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Remarks on partitions into expanders

Federico Vigolo

Abstract. In this note we give a short proof that graphs having no linearly small Følner sets
can be partitioned into a union of expanders. We use this fact to prove a partition result for
graphs admitting linearly small maximal Følner sets and we deduce that a family of such
graphs must contain a family of expanders. We also show that the existence of partitions
into expanders is a quasi-isometry invariant.
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1. Introduction

This paper revolves around the fact that “graphs where linearly-small sub-
sets have large boundaries can be partitioned into unions of linearly-large
expanders”. To make the statement clear, we need to introduce some termi-
nology: let X be a finite graph with no multiple edges or loops. Given a finite
set of vertices A ⊆ X, the boundary of A is the set of edges connecting A to
its complement:

∂A = {{v, w} ∈ E(X)|v ∈ A, w ∈ X � A}.

Given ε > 0, a non-empty set of vertices A ⊂ X is an ε-Følner set if |A| ≤ 1
2 |X|

and |∂A| ≤ ε|A| (here |X| is the number of vertices in X). The graph X is an
ε-expander if it contains no ε-Følner sets. Let deg(X) := max{deg(v)|v ∈ X}
be the degree of X and D ∈ N some number. Then X is an (ε,D)-expander if
it is an ε-expander and deg(X) ≤ D.

If X is a connected finite graph, it is trivially a ( 2
|X| , |X|)-expander. On

the other hand, it is generally hard and very interesting to prove that a graph
X is an (ε,D)-expander for some constants ε, D that are fixed a priori and
do not depend on |X|. A family of expander graphs is a sequence of (ε,D)-
expanders (Xn)n∈N such that |Xn| → ∞. We refer to [6] for more background
and motivation.
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A subset of vertices Y ⊂ X can be made into a subgraph of X by keeping
all the edges in X with both endpoints in Y (such a graph is often called a
full subgraph of X). In this paper we will say that X = X1 � · · · � Xn is a
partition of X if Xi are subgraphs arising from a partition of the set of vertices
of X. We do not require that every edge of X is an edge of Xi for some i (i.e.
there might be edges connecting the Xi’s). We will be particularly interested
in partitions where the graphs Xi are ε-expanders. If deg(X) ≤ D, Xi will
then automatically be (ε,D)-expanders.

Finally, given a constant α ∈ (0, 1) we say that a subset A ⊆ X is α-big
if |A| ≥ α|X|, and that it is α-small if |A| < α|X|. Given nested subsets
A ⊆ Y ⊆ X, we will avoid confusion by specifying whether A is α-big in Y or
in X (and similarly for α-small).

In this paper we wish to give an elementary proof of the fact that graphs
with a “small-set expansion on a linear scale” can be partitioned into linearly-
large expanders:

Theorem A. Let X be a finite graph. If X has no α-small ε-Følner sets, then
it can be partitioned as X = X1 � · · · �Xk where k ≤ 
 1

α�, all the Xi are α-big
and they are δ-expanders for δ = ε

4k
.

Apart from the specific constants, Theorem A can be easily deduced from
a—much more refined—result of Oveis Gharam–Trevisan [3][Theorem 1.5] (see
Remark 3.3 for a more detailed comparison). The main contribution of this
note is to provide a short self-contained proof for Theorem A (Sect. 3).

We hope that this work will help popularize this basic but not-so-well-
known fact. For this reason, we begin our exposition by illustrating a few
geometric consequences of Theorem A (Sect. 2). Namely, we prove a rather
general partition result for graphs, and we also use Theorem A to show that
the property of admitting partitions into linearly large expanders is invariant
under quasi-isometry. We find that Theorems 2.2, 2.8 and Corollary 2.3 should
be of independent interest.

It is also worth pointing out that the objects of interest of this note (ex-
panders and Følner sets) are very much related to the notion of separation
profile introduced by Benjamini–Schramm–Timár [1]. Some analogues of the
techniques explained below proved to be useful in that context as well [2,7].

2. Consequences of the main result

2.1. A general partition theorem

It is convenient to introduce a piece of notation: given subsets A,B ⊂ X, we
let ∂BA be the set of edges in X joining a vertex in A with a vertex in B � A
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(this is the subset of ∂A consisting of edges that land in B). It is interesting
to combine Theorem A with the “maximal Følner set trick”:

Lemma 2.1. Let X be a finite graph and ε > 0 a fixed constant. If there ex-
ists an ε-Følner set F that is maximal with respect to inclusion, consider the
subgraph Y := X � F . Then every subset A ⊂ Y such that |A| ≤ 1

2 |X| − |F |
satisfies |∂Y A| > ε|A|.

