff topological spaces and E and F are respectively
vector sublattices of Cb(X) and Cb(Y ) which contain the unit (the function
identically 1). Then every sublinear and monotone operator T : E → F for
which T (1) = 1 verifies the inequality

T (|fg|) ≤ [T (|f |p)]1/p · [T (|g|q)]1/q (3.2)

for all f, g ∈ E such that fg ∈ E.

Proof. For y ∈ Y arbitrarily fixed, consider the sublinear and monotone func-
tional Ay : E → R defined by the formula

Ay(f) = (T (f)) (y).

Clearly, Ay(1) = 1.
Assuming Ay(|f |p) > 0 and Ay(|g|q) > 0, we apply inequality (3.1) for

u = |f |/Ay(|f |p)1/p and v = |g|/Ay(|g|q)1/q to infer that

|f |
Ay(|f |p)1/p

|g|
Ay(|g|q)1/q

≤ 1
p

· |f |p
Ay(|f |p) +

1
q

· |g|q
Ay(|g|q) . (3.3)

Since the functional Ay is monotone and sublinear, the last inequality implies

Ay(|fg|)
Ay(|f |p)1/p · Ay(|g|q)1/q

≤ 1
p

+
1
q

= 1,

that is, T (|f · g|)(y) ≤ [T (|f |p)(y)]1/p · [T (|g|q)(y)]1/q, which is inequality (3.2)
in the statement.

If Ay(|f |p) = 0 and/or Ay(|g|q) = 0, then one repeats the above reasoning
by replacing in (3.3) the vanishing number(s) by an ε > 0 arbitrarily small
and then passing to the limit as ε → 0 to conclude that Ay(|f | · |g|) = 0. The
proof is done. �
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Remark 5. (Conditions for equality in Theorem 3) We assume that X is a
compact Hausdorff space and T : C(X) → C(X) is a Choquet type operator
such that T (1) = 1 and

T (sup {f, g}) + T (inf {f, g}) ≤ T (f) + T (g) for all f, g ∈ C(X);

the last condition is nothing but the property of submodularity.
For x ∈ X arbitrarily fixed, let us consider the comonotone additive and

monotone functional

Ax : C(X) → R, Ax(f) = (T (f)) (x).

Clearly, Ax(1) = 1 and Ax is a submodular functional. According to Theorem 2
there exists a unique normalized, lower-continuous and submodular capacity
μx on Σ−

up(X), such that Ax(f) = (C)
∫

X
fdμx. In this case,

(C)
∫

X

|h|dμx = 0 is equivalent to μx ({t ∈ X : |h(t)| > 0}) = 0

whenever h ∈ C(X). See [16], Theorem 11.3, p. 228.
We have equality in (3.2) at the point x every time when Ax(|f |p) = 0

and/or Ax(|g|q) = 0, equivalently,

μx ({t ∈ X : |f(t)| > 0}) = 0 and/or μx ({t ∈ X : |g(t)| > 0}) = 0.

According to (2.2), this means that equality occurs when

|f(t)| = 0 except for a μx-null set and/or |g(t)| = 0 except for a μx-null set.

Suppose now that Ax(|f |p) > 0 and Ax(|g|q) > 0. In this case an inspection
of the proof of Theorem 3 shows that equality occurs in (3.2) at the point x
if

μx

{

t ∈ X :
1
p

· |f(t)|p
Ax(|f |p) +

1
q

· |g(t)|q
Ax(|g|q) >

|f(t)|
Ax(|f |p)1/p

|g(t)|
Ax(|g|q)1/q

}

= 0,

equivalently,

1
p

· |f(t)|p
Ax(|f |p) +

1
q

· |g(t)|q
Ax(|g|q) =

|f(t)|
Ax(|f |p)1/p

|g(t)|
Ax(|g|q)1/q

, (3.4)

except possibly a μx-null set. According to the equality case in Young’s inequal-
ity, this implies the existence of two positive constants α and β such that

α|f(t)|p = β|g(t)|q (3.5)

except possibly a μx-null set.

