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Abstract. In an earlier work, we proposed a generalization for the Apollonian packing in
arbitrary dimensions and showed that the resulting object in four, five, and six dimensions
have properties consistent with the Apollonian circle and sphere packings in two and three
dimensions. In this work, we investigate the generalization in seven and eight dimensions and
show that they too have many of the properties of those in lower dimensions. In particular,
the hyperspheres are tangent or do not intersect; they fill the hyperspace; the object includes
a maximal cluster of mutually tangent hyperspheres; and there exists a perspective where
all hyperspheres in the object have integer curvatures.
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1. Introduction

In an earlier work [2], we proposed an alternative definition for the Apollo-
nian circle and sphere packings. That definition (see Sect. 2.4) generates the
Apollonian circle and sphere packings in two and three dimensions, extends
to any dimension, and in dimensions 4, 5, and 6, defines a configuration of
hyperspheres with the following properties:
(a) The hyperspheres do not intersect or intersect tangentially.
(b) The hyperspheres fill RN .
(c) The configuration includes a cluster of N + 2 mutually tangent hyper-

spheres.
(d) Every hypersphere in the configuration is a member of a cluster of N +2

mutually tangent hyperspheres.
(e) If every hypersphere in a cluster of N +2 mutually tangent hyperspheres

has integer curvature, then every hypersphere in the configuration has
integer curvature.
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In this paper, we show that the configurations in dimensions 7 and 8 also
have Properties (a) through (e). The generalizations in all dimensions have
Properties (c) and (e) [2], so our main result is to demonstrate Properties (a),
(b) and (d). Let us call a configuration of hyperspheres that satisfies Properties
(a) and (b) a packing or Apollonian-like packing. We have long known of the
existence of hypersphere packings in many dimensions (see e.g. [3]), but it was
once believed that for dimension N ≥ 4, none of them include clusters of N +2
mutually tangent spheres (see the Mathematical Review for [3], and [5, p. 356,
last paragraph]).

The above statements are a bit imprecise, so let us clarify. Associated to
each circle (or sphere, hypersphere) is a side – the inside or outside. If that side
were always the inside, then we would call them discs or balls, and some authors
favor that nomenclature. The curvature1 of a circle (or sphere, hypersphere) is
the inverse of its radius, together with a sign that is positive if the associated
side is the inside, and negative otherwise. So, for example, the outside circle in
Fig. 1 (left) has negative curvature, while all the rest have positive curvature.
By fill RN we mean that there is no space left where we can place a hypersphere
so that it does not intersect any hypersphere (or its associated side) in the
packing. So, for example, the outside circle in Fig. 1 covers most of the plane,
including the point at infinity, while the rest cover most of the remainder.
Note too that if a circle lies inside another but does not intersect it (as in the
context of Property (a) above), then the curvature of the outside circle must
be negative. That is, two nested circles with curvatures of the same sign are
said to intersect, since their associated sides have overlap. This convention (or
something like it) is also necessary in the formulation of Descartes’ Theorem
(see Theorem 2.1 below). When the curvature is zero, the circle is a line (or
plane, hyperplane). In the strip version of the Apollonian circle packing (see
Fig. 1, right), it is clear which sides we wish to associate to the two lines, but
the curvature is not informative in this case. In the next section, we will give
a different interpretation that clarifies this ambiguity.

To show our main result, we first streamline the argument in dimensions
4, 5 and 6. In passing, we introduce groups that are generated by reflections
(unlike the descriptions given in [2]), so have Coxeter graphs. These are shown
in Sect. 4.

1Some authors prefer the term bend, since in higher dimensions, the usual definition of
curvature is the inverse of the square of the radius.
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Figure 1. Two versions of the Apollonian circle packing. The
one on the right is the strip packing. The dotted and dashed
lines represent symmetries of the packing

2. Background

2.1. The Apollonian circle packing

To generate the Apollonian circle packing, we begin with four mutually tangent
circles e1, . . . , e4. In each of the resulting curvilinear triangles (one of which
might include the point at infinity), we inscribe a circle that is tangent to all
three sides, thereby creating new curvilinear triangles. We repeat this process
indefinitely (see Fig. 1).

The process can be interpreted algebraically. Let us select three of the
initial four circles, say e1, e2, e3. They form two curvilinear triangles, one of
which contains e4. They also have three points of tangency about which we can
circumscribe a circle s4. Let Rn denote inversion in the circle n. Note that the
three circles ei for i �= 4 are fixed by Rs4 , since s4 intersects ei perpendicularly
for i �= 4. Since e4 is tangent to the other three circles, its image must also be
tangent to those three circles. Thus, the image of e4 under the inversion in s4
is the incircle of the other curvilinear triangle. We can similarly define s1, s2,
and s3, giving us the Apollonian group

ΓAp = 〈Rs1 , Rs2 , Rs3 , Rs4〉.
The Apollonian packing is the image of the initial four circles e1,. . . ,e4 under
the action of ΓAp. Let us call the four inversions Rsi

Viète involutions. As we
will see, they fix three variables in a quadratic in four variables and send the
fourth to its other root. This can sort of be seen using Descartes’ Theorem:

Theorem 2.1. (Descartes) Suppose four mutually tangent circles have curva-
tures k1,. . . , k4 (with appropriate signs so that the circles do not intersect).
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Then

(k1 + k2 + k3 + k4)2 = 2(k2
1 + k2

2 + k2
3 + k2

4).