This sort of maximality argument is used fairly often in the theory of von
Neumann algebras and it was also a key ingredient in [8]. The proof of Lemma
2.1 is completely elementary and can also be found in [8][Lemma 3.1]. Together
with Theorem A, the maximality trick implies the following structure theorem:

Theorem 2.2. Let X be a finite graph. If X has a maximal ε-Følner set F that
is α-small for some α < 1

2 , then there exists δ = δ(ε, α) such that X can be
partitioned as

X = F � Y1 � · · · � Yk

where the graphs Yi are δ-expanders and are (12 − α)-big in X.

Proof. Let F be an α-small maximal ε-Følner set and let Y := X�F . If A ⊂ Y
is an ε-Følner set of Y , then by Lemma 2.1 we must have:

|A| >
1
2
|X| − |F | = |Y | − 1

2
|X| >

(
1 − 1

2(1 − α)

)
|Y | =

1
2

(1 − 2α

1 − α

)
|Y |.

That is, Y has no 1
2

(
1−2α
1−α

)
-small ε-Følner sets. We can hence apply Theorem A

to obtain a partition of Y into δ-expanders. �

Corollary 2.3. Let (Xn)n∈N be a sequence of finite graphs with deg(Xn) ≤ D
and |Xn| → ∞. Given a constant ε > 0, either there exist ε-Følner sets Fn ⊂
Xn such that lim sup |Fn|

|Xn| = 1
2 or there exist α, δ > 0 and α-big subgraphs

Yn ⊆ Xn that are (δ,D)-expanders (these options are non-exclusive).

Note in particular that the graphs Yn in Corollary 2.3 would be a family
of expander graphs. A sample application of this result could be proving that
some metric space Y contains families of expanders: it may be possible to
prove that Y contains some graphs Xn that do not have Følner sets of size
≈ |Xn|/2, and Corollary 2.3 would then immediately imply that Y contains
some genuine expanders as well. This is relevant e.g. in the study of coarse
embeddings into Hilbert spaces [5,8,9].
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2.2. Invariance under quasi-isometry

Given L,A > 0, a (L,A)-quasi-isometry is a function between metric spaces
f : (X, dX) → (Y, dY ) such that

1
L

dX(x, x′) − A ≤ dY (f(x), f(x′)) ≤ LdX(x, x′) + A

for every x, x′ ∈ X, and such that for every y ∈ Y there is an x ∈ X with
dY (f(x), y) ≤ A. This notion is a cornerstone of geometric group theory [4].

Connected graphs can be seen as metric spaces where the distance between
two vertices is the length of the shortest path connecting them. It is well-
known that quasi-isometries preserve expansion. More precisely, one can prove
the following lemma (see the proof of [10][Lemma 2.7.5] 1):

Lemma 2.4. For every ε > 0 there exists an η = η(ε,D,L,A) such that if
X and Y are connected graphs with degree bounded by D and f : X → Y is
an (L,A)-quasi-isometry, then for every subset F ⊂ Y with |∂F | ≤ η|F | the
preimage T = f−1(F ) is non-empty and satisfies |∂T | ≤ ε|T |.
Remark 2.5. The value of η degrades exponentially fast as a function of the
quasi-isometry constants. The proof in [10][Lemma 2.7.5] works for η = εD−p(L,A)

where p is some polynomial.

If f : X → Y is an (L,A)-quasi-isometry between graphs, then any two
vertices of X that are at distance L(A + 2) or more are sent to distinct points
in Y . It follows that if X has degree bounded by D then

|f−1(y)| ≤ (cardinality of a ball of radiusL(A + 2)) ≤ DL(A+2)+1.

On the other hand, since every point in Y is within distance A from f(X), it
follows that if Y has degree bounded by D then

|Y | ≤ DA+1|f(X)| ≤ DA+1|X|.
Combining these inequalities one can prove the following:

Lemma 2.6. Let X and Y be connected graphs with degree bounded by D and
f : X → Y an (L,A)-quasi-isometry. For any α > 0 let β := D−L(A+2)−A−2α.
Then the preimage of a β-small subset of Y is α-small in X.

The following is now immediate:

Proposition 2.7. For every ε, α,D,L,A > 0 there exist η, β > 0 such that if X
and Y are connected graphs with degree bounded by D, X has no α-small ε-
Følner set and f : X → Y is an (L,A)-quasi-isometry, then Y has no β-small
η-Følner sets.