If an operator T : E → F is monotone and subadditive, then it verifies the
inequality

|T (f) − T (g)| ≤ T (|f − g|) for all f, g. (3.6)
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Indeed, f ≤ g + |f − g| yields T (f) ≤ T (g) + T (|f − g|) , that is, T (f) −
T (g) ≤ T (|f − g|), and interchanging the role of f and g we infer that
− (T (f) − T (g)) ≤ T (|f − g|) .

If in addition T (0) = 0 (for example, this happens when T is monotone and
sublinear), then (3.6) yields the following inequality that complements (3.2):

|T (f)| ≤ T (|f |) for all f ∈ E. (3.7)

This leads us to Holder’s inequality for p = 1 and q = ∞ :

|T (fg)| ≤ T (|fg|) ≤ T (|f |) sup
x∈X

|g(x)| (3.8)

for all f, g ∈ E such that fg ∈ E.

If X is a locally compact Hausdorff space and T : Cb (X) → R is a positive
linear functional for which T (1) = 1, then T admits the integral representation
T (f) =

∫
X

fdμ for a suitable Borel probability measure μ and the difference

T (f2) − T (f)2 =
∫

X

f2dμ −
(∫

X

fdμ

)2

is just the variance of f . The fact that the variance is nonnegative follows from
the Cauchy-Bunyakovsky-Schwarz inequality (the particular case of Hölder’s
inequality for p = q = 2). Thus, in the general context of sublinear and mono-
tone operators T : Cb(X) → Cb(X), the quantity

D2
T (f) = T (1) · T (f2) − T (f)2

can be interpreted as the T -variance of f. The T -covariance of a pair of func-
tions f and g in Cb(X) can be introduced via the formula

CovT (f, g) = T (1) · T (fg) − T (f)T (g).

Problem 1. Under what conditions on T is the following nonlinear version of
the Cauchy-Bunyakovsky-Schwarz inequality,

|CovT (f, g)| ≤
√

D2
T (f)

√
D2

T (g),

true?

Some results related to this problem are presented in what follows.

Lemma 1. If T is a monotone and sublinear operator that maps Cb(X) into
itself, then

D2
T (− |f |)) = T (1) · T (|f |2) − |T (− |f |)|2 ≥ 0,

for all f ∈ Cb(X).
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Proof. Since T is monotone and subadditive, the fact that 0 ≤ (λ − |f(x)|)2
for all λ > 0 and x ∈ X yields

0 ≤ T [(λ − |f |)2](x) ≤ λ2T (1)(x) + 2λT (−|f |)(x) + T (|f |2)(x). (3.9)

Suppose by reductio ad absurdum that there exists x0 ∈ X such that

|T (−|f |)(x0)| >
√

T (1)(x0) · T (f2)(x0). (3.10)

Then the second degree polynomial in λ,

λ2T (1)(x0) + 2λT (−|f |)(x0) + T (|f |2)(x0) = 0,

will have two positive distinct solutions λ1 < λ2. As a consequence, for any
λ ∈ (λ1, λ2),

λ2T (1)(x0) + 2λT (−|f | · |g|)(x0) + T (f2g2)(x0) < 0,

which contradicts condition (3.9). Therefore (3.10) does not hold and the proof
of Lemma 1 is done. �

The next lemma provides a partial answer to Problem 1.

Lemma 2. Suppose that T : Cb(X) → Cb(X) is a Choquet type operator. Then
for all pairs of functions f, g ∈ Cb(X) such that |f | and |g| are comonotone
we have the inequality

|CovT (− |f | ,− |g|)| ≤
√

D2
T (− |f |)

√
D2

T (− |g|).