If the curvatures are of the four initial circles, and a fifth is generated by one
of the Viète involutions, then its curvature is the other root of the quadratic
generated by fixing three of the curvatures in Descartes’ Theorem.

The Apollonian sphere packing (or Soddy packing) can be generated by
mimicking the above algebraic interpretation: Begin with five mutually tangent
spheres and define the five Viète involutions as before. That is, fix four of
the five spheres and define a Viète involution to be inversion in the sphere
that is perpendicular to all four spheres (such a sphere exists). The five Viète
involutions generate a group and the image of the initial five spheres under
the action of this group is the Apollonian sphere packing.

In four dimensions, using Viète involutions leads to overlapping hyper-
spheres, as was noticed by Boyd [3].

The Viète involutions are symmetries of the Apollonian circle packing, but
they are not the only ones. There is a class of symmetries we call transpositions
that switch two of the original circles and fix the other two. Geometrically, they
are inversion in a circle vij that is tangent to both ei and ej , and is perpen-
dicular to the other two (see Fig. 1). Their action on curvatures in Descartes’
Theorem is to switch ki and kj . The group generated by the transpositions is
the symmetric group S4, so is finite.

The full group of symmetries of the Apollonian circle packing is

Γ = 〈Rv12 , Rv34 , Rv14 , Rs2〉,
and the packing is the image of e4 under the action of Γ. The full group must,
of course, contain a Viète involution, but it is possible to choose a subgroup
that contains no Viète involutions yet still generates the packing.

Let us consider the subgroup

Γ′ = 〈Rv12 , Rv34 , Rv14 , Rw〉,
where w is the circle/line shown in Fig. 1. Then Γ′ is a subgroup of Γ of index
two, and the Apollonian packing is the image of e4 under the action of Γ′.
Thus, it is possible to generate the packing using a group that includes no
Viète involutions.

2.2. Hyperbolic geometry

A circle in the Euclidean plane can be thought of as the edge of a hemisphere
in the Poincaré upper half space model of H

3, so represents a plane in H
3.

The Apollonian packing therefore represents an infinite sided ideal polyhedron
in H

3. (The polyhedron has no edges, like an ideal triangle in H
2, which has
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no vertices.) Similarly, an (N − 1)-sphere in R
N represents the edge of an N -

dimensional hemisphere in the Poincaré upper half hyperspace model of HN+1.
The different versions of the Apollonian packing (e.g. those in Fig. 1) can
therefore be thought of as the same object in H

3, but rendered with different
points at infinity. We call them different perspectives. One perspective can be
obtained from another by inversion in some circle (or sphere, hypersphere).

Associated to an Apollonian packing is a lattice, which is hinted at with
Property (e). This lattice lies in Lorentz space, in which we can imbed a
hyperbolic geometry.

2.3. The pseudosphere in Lorentz space

Lorentz space, Rρ−1,1, is the set of ρ-tuples over R equipped with the Lorentz
product

u ◦ v := u1v1 + u2v2 + · · · + uρ−1vρ−1 − uρvρ.

The surface x ◦ x = −1 is a hyperboloid of two sheets. Let us take the top
sheet

H : x ◦ x = −1, xρ > 0.

We define the distance |AB| between two points on H by

cosh(|AB|) = −A ◦ B.

The pseudosphere H equipped with this metric is a model of Hρ−1. (See [8],
or [2] for more details and references.)

Hyperplanes on H are the intersection of H with hyperplanes in R
ρ−1,1

that go through the origin. That is, hyperplanes of the form n ◦ x = 0 with
n ∈ R

ρ−1,1. The hyperplane intersects H if and only if n◦n > 0. Let us denote
the hyperplane in R

ρ−1,1 and its intersection with H by Hn. The plane divides
R

ρ−1,1 and H into two halves, which we denote H+
n and H−

n , where

H+
n = {x : n ◦ x ≥ 0}.

The angle θ between two hyperplanes Hn and Hm that intersect in H is given
by

|n||m| cos θ = −n ◦ m, (1)

where |n| =
√
n ◦ n, and θ is the angle in the region H+

m ∩ H+
n .

We let

O(R) = {T ∈ Mρ×ρ : Tu ◦ Tv = u ◦ v for all u,v ∈ R
ρ−1,1}

O+(R) = {T ∈ O(R) : TH = H}.
Reflection through the plane Hn is given by

Rn(x) = x − 2projn(x)
n
|n| = x − 2

n ◦ x
n ◦ n

n, (2)
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and is in O+(R). (Our use of the same notation for inversion in the circle n
is on purpose.) Because all isometries are generated by reflections, the group
O+(R) is the group of isometries of H.

Let ∂H represent the boundary of H, so ∂H is a (ρ − 2)-sphere. It is rep-
resented by L+/R+ where L+ is the set

L+ = {x ∈ R
ρ−1,1 : x ◦ x = 0, xρ > 0}.

Given an E ∈ L+, the set ∂HE = ∂H \ ER
+ is a model of Euclidean space

R
ρ−2 using the metric |AB|E defined by

|AB|2E =
−2A ◦ B

(A ◦ E)(B ◦ E)
.