1The current setting is somewhat different from that of [10]. Most notably, [10] is concerned
with coarse equivalences and vertex boundaries. Yet, it is easy to adapt the argument out-
lined there to our situation.
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We can use Proposition 2.7 and Theorem A to show that the existence of
partitions into linearly large expanders is invariant under quasi-isometry. More
precisely, we can prove the following:

Theorem 2.8. Fix ε, α,D,L,A > 0 and η, β > 0 as in Proposition 2.7. Let
Xn and Yn be two sequences of finite graphs with degree bounded by D and
fn : Xn → Yn be (L,A)-quasi isometries. If each Xn can be partitioned in (2α)-
large ε-expanders then Yn can be partitioned into β-large δ-expanders where
δ = 4−�1/β�η.

Proof. Since Xn can be partitioned in (2α)-large ε-expanders, it does not con-
tain any α-small ε-Følner set. Proposition 2.7 implies that Yn does not contain
β-small η-Følner sets. The claim now follows from Theorem A. �

Remark 2.9. It would be fairly complicated to directly prove Theorem 2.8
by ignoring Theorem A altogether. This is because quasi-isometries are not
bijections and the techniques needed to prove Lemmata 2.4 and 2.6 are ill
suited for constructing partitions of the codomains.

3. Proof of Theorem A

Recall that, given subsets A,B ⊂ X, we denote by ∂BA the set of edges in X
joining a vertex in A with a vertex in B � A. Define the Cheeger constant of
a finite graph as

h(X) := min{ |∂A|
|A|

∣∣A ⊂ X, 0 < |A| ≤ 1
2
|X|}.

Note that X is an ε-expander if and only if h(X) > ε.

Lemma 3.1. Given any ε > 0 and a graph X with Cheeger constant h :=
h(X) ≤ ε

2 , let Y ⊂ X be a set with 0 < |Y | ≤ 1
2 |X| and |∂Y |

|Y | = h. Then every
(ε/4)-Følner set of Y is an ε-Følner set of X.

Furthermore, letting Z := X � Y we also have that every (ε/4)-Følner set
of Z is an ε-Følner set of X.

Proof. Let A ⊂ Y be a set such that |∂XA| > ε|A|, we need to show that
it is not an (ε/4)-Følner set of Y . Note that ∂XA = ∂Y A � ∂ZA and that
∂ZA ⊂ ∂XY . We have:

∂X(Y � A) = (∂XY � ∂ZA) � (∂A(Y � A)),

and hence

|∂X(Y � A)| = |∂XY | − |∂ZA| + |∂A(Y � A)| = |∂XY | − |∂ZA| + |∂Y A|
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because ∂Y A = ∂A(Y � A). By minimality, we thus obtain:

h =
|∂XY |

|Y | ≤ |∂X(Y � A)|
|Y � A| =

|∂XY | − |∂ZA| + |∂Y A|
|Y � A| . (1)

For convenience, let t := |A|/|Y | and let r := |∂Y A|/|∂XA|. With the newly
introduced notation, (1) becomes:

h ≤ |∂XY | − (1 − r)|∂XA| + r|∂XA|
(1 − t)|Y | =

h

1 − t
+

2r − 1
(1 − t)/t

|∂XA|
|A| .

Rearranging the terms we obtain:

−h ≤ (2r − 1)
|∂XA|

|A|
and hence

r ≥ 1
2

(
1 − h

|A|
|∂XA|

)
>

1
4
, (2)

where the last inequality follows from the assumptions h ≤ ε
2 and |∂XA|

|A| > ε.
We can therefore conclude that A is not an (ε/4)-Følner set of Y because

|∂Y A| = r|∂XA| >
1
4
|∂XA| >

ε

4
|A|.

The proof of the “furthermore” part is similar. As above, let A ⊂ Z be such
that |∂XA| > ε|A|. Now there are two possibilities. If |Z � A| ≤ 1

2 |X| then we
have an analogue of (1):

h ≤ |∂X(Z � A)|
|Z � A| =

|∂XZ| − |∂Y A| + |∂ZA|
|Z � A|

and the same argument implies that ∂ZA > ε
4 |A|.