Proof. Let λ > 0 arbitrarily fixed. According to Lemma 1,

|T (− |f | − λ |g|)|2 ≤ T (1) · T (|f |2 + 2λ |fg| + λ2 |g|2)
while the fact that T is comonotonic additive yields

|T (− |f | − λ |g|)|2 = (T (− |f |) + λT (− |g|))2 .

Therefore

λ2D2(− |g|) + 2λ (T (1) · T (|fg|) − T (− |f |)T (− |g|)) + D2(− |f |) ≥ 0

and taking into account that λ > 0 was arbitrarily fixed one can conclude
(repeating the argument used in the proof of Lemma 1) that

|T (1) · T (|fg|) − T (− |f |)T (− |g|)|2 ≤ D2
T (|f |)D2

T (|g|).
�
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4. An application to Korovkin theory

The following examples of Choquet type operators, borrowed from [9] , illus-
trate both our nonlinear extension of Korovkin’s theorem stated in Theorem 1
and the nonlinear Cauchy–Bunyakovsky–Schwarz inequalities stated in Lem-
mas 1 and 2 :
– the Bernstein-Kantorovich-Choquet operators Kn,μ : C([0, 1]) → C([0, 1]),

defined by the formula

Kn,μ(f)(x) =
n∑

k=0

(C)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dμ

μ([k/(n + 1), (k + 1)/(n + 1)])
·
(

n

k

)

xk(1 − x)n−k;

– the Szász-Mirakjan-Kantorovich-Choquet operators Sn,μ : C([0,∞)) →
C([0,∞)), defined by the formula

Sn,μ(f)(x) = e−nx
∞∑

k=0

(C)
∫ (k+1)/n

k/n
f(t)dμ

μ([k/n, (k + 1)/n])
· (nx)k

k!
;

– the Baskakov-Kantorovich-Choquet operators Vn,μ : C([0,∞)) → C([0,∞))
defined by the formula

Vn,μ(f)(x) =
∞∑

k=0

(C)
∫ (k+1)/n

k/n
f(t)dμ

μ([k/n, (k + 1)/n])
·
(

n + k − 1
k

)
xk

(1 + x)n+k
.

In the above examples μ is a submodular capacity whose restrictions to
suitable intervals are normalized by dividing the respective integrals by the
length of the interval of integration.

The aim of this section is to prove a quantitative estimate for the Korovkin
type result stated in Theorem 1. A basic ingredient is Lemma 1.

Theorem 4. Let us consider the sequence of monotone, sublinear and comono-
tone additive Bernstein-Kantorovich-Choquet operators (Kn,ν)n defined as
above, but with ν a submodular normalized capacity satisfying an inequality of
the form ν ≤ c·ν, with c ≥ 1. Then, for all nonnegative functions f ∈ C([0, 1]),
all points x ∈ [0, 1] and all indices n ∈ N, the following quantitative estimate
holds:

|Kn,ν(f)(x) − f(x)| ≤ (c + 1)ω1(f ;
√

x2 + 2xKn,ν(−t)(x) + Kn,ν(t2)(x)),

(4.1)

where ω1(f ; δ) = sup{|f(t) − f(x)| : t, x ∈ [0, 1], |t − x| ≤ δ) denotes the
modulus of continuity.

Proof. For x arbitrarily fixed, we have

|Kn,ν(f)(x) − f(x)| = |Kn,ν(f)(x) − Kn,ν(f(x))(x) + Kn,ν(f(x) · 1)(x) − f(x)|
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≤ |Kn,ν(f(t) − f(x))(x)| + |f(x)| · |Kn,ν(1)(x) − 1|
≤ Kn,ν(|f(t) − f(x)|)(x) + |f(x)| · |Kn,ν(1)(x) − 1|,

(4.2)

where the last inequality follows from the relation (3.7).
On the other hand, from the properties of the modulus of continuity, for

all t ∈ [0, 1] and δ > 0, we have

|f(t) − f(x)| ≤ ω1(f ; |t − x|) = ω1

(

f ; δ · |t − x|
δ

)

≤
( |t − x|

δ
+ 1

)

· ω1(f ; δ).