This is the boundary of the Poincaré upper half hyperspace model of H
ρ−1

using E for the point at infinity. The plane Hn represents a (ρ − 3)-sphere in
this model, which we denote with Hn,E , or sometimes Hn if E is understood or
is not important, or sometimes just n. The reflection Rn(x), when restricted
to ∂HE , is inversion in Hn,E . If H+

n is the side we wish to associate to the
hypersphere Hn then the curvature of Hn,E is given by

−n ◦ E

|n| ,

using the metric | · |E [2].

Remark 2.2. Boyd’s representation of an (N − 1)-sphere in R
N using an (N +

2)-tuple (see [3]) is the same as our representation. Boyd calls these vectors
polyspherical coordinates, and attributes them to Clifford and Darboux.

2.4. The formal definition

Let e1, . . . , eρ be ρ mutually tangent hyperspheres in R
ρ−2. Let us think of

these as vectors in R
ρ−1,1, normalized to have length 1 so ei ◦ ei = 1, and

oriented so that H−
ei

contains Hej
for j �= i. Then by the tangency conditions

and Eq. (1), ei ◦ ej = −1 for i �= j. The matrix

Jρ = [ei ◦ ej ]

has 1’s along the diagonal, and −1’s off the diagonal. It clearly has an eigen-
value of 2 with multiplicity ρ − 1, and an eigenvalue of 2 − ρ with multiplicity
one. Thus Jρ is non-degenerate, which proves both that it is possible to have
ρ mutually tangent hyperspheres in R

ρ−2, and that this is maximal. We define
the lattice

Λ = Λρ = e1Z ⊕ · · · ⊕ eρZ.
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We choose D ∈ Λ so that D ◦ D < 0, D/||D|| ∈ H, and D ◦ n �= 0 for any
n ∈ Λ that satisfies n ◦ n = 1. The choice D = e1 + · · · + eρ works [2], and we
fix this choice through the rest of the paper. Let

E1 = {n ∈ Λ : n ◦ n = 1,n ◦ D < 0}
and

Kρ =
⋂

n∈E1

H−
n .

That is, for each n ∈ Λ with n ◦n = 1, we consider the half space bounded by
Hn that contains D and take the intersection of all these half spaces. Viewed
in R

ρ−1,1, this gives us a polyhedral cone with an infinite number of faces.
Viewed as an object in H, it is a polyhedron with an infinite number of sides.
Its intersection with ∂H is the Apollonian configuration Aρ. This is a departure
in terminology from [2], motivated by our definition of a packing given in
the introduction. Our main result is therefore to show that the Apollonian
configurations for ρ = 9 and 10 are packings (and to show Property (d)).

Not every n ∈ E1 gives a face of K, so let us define

E∗
1 = {n ∈ E1 : Hn is a face of Kρ}.

Then

Aρ = {Hn ⊂ H : n ∈ E∗
1 }.

Given E ∈ L+, the intersection with ∂HE gives a perspective,

Aρ,E = {Hn,E : n ∈ E∗
1 }.

The examples in Fig. 1 are the perspectives A4,(1,1,1,3+2
√

3) and A4,(0,0,1,1).
For fixed ρ, the object Aρ exists, but a priori may not satisfy the properties

outlined in the introduction. In particular, the polyhedron may have edges,
which would mean the hyperspheres in Aρ intersect.

Remark 2.3. By a result in [7], for fixed ρ ≤ 10, there exists a K3 surface X
so that the lattice Λρ is Pic(X) and the intersection matrix is −2Jρ. In this
context, D should be thought of as an ample divisor, so Kρ is the ample cone
for X. The set E1 is the set of effective −2 divisors in Pic(X), while E∗

1 is the
set of irreducible effective −2 divisors.

Remark 2.4. The set

{Hn : n ∈ E1}
is the Apollonian super-packing described in [4].

Remark 2.5. The generalized Descartes Theorem is as follows: Suppose ρ hy-
perspheres are represented by linearly independent vectors e1, . . . , eρ and have
curvatures k1, . . . , kρ. Let J = [ei◦ej ] and k = (k1, . . . , kρ). Then ktJ−1k = 0.
This was observed by Boyd [3].
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3. The Apollonian packings in dimensions N ≤ 6

Our strategy is to describe (for each ρ) a subgroup G of finite index in O+
Λ

and identify a fundamental domain F = FG for G. The fundamental domain
will have finite volume and a finite number of sides, one of which will be a
face of K. We identify that face and remove the appropriate generator from
our description of G to give us a thin group Γ. Then K = ΓF . Because our
interests are in relatively high dimensions ρ = 9 and 10 (so N = 7 and 8), we
describe the process in small dimensions first (ρ = 4 and 5) and build up from
there.

Throughout, we will consider strip packings with E = eρ−1 + eρ as our
point at infinity. Note that E is the point of tangency between eρ−1 and eρ.
As in [2], we first find a fundamental domain F{eρ−1,eρ} for the stabilizer
group G{e1,e2}, extend it to a fundamental domain FE for GE , and then to a
fundamental domain F for G. Note that GE is a group of Euclidean isometries
on ∂HE

∼= R
ρ−2, and G{eρ−1,eρ} is a group of Euclidean isometries in (ρ − 3)-

dimensions on the intersection of ∂HE with Hvρ−1,ρ
.