On the other hand, if |Z � A| > 1
2 |X| then |Y � A| < 1

2 |X|, and therefore
we have

h ≤ |∂X(Y � A)|
|Y � A| =

|∂XY | − |∂Y A| + |∂ZA|
|Y | + |A| ≤ h +

|∂ZA| − |∂Y A|
|Y | + |A| ,

from which it follows that |∂ZA| ≥ |∂Y A| and hence |∂ZA| > ε
2 |A|. �

Proof of Theorem A. Let X be a finite graph with no α-small ε-Følner sets.
We will show that it can be partitioned as X = X1 � · · · � Xk where k ≤ 
 1

α�,
all the Xi are α-big and they are δ-expanders for δ := ε

4k
. The idea is to apply

Lemma 3.1 recursively: if X is not an ε
2 -expander then h(X) ≤ ε

2 and there
exists a Y0 ⊂ X that realizes the Cheeger constant. Since X has no α-small
ε-Følner sets, we deduce that |Y0| ≥ α|X|. Letting Y1 := X � Y0, we have
a partition X = Y0 � Y1 where both Yi are α-large. Importantly, it follows
from Lemma 3.1 that ε

4 -Følner sets of Yi are also ε-Følner sets of X. Let us
now focus on Y0: if it is an ε

2·4 -expander there is nothing to do. Otherwise,
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we can choose Y00 ⊂ Y0 realizing the Cheeger constant. Such Y00 is an ε
4 -

Følner set in Y0 and hence an ε-Følner set in X. It follows that |Y00| ≥ α|X|.
On the other hand, Y01 := Y0 � Y00 is at least as large as Y00 and hence
|Y01| ≥ α|X|. Using Lemma 3.1 we deduce that the partition Y0 = Y00 � Y01

is such that every ε
42 -Følner set in Y0i is an ε

4 -Følner set in Y0 and hence an
ε-Følner set in X. One can thus continue to partition the sets Yi0i1···ik that
appear using this procedure. This process ends because X is a finite graph
and all the subsets Yi0i1···ik obtained during this process are α-big in X. In
particular, when the process ends one has partitioned X into at most 
 1

α�
sets X1, . . . , Xk. Moreover, the worst possible expansion constant is what is
obtained by the longest chain of consecutive applications of Lemma 3.1. This
gives rise to the—rather generous—lower bound δ ≥ ε

4k
.

Remark 3.2. By examining the end of the proof of Theorem A, we see that the
natural lower bound on δ is actually ε

2·4k−1 . With some extra care, it is further
possible to improve this to ε

4k−1 (if the partition process goes all the way and
produces k components, then they must automatically be ε/4k−1 expanders as
any ε/4k−1-Følner set should be α-large in X and hence take more than half of
the graph). It is also possible to improve the base of the exponential, making
it arbitrarily close to 1

2 (instead of 1
4 ). This is accomplished by modifying

the statement of Lemma 3.1: Inequality (2) shows that tighter control on h
directly yields a better asymptotic behaviour. The optimal parameters for
Lemma 3.1 would then depend on the expected value on k. However, such a fine
tuning seems unnecessary, as there are other arguments that yield polynomial
estimates (see below).

Remark 3.3. As already remarked, Theorem A follows easily from a result
of Oveis Gharam–Trevisan. For every m ≥ 1 one can define a higher order
Cheeger constant ρm(X) as

ρm(X) := min{ max
1≤i≤m

|∂Ai|
|Ai|

∣∣∣A1, . . . , Am ⊂ X disjoint}.

[3][Theorem 1.5] implies that when ρm(X) > 0 one can always find a partition
X = X1 � · · · � Xl for some l ≤ m − 1 where the graphs Xi are ζ-expanders
for some ζ = ζ(m, ρm(X),deg(X)). To prove Theorem A it is then enough to
note that if there are no α-small ε-Følner sets in X and m = 
 1

α�+1, then for
any choice of m disjoint sets A1, . . . , Am at least one of them will be smaller
than α|X| and hence ρm(X) > ε. It will hence be possible to partition X into
at most 1

α -many ζ-expanders.
The proof of Oveis Gharam–Trevisan appears to be somewhat more in-

volved than the proof we gave (it follows from [3][Theorem 1.7]), but it has a
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few significant advantages: it gives a bound on the number of edges connect-
ing the sets in the partition, it applies to weighted graphs2 and it produces
asymptotically better constants.

With regard to constants: we wrote that the constant ζ of Oveis Gharam–
Trevisan depends on the degree of X because what they actually estimate is
the conductance3 In particular, this makes it hard to compare directly the
constants that we obtain. It appears that our approach provides sharper esti-
mates when k is very small (i.e. for large α). On the other hand, our estimate
degrades exponentially fast with k, while that of Oveis Gharam–Trevisan de-
grades only quadratically.

One small advantage of our proof is that it is not immediately clear from
the result of Oveis Gharam–Trevisan that all the sets X1, . . . , Xl appearing in
the partition are α-big.
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