Choosing δ = |Kn,ν(−|t − x|)(x)| = −Kn,ν(−|t − x|)(x) (since Kn,ν(−|t −
x|)(x) ≤ 0), we obtain

|f(t) − f(x)| ≤
( |t − x|

|Kn,ν(−|t − x|)(x)| + 1
)

· ω1(f ; |Kn,ν(−|t − x|)(x)|).

Applying to the last inequality the monotone and sublinear operator Kn,ν , we
infer that

Kn,ν(|f(t) − f(x)|)(x)

≤
(

Kn,ν(|t − x|)(x)
|Kn,ν(−|t − x|)(x)| + Kn,ν(1)(x)

)

· ω1(f ; |Kn,ν(−|t − x|)(x)|).

Combining this fact with the inequality (4.2) we arrive at

|Kn,ν(f(t) − f(x))(x)|

≤
(

Kn,ν(|t − x|)(x)
|Kn,ν(−|t − x|)(x)| + Kn,ν(1)(x)

)

· ω1(f ; |Kn,ν(−|t − x|)(x)|)
+ |f(x)| · |Kn,ν(1)(x) − 1|. (4.3)

Denote pn,k(x) =
(
n
k

)
xk(1 − x)n−k, to simplify the appearance of formulas.

Taking into account that ν ≤ c · ν we infer from Remark 1 (d) and (e) that

Kn,ν(|t − x|)(x) =
n∑

k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
|t − x|dν(t)

ν([k/(n + 1), (k + 1)/(n + 1)])

≤ c
n∑

k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
|t − x|dν(t)

ν([k/(n + 1), (k + 1)/(n + 1)])

= c
n∑

k=0

pn,k(x) ·
|(C)

∫ (k+1)/(n+1)

k/(n+1)
−|t − x|dν(t)|

ν([k/(n + 1), (k + 1)/(n + 1)])
= c · |Kn,ν(−|t − x|)(x)|,

which implies Kn,ν(|t − x|)(x)/|Kn,ν(−|t − x|)(x)| ≤ c.
Now, since Kn,ν(1) = 1, the inequality stated by Lemma 1, gives us
Kn,ν(−|t − x|)(x) ≤

√
Kn,ν((t − x)2)(x) ≤

√
Kn,ν(t2)(x) + 2xKn,ν(−t)(x) + x2.

Replacing all these in (4.3), we immediately obtain the inequality (4.1). �
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Remark 6. (a) A concrete example of submodular normalized capacity sat-
isfying Theorem 4 is ν(A) = u (L(A)), where L denotes the Lebesgue
measure, u is the distortion defined by u(t) = 2t

t+1 and c = 2. Indeed,

ν([0, 1]) = 1 and ν(A) = 2L(A)
L(A)+1 . Denoting L(A) = x, we get ν(A) = 2x

x+1

and

ν(A) = 1 − ν([0, 1] \ A) = 1 − 2L([0, 1] \ A)
L([0, 1] \ A) + 1

= 1 − 2(1 − x)
2 − x

=
x

2 − x
.

Then, a simple computation shows that 2x
x+1 ≤ 2 · 2

2−x for all x ∈ [0, 1].
Therefore Theorem 4 holds for ν when c = 2.

(b) Theorem 4 remains valid for submodular and normalized capacities of
the form ν(A) = u (L(A)), with u a nondecreasing, concave function with
u(0) = 0, u(1) = 1 and a constant c ≥ 1 such that u(x) ≤ c[1 − u(1 − x)]
for all x ∈ [0, 1].

(c) Theorem 4 can be easily adapted to the case of Szász-Mirakjan-Kantoro-
vich-Choquet operators and Baskakov-Kantorovich-Choquet operators.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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