3.1. The Apollonian circle packing again (ρ = 4)

We add Re4 to Γ to get our group G. Its fundamental domain F is bounded
by the planes Hn ⊂ H for n ∈ {e4, s2,v34,v12,v13} (see Fig. 2). The square
highlighted in Fig. 2 (left) is FE , and we call the region above it in the Poincaré
upper half-space model the chimney. The circle given by v13 represents a
hemisphere (the plane Hv13) that we call the dome. The fundamental domain
F is the portion of the chimney above the dome. It is a polyhedron in H that
intersects ∂H at the single point E, so has finite volume. Thus, G has finite
index in O+

Λ , provided it is in fact a subgroup of O+
Λ .

Note that e4 ◦ e4 = 1, so Re4 has integer entries (see Eq. 2) and hence is in
O+

Λ . The reflections Rvij
switch the i-th and j-th components, which is why

we call them transpositions. For Rs2 , we note that s2 ◦ ei = 0 for i �= 2 since
s2 is perpendicular to ei (for i �= 2). Solving, we find s2 = (1,−1, 1, 1) (up
to scalar multiples) and that Rs2 has integer entries. Thus G ≤ O+

Λ . It is not
difficult to show G = O+

Λ [2]. The group Γ is generated by reflections across
the faces of F except the face He4 .

3.2. The Apollonian/Soddy sphere packing (ρ = 5)

We select for G{e4,e5} the fundamental domain F{e4,e5} that is the trian-
gle bounded by v12,v23 and u shown in Fig. 3. That is, we let G{e4,e5} =
〈Rv12 , Rv23 , Ru〉.
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Figure 2. The fundamental domain for O+
Λ when ρ = 4: The

picture on the left is on the boundary of the Poincaré upper
half-space model, so represents an object above it, which is
shown on the right. The fundamental domain is the portion
of the chimney that is above the dome
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Figure 3. The cross section on Hv45 of the strip version of
the Apollonian sphere packing with E = e4 + e5 the point at
infinity. Each circle represents a sphere, and the larger spheres
are bounded above and below by the planes He4 and He5

The Viète involution s3 shown in Fig. 3 satisfies s3 ◦ ei = 0 for i �= 3,
and solving we get s3 = (1, 1,−2, 1, 1) up to scalar multiples. While this is an
obvious generalization of the Viète involution s2 in the ρ = 4 case, there is a
rationale to consider u instead. We note u = Rs3(v23) = (1, 0,−1, 1, 1) and
note that Ru ∈ O+

Λ . In general, we take u = e1 − eρ−2 + E, which is s2 when
ρ = 4.

We extend G{e4,e5} to GE by adding the reflections through He5 and Hv45 .
This stretches the triangle F{e4,e5} into a prism, which forms the base of the
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chimney. The chimney is cut off by the dome given by v14. The result is a
polyhedron in H

4 with the single cusp at E.
Algebraically, the details are as follows: The faces Fi of the triangle are

(1) F1 = Hv12 : x1 − x2 = 0

(2) F2 = Hv23 : x2 − x3 = 0

(3) F3 = Hu : x2 + 2x3 = 0,

and are on the plane

F4 = Hv45 : x4 − x5 = 0.

Let Qi satisfy three of the above four equations, where the (i)-th equation is
omitted for i = 1, 2, 3. Let Qi also satisfy Qi ◦ Qi = 0 and Qi ◦ D < 0, so
Qi ∈ ∂H. (Recall D = (1, 1, 1, 1, 1).) Then Qi are the vertices of the triangle
F{e4,e5}, and are, up to positive scalar multiples,

Q1 = (4, 0, 0, 1, 1)

Q2 = (8, 8,−4, 3, 3)

Q3 = (4, 4, 4,−1,−1).

Let Q′
i be the corresponding vertices of the prism on the face F5 = He5 , so Qi

satisfies equations (j) for j �= i, Q′
i ◦ Q′

i = 0, Q′
i ◦ D < 0, and

F5 = He5 : x1 + x2 + x3 + x4 − x5 = 0.

Solving, we get

Q′
1 = (1, 0, 0, 0, 1) (the point of tangency between e1 and e5)

Q′
2 = (2, 2,−1, 0, 3)

Q′
3 = (1, 1, 1,−1, 2).

Finally, we select for the last face of F the plane F6 = Hv14 , where v14 =
(1, 0, 0,−1, 0). We verify that v14 ◦ E < 0, that v14 ◦ Qi > 0 for all i, and that
v14 ◦Q′

i > 0 for all i. Thus the prism lies entirely within the dome Hv14 , so the
chimney above the prism and above the dome is a 4-dimensional polyhedron
in H with only one point E on ∂H. The group

G = 〈Rv12 , Rv23 , Ru, Rv45 , Re5 , Rv14〉
has fundamental domain F and because F has finite volume, G has finite
index in O+

Λ . The group Γ derived from G by removing Re5 from the list
of generators is our thin group, and ΓF is the Apollonian polyhedron whose
intersection with ∂H is the Apollonian/Soddy sphere packing.
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3.3. Elements in G

In the above, we have identified several types of reflections, namely Rei
for a

base element ei; the transpositions Rvij
with vij = ei − ej ; the Viète involu-

tions Rsi
; and the reflection Ru for u = e1 −eρ−2 +E. We know Rei

and Rvij

are in O+
Λ for all dimensions; and that the Viète involutions are not in O+

Λ for
ρ ≥ 6.

Lemma 3.1. Let u = ei − ej + E for fixed i, j ≤ ρ − 2 and E = eρ−1 + eρ. The
reflection Ru is in O+

Λ for any ρ ≥ 4 and fixes both eρ−1 and eρ.

Proof. Note that u ◦ u = 4, so

Ru(x) = x − 2
u ◦ x

4
u.

Thus, it is enough to show that u ◦ x ≡ 0 (mod 2), which is not difficult.
However, we will make use of u◦x in the following, so we calculate it. We first
note that

ek ◦ x = 2xk −
ρ∑

m=1

xm,

so

u ◦ x = 2xi − 2xj + 2xρ−1 + 2xρ − 2
ρ∑

m=1

xm. (3)

In particular, if x = eρ−1 or eρ (or ei), then u ◦x = 0. Thus both are fixed
by Ru. �

Another involution of particular value is the map

φP,E(x) =
2((P ◦ x)E + (E ◦ x)P )

P ◦ E
− x, (4)

for P and E ∈ ∂H. On the Euclidean space ∂HE , it is the −1 map centered
at P .

Remark 3.2. Suppose X is a K3 surface with elliptic fibration E and section
O. For any point Q on X, there is a fiber C ∈ E that contains Q. Let OC be the
point of intersection of the fiber C and the section O, and define σ(Q) = −Q
using the group structure of the elliptic curve C with zero OC . Then σ is an
automorphism of X. If E has maximal rank in Pic(X), then the pull back σ∗

acting on Pic(X) is the map φP,E , where P = RO(E) (the reflection of E in
the plane O ◦ x = 0) [1].
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3.4. The cases ρ = 6, 7, and 8

These cases are done the same way as ρ = 5. We first find Feρ−1,eρ
by looking

at the following faces and the equations they give:

(1) F1 = Hv12 : x1 − x2 = 0

(2) F2 = Hv23 : x2 − x3 = 0
...

...

(ρ − 3) Fρ−3 = Hvρ−3,ρ−2 : xρ−3 − xρ−2 = 0

(ρ − 2) Fρ−2 = Hu : x2 + x3 + · · · + xρ−3 + 2xρ−2 = 0.

We let Qi be the point that satisfies all but the (i)-th equation above, is on

Fρ−1 = Hvρ−1,ρ
: xρ−1 − xρ = 0,

and satisfies Qi ◦Qi = 0 and Qi ◦D < 0. These are the vertices of the polytope
F{eρ−1,eρ}. That we can solve for each Qi, and that the only solution to all the
equations is 0, shows that the polytope is bounded. We extend the polytope
to the prism FE by solving for the Q′

i that satisfies all but the (i)-th equation,
is on

Fρ = Heρ
: x1 + x2 + · · · + xρ−1 − xρ = 0,

and satisfies Q′
i ◦ Q′

i = 0, and Q′
i ◦ D < 0. Over the prism is the chimney. The

dome,

Fρ+1 = Hv1,ρ−1 : x1 − xρ−1 = 0,

has E on one side, and all the Qi’s and Q′
i’s on the other side (or in one case, on

the plane). The portion of the chimney outside the dome is F , which intersects
∂H at the one point E, or in the case ρ = 8, two points E and Q4; its faces
give us the reflections that generate G; and omitting the reflection Reρ

gives
us Γ. This is slightly slicker than what was done in [2], as the fundamental
domain FE is more compact, so we need only one dome to cover it.

Remark 3.3. For ρ = 8, the fundamental domain F has two cusps, one at
E and the other at Q4. Since the face F8 = He8 does not go through Q4,
the stabilizer ΓQ4 has a full rank of six (meaning ΓQ4 includes a subgroup
isomorphic to Z

6). Thus, in the perspective A8,Q4 , the Apollonian packing
includes a six-dimensional Euclidean lattice of spheres. For lower dimensions,
the best we can get is an N − 1 = ρ − 3 dimensional lattice (see for example
Fig. 3).
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Figure 4. The Coxeter graphs for the groups Γ, Γ′, and ΓAp

for the Apollonian circle packing (ρ = 4)
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Figure 5. The Coxeter graphs for Γρ with ρ = 5, 6, 7, and 8.
A vertex labeled i represents the face Fi. Note that Fi ◦Fi = 4
for i �= ρ, and Fρ ◦ Fρ = 1

4. Coxeter graphs (an aside)

The groups Γ = Γρ for ρ ≤ 8 are generated with reflections, so we can derive
their Coxeter graphs. Coxeter graphs are not unique for a packing, since there
may be many groups that generate the same packing. For example, the three
groups Γ, Γ′, and ΓAp that we saw in Sect. 2.1 for the Apollonian circle packing
(ρ = 4) have the Coxeter graphs shown in Fig. 4. Maxwell gives 13 different
Coxeter graphs that all generate the Apollonian/Soddy sphere packing [6,
Table I]. The groups Γρ that we chose for ρ = 5, . . . , 8 have a nice symmetry
to their Coxeter graphs – see Fig. 5.

5. The case ρ = 9

We solve for Qi and Q′
i using the equations/faces in Sect. 3.4, and find:

Q1 = (4, 0, 0, 0, 0, 0, 0, 1, 1) Q′
1 = (1, 0, 0, 0, 0, 0, 0, 0, 1)

Q2 = (24, 24,−4,−4,−4,−4,−4, 15, 15) Q′
2 = (6, 6,−1,−1,−1,−1,−1, 2, 9)

Q3 = (20, 20, 20,−8,−8,−8,−8, 19, 19) Q′
3 = (5, 5, 5,−2,−2,−2,−2, 3, 10)
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Q4 = (16, 16, 16, 16,−12,−12,−12, 19, 19) Q′
4 = (4, 4, 4, 4,−3,−3,−3, 3, 10)

Q5 = (12, 12, 12, 12, 12,−16,−16, 15, 15) Q′
5 = (3, 3, 3, 3, 3,−4,−4, 2, 9)

Q6 = (8, 8, 8, 8, 8, 8,−20, 7, 7) Q′
6 = (2, 2, 2, 2, 2, 2,−5, 0, 7)

Q7 = (4, 4, 4, 4, 4, 4, 4,−5,−5) Q′
7 = (1, 1, 1, 1, 1, 1, 1,−3, 4).

The dome F10 = Hv18 includes all of these points except for Q4 and Q5. The
midpoint of Q4Q5 (in ∂HE) is P1 = (1, 1, 1, 0,−1,−1, 1, 1), which lies on F10.
This suggests that P1 is a cusp, and though the faces wall off all but one
dimension, there do not seem to be any reflections that close it off. However,
φP1,E ∈ O+

Λ (see Eq. 4). While it might be natural to test whether φP1,E is in
O+

Λ , it is not so obvious to look at φP1,P2 for P2 = (1, 1, 1, 1, 2,−1,−2, 1, 2),
which is also in O+

Λ . We try to motivate this second choice in the remark at
the end of this section.

Theorem 5.1. The reflections through the faces F1, . . . , F10 and the maps
φP1,E and φP1,P2 generate a subgroup G = G9 of finite index in O+

Λ9
.

Proof. As before, we construct a fundamental domain F for G and show that
its intersection with ∂H is a finite set of points, and hence has finite volume.
The prism P with faces F1 through F9 is not FE since φP1,E is also in ΓE ,
though we can choose FE to be a subset of P. The map φP1,E is the −1
map through P1 on ∂HE , so any plane through P1 and E can serve as a face,
since φP1,E sends all points on one side of the plane to points on the other
side, and vice versa. Let us take n1 = (1, 1, 1, 1,−6, 1, 1, 1, 1), which satisfies
n1 ◦ Q4 = n1 ◦ E = 0 as desired, and let F11 = Hn1 . We verify that the points
Q1 and Q′

1 lie on F11, the points Q2, Q3, Q4, Q′
2, Q′

3, and Q′
4 lie in H+

n1
, and

the rest lie in H−
n1

. That is, F11 slices P vertically into two pieces. We take
FE to be the prism formed by the intersection of P with H−

n1
and use this to

give us our chimney. It is now enough to find several domes that cover FE .
The dome F10 = Hv18 covers all the vertices of P except for the two points

Q4 and Q5. The midpoint of Q4Q5 is P1, which lies on F10, so the portion of
the prism P outside the dome F10 has two pieces that touch at P1. The edges
of the prism P that include Q4 are Q4Qi for i �= 4, and Q4Q

′
4. Let P4i be the

point closest to Q4 that lies on both F10 and Q4Qi for i �= 4, and on Q4Q
′
4 for

i = 4. (Note that P45 = P1.) Then the polytope with vertices Q4 and P4i for
all i includes one of the two pieces of the portion of the prism P outside the
dome F10. We verify that all these points (Q4 and P4i for all i) lie in H+

n1
, and

therefore this piece is not part of FE .
We similarly define P5i (where again P54 = P1). For the map φP1,P2

we can take any plane Hn2 that includes P1 and P2. Let us take n2 =
(3, 3, 3, 3, 3,−4,−4, 3, 3) and define F12 = Hn2 (which is tangent to Hn1 at
P1 in ∂HE). We verify that E is in H−

n2
, while the points Q5 and P5i lie in

H+
n2

. Thus, the domes F10 and F12 cover FE . Hence, the region F bounded by
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the faces F1 through F12 (as described above) is a fundamental domain for G.
It intersects ∂H at E and P1, so has finite volume. Hence G has finite index
in O+

Λ . �

Our argument from here is like that in [2], and after establishing Theorem
6.1 in the next section, completes the argument for ρ = 10 as well. We let

K′
ρ =

⋂

γ∈Γρ

H−
γeρ

and show K′
ρ = Kρ. We will need the following result from [2] (which establishes

Property (c)):

Lemma 5.2. (Lemma 5.1 of [2]) The planes Hei
are faces of K.

The following is an unsurprising density result:

Lemma 5.3. Suppose D ∈ H−
n for some n ∈ R

ρ−1,1 with n◦n > 0. Then there
exists m ∈ E1 such that H+

m ⊂ H+
n .

That is, given an arbitrary hyperball Hn in ∂HE , there exists an m ∈ E1

so that the hyperball Hm is contained in Hn.

Proof. Since G has finite index in O+
Λ , the image of E under the action of G

is dense in ∂H. Thus, there exists a γ ∈ G such that γE ∈ H+
n . Without loss

of generality, we may also choose γ so that γE �= E and γE is not on Hn. Let
E′ = γE and f = γeρ. Consider m = m(a) = f + aE′. Then

m ◦ m = γeρ ◦ γeρ + 2aγeρ ◦ γE + γE ◦ γE

= eρ ◦ eρ + 2aeρ ◦ E + E ◦ E

= 1.

Note that m(a)◦E′ = γeρ ◦γE = eρ ◦E = 0, so E′ lies on Hm. The curvature
of Hm is

−m(a) ◦ E = f ◦ E + aE′ ◦ E.

Since E′ �= E, we know E′ ◦ E �= 0, so with an appropriately large choice of
|a| and appropriate sign, we can make the hyperball given by m = m(a) have
a sufficiently small radius so that H+

m ⊂ H+
n . Since D ∈ H−

n ⊂ H−
m, we get

m ∈ E1. �

Theorem 5.4. For ρ = 9 and 10 (and also 4 through 8), K′
ρ = Kρ, and its

intersection Aρ,E with ∂HE satisfies Properties (a), (b), and (d).

Proof. We begin by showing K′ = K. Since Γeρ ⊂ E1, we know K′ ⊃ K.
Suppose there exists a face Hm of K that is not a face of K′, with m ∈ E1.

We use Γ to do a descent on m: Let O ∈ ∂HE be the center of the hypersphere
Hm,E ⊂ ∂HE . There exists an isometry in ΓE that moves O into FE , so O is
inside one (or more) of the domes that bound F (F10 and F12 for ρ = 9; F11,
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F12, and F14 for ρ = 10). Note that this map does not change the curvature,
as ΓE is a group of Euclidean isometries of HE . Since O is in one of the domes,
applying the map associated to that dome strictly decreases the curvature. We
find the new O (if it exists) and continue. Since the curvatures are integers,
descent must stop, which is when the curvature reaches 0 (so O no longer
exists). Let m′ be the final image of m. Then m′ ◦ E = 0 (curvature is 0), so
Hm′ is either parallel to Heρ

, or intersects it.
If Hm′ is parallel to Heρ

, then it is also parallel to Heρ−1 and hence H−
m′

is a subset of either H−
eρ

or H−
eρ−1

. That means one of them is not a face of K,
which contradicts Lemma 5.2.

If Hm′ intersects Heρ
, then m′ ◦ eρ = 0, since this product is an integer in

the interval (−1, 1) (see Eq. 1). Thus

0 = m′ ◦ eρ = m′
ρ −

ρ−1∑

i=1

m′
i,

and

1 = m′ ◦ m′ =
ρ∑

i=1

(m′
i)

2 − 2
∑

i<j

m′
im

′
j

≡
(

ρ∑

i=1

mi

)2

(mod 2)

≡ (m′ ◦ eρ)2 ≡ 0 (mod 2),

a contradiction. Thus, no such m exists and K′ = K.
This is also the key to showing Property (a): Suppose two faces, m and

m′ ∈ Γeρ intersect. Then m ◦ m′ = 0, and there exists a γ ∈ Γ so that
γm′ = eρ. Thus γm ◦ eρ = 0, leading us to a contradiction using the logic
above.

We next show Aρ,E satisfies Property (b): Suppose not. Then there exists
a gap where we can place a hypersphere. That is, there exists n ∈ R

ρ−1,1 with
n◦n > 0 so that H+

n ⊂ K. If D ∈ H+
n , then the hypersphere is very large, and

by shrinking it (choosing a different n), we can make sure D ∈ H−
n . (The point

D lies in H, so is a fixed Euclidean distance above ∂HE . If the hypersphere in
∂HE is sufficiently small, then the hemisphere above it cannot reach D.) By
Lemma 5.3, there exists m ∈ E1 so that H+

m ⊂ H+
n ⊂ K. We do the descent

argument again to get m′ with m′ ◦E = 0. Since Γ is a group of symmetries of
K, we now have a gap in K that includes the half space H+

m′ in the Euclidean
space ∂H. This cannot happen, as K lies between the parallel planes Heρ

and
Heρ−1 .

Finally, Property (d) follows from Lemma 5.2 and the transitivity of Γ on
the faces of K. �
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Remark 5.5. Here is a perhaps dubious motivation for looking at φP1,P2 . Note
that if a hypersphere intersects a face Fi of FE , then the reflection of it in Fi is
itself (if we want Property (b) to hold). Since we want to cover Q5, a strategy is
to look for elements n ∈ E1 on the intersection of all but one of the faces that go
through Q5 and are close to Q5. We stumble on f = (2, 2, 2, 2, 2,−2,−3, 2, 2).
We also note that P1 is a cusp, so there is some motivation to make it the
point at infinity. With P1 the point at infinity, we note that both e9 and f
have curvature 1, so we look at the −1 map through the midpoint P2 of the
two. To find P2, we find the center Re9(P1) of He9,P1 in ∂HP1 , and the center
Rf (P1) of Hf ,P1 . The point P2 is the sum of these two centers together with
the appropriate multiple of P1 that makes P2 � P2 = 0.

Remark 5.6. Descent arguments usually include a height function. Our descent
has two components: Moving Hm closer to FE using the Euclidean metric on
∂HE , while keeping the curvature constant; and decreasing the curvature.
Thus, our height can be thought of as having two components: Euclidean
distance of Hm from (say) Q1 = Re1(E), which is essentially the quantity
−Q1◦m; and curvature, which is essentially −E�m. We can combine these two
to give us a more traditional height: h(m) = −(Q1+3E)◦m. The coefficient 3 is
necessary so that the point Q1 +3E is in F and in H. Otherwise, the decrease
in curvature after an inversion might be less than the increase in distance.
This height is essentially just the logarithm of the hyperbolic distance from
the point Q1 + 3E to the plane Hm in H.

6. The case ρ = 10

As in the previous case, we use the equations in Sect. 3.4 to find the vertices of
a prism P, the points Q1, . . . , Q8 and Q′

1, . . . , Q′
8. The dome F11 = Rv19 covers

all but Q4, Q5, and Q6. The point Q′
5 is on F11. In our search for additional

isometries, we find the reflection Rn for n = (1, 1, 1, 1, 1,−1,−1,−1, 1, 1) is in
O+

Λ . We let F12 = Hn. The hypersphere Hn,E in HE is centered at Q5 and
goes through Q′

5. The midpoint P1 = (1, 1, 1, 1, 0, 0,−1,−1, 1, 1) of Q4Q6 in
HE is on F11 and F12, so looks like a cusp. The map φP1,E is in O+

Λ . We
find f = (1, 1, 1, 1, 1, 1,−1,−2, 1, 1) ∈ E1 in roughly the same place as in the
ρ = 9 case, and in the same way find P2 = (1, 1, 1, 1, 2, 2,−1,−3, 1, 3). The
map φP1,P2 is also in O+

Λ .

Theorem 6.1. The reflections through the faces F1, . . . , F12 and the maps
φP1,E and φP1,P2 generate a subgroup G = G10 of finite index in O+

Λ10
.

Proof. As in the ρ = 9 case, we let P be the prism with vertices Q1, . . . ,
Q8 and Q′

1, . . . , Q′
8. Because the map φP1,E is in ΓE , our choice for FE

will be a proper subset of P. We choose the face F13 = Hn1 where n1 =
(1, 1, 1, 1,−3,−3, 1, 1, 1, 1) to represent φP1,E . Since P1 and E are both on
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F13, it sends one side of the face to the other. We let FE be the intersection of
P with H−

n1
. This lops off the vertices {Q2, Q3, Q4, Q

′
2, Q

′
3, Q

′
4}. The vertices

{Q1, Q
′
1, Q5, Q

′
5} are on F13. Since F13 is perpendicular to He10 and Hv9,10 ,

the domain FE is again a prism. Let Pij be the intersection of the line QiQj

with F13 for i = 6, 7, and 8, and j = 2, 3, and 4. Define P ′
ij similarly for the

line Q′
iQ

′
j and the same indices. Then the vertices of FE are the vertices Q1,

Q5, Q6, Q7, Q8, the nine vertices Pij just defined, and the ‘prime’ versions of
those fourteen points. Most of FE is covered by the dome F11, as that dome
includes all the vertices of FE except for Q5 and Q6.

The dome F12 covers the vertex Q5, but not Q6. For φP1,P2 , we choose
n2 = (3, 3, 3, 3, 3, 3,−5,−5, 3, 3) and the face F14 = Hn2 , which covers Q6.

A convex polyhedron is covered by a single sphere if all of its vertices are
in the sphere. We used this in the ρ ≤ 8 cases. It is covered by two spheres
if all the vertices are covered, and all the edges are covered. If two vertices
are in the same sphere, then that edge is covered by that sphere, so one need
check only the edges with vertices in different spheres. A convex polyhedron
is covered by three spheres if all its vertices and edges are covered, and also
all its 2-D edges are covered. If three vertices that lie in two spheres define a
2-D edge, then it is covered if its edges are covered. Thus we need only check
2-D edges with vertices in all three spheres. This is our situation.

The edge AB in ∂HE is in the plane spanned by {A,B,E} in R
ρ−1,1. To

see if it is covered by the two domes that contain A and B, we solve P ◦F = 0
for P ∈ span{A,B,E} and the two domes F . This gives us a one-dimensional
subspace of Rρ−1,1 spanned by (say) P . If P ◦P > 0, then the domes intersect
above the segment AB in the Poincaré model, so the spheres in ∂HE cover the
edge. If P � P = 0, then the domes intersect at P on the edge, so again cover
it. They do not cover the edge if P ◦ P < 0. A similar argument works for a
2-D edge determined by vertices A, B and C: We let P ∈ span{A,B,C,E}
and solve the three equations F ◦P = 0 for the domes F that cover each of the
three points. This gives a one-dimensional solution spanned by P , and again,
if P ◦ P ≥ 0, then the 2-D edge is covered by the three spheres, and is not
otherwise.

Let S = {Q1, Q7, Q8, P62, P63, P64, P72, P73, P74, P82, P83, P84} be the set of
vertices that are on the top of the prism FE , and that are covered by F11. We
check that the edges Q5A for A ∈ S ∪ {Q′

5} are all covered by F11 and F12.
We do not need to check, for example, the edge Q5Q

′
1, since it follows from

our check of Q5Q
′
5 and Q5Q1, and noting that FE is a prism. We similarly

check that the edges Q6A for A ∈ S ∪ {Q′
6} are covered by F11 and F14; and

that Q5Q6 is covered by F12 and F14. Finally we check that all the 2-D edges
spanned by {Q5, Q6, A} for A ∈ S ∪{Q′

5, Q
′
6} are covered by F11, F12 and F14.

We find that they all are covered by F11, F12, and F14, so F has finite volume
and thus G has finite index in O+. �
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