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Abstract. We derive an algebraic version over an algebraically closed field k with characteris-
tic �= 2 of Yang’s Small Dimension Lemma. With its help we describe the k-valued solutions
of d’Alembert’s functional equation on semigroups S in terms of multiplicative functions
and irreducible, 2-dimensional representations of S.
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1. Set up

Throughout the paper we enforce the set up below.
k is an algebraically closed field of characteristic �= 2 with identity element

1, and k∗ denotes the multiplicative group k∗ := (k \ {0}, ·).
k[X] := the vector space over k of k-valued functions on the set X.
S is a non-empty semigroup equipped with an involution x �→ x∗ (an anti-

automorphism of S such that (x∗)∗ = x for all x, y ∈ S) and a homomorphism
μ : S → k∗ satisfying μ(xx∗) = 1 for all x ∈ S. If S is a monoid or a group,
we let e denote its identity element.

We shall study d’Alembert’s functional equation

g(xy) + μ(y)g(xy∗) = 2g(x)g(y) for all x, y ∈ S, (1.1)

where g ∈ k[S] is the unknown function. A d’Alembert function is a non-zero
solution g of (1.1).

We encounter Wilson’s functional equation that here means

f(xy) + μ(y)f(xy∗) = 2f(x)g(y) for all x, y ∈ S, (1.2)
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in which f ∈ k[S] is the unknown function for fixed g ∈ k[S]. Note that
Wil(g) := {f ∈ k[S] | f satisfies (1.2)} is a subspace of k[S]. The elements f
of Wil(g) are called Wilson functions (corresponding to g).

We also encounter the symmetrized sine addition law, which is

w(xy) + w(yx) = 2w(x)g(y) + 2w(y)g(x), x, y ∈ S, (1.3)

in which w ∈ k[S] is the unknown function for fixed g ∈ k[S]. Note that
W(g) := {w ∈ k[S] | w satisfies (1.3)} is a subspace of k[S].

2. Introduction

Yang [13,14] proved the Small Dimension Lemma (Theorem 5.1 below) and
used it to solve d’Alembert’s and Wilson’s classic functional equations

g(xy) + g(xy−1) = 2g(x)g(y), x, y ∈ G, and (2.1)

f(xy) + f(xy−1) = 2f(x)g(y), x, y ∈ G, (2.2)

on compact groups G. It has long puzzled me, that the ideas behind her
ingenious lemma have not been extended to other groups or semigroups. The
present paper does so: We derive an algebraic version of Yang’s Small Dimen-
sion Lemma (Theorem 5.2) and use it to d’Alembert’s functional equation
(1.1) on semigroups. Our version enables us to address two shortcomings of
the existing theory of d’Alembert’s functional equation.

1. The domains of definition S of the solutions of (1.1) have progressively
been extended from R via abelian groups to groups and monoids (see
Aczél and Dhombres [1], Davison [4] and Stetkær [12] for details and
references). The present paper takes the step farther to semigroups S,
which is the natural domain in view of the form of (1.1).

2. Our solutions of (1.1) may assume values in any quadratically closed field
k of characteristic �= 2. Although this generality of the range space has
been accomplished for d’Alembert’s classic functional equation (2.1) on
abelian groups and P3-groups (see for example Aczél and Dhombres [1,
Chapter 13, Theorem 16] and Corovei [3, Theorem 6]), the rest of the
literature deals almost exclusively with k = C.

The function μ in (1.1) is μ ≡ 1 in much of the literature, like it is in the classic
functional equations (2.1) and (2.2). The reason we consider also μ �= 1, is, that
this occurs in the literature, for example in Parnami, Singh and Vasudeva [9],
Davison [4], Stetkær [11,12] and Elqorachi and Redouani [5]. Parnami et al.
[9] calls a special version of (1.1) the exponential-cosine functional equation.

Our way of solving d’Alembert’s functional equation is to combine the
Algebraic Small Dimension Lemma (Theorem 5.2) with methods by Davison,
who in [4] found its complex valued solutions on monoids for μ = 1, and
by Stetkær [12]. It turns out, that the k-valued d’Alembert functions come
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about, when C is replaced by k in the formulas of the literature. This may
not sound surprising, but it is not the case for Wilson functions. The k-valued
solutions can on semigroups be described in terms of multiplicative functions
and 2-dimensional, irreducible representations, like they have been in previous
studies of solutions on groups and monoids.

A number of mathematicians have studied other versions of d’Alembert’s
and Wilson’s functional equations on semigroups and monoids S. Examples
are Elqorachi and Redouani [5, Lemma 3.2] and Fadli, Zeglami and Kabbaj
[6]. It is crucial for our proof of the Small Dimension Lemma that x �→ x∗ is
an anti-automorphism of S. [5] and [6] work with an automorphism of S, so
our considerations can not be transferred to [5] and [6].

This paper is structured as follows. Sections 1 and 3 introduce the set
up, notation and terminology. Section 4 contains miscellaneous auxiliary facts
about representations. The principal part of the paper starts with Sect. 5 that
discusses and proves the Algebraic Small Dimension Lemma. Section 6 derives
some general properties of d’Alembert functions. Section 7 treats abelian
d’Alembert functions, while Sect. 8 produces the non-abelian ones by com-
bining Sects. 5 and 6. Section 9 notes that the multiplicative functions and 2-
dimensional, irreducible representations that describe a continuous d’Alembert
function on a topological semigroup are also continuous.

3. Notation and terminology

Throughout the paper we use the set up, notation and terminology described
in Sects. 1 and 3.

Definition 3.1. Let Σ be a semigroup, and let g ∈ k[Σ] be fixed.
(a) f ∈ k[Σ] is multiplicative if f(xy) = f(x)f(y) for all x, y ∈ Σ.
(b) Let x ∈ Σ. For any f ∈ k[Σ] we define the right translate R(x)f ∈ k[Σ]

by [R(x)f ](y) := f(yx) for y ∈ Σ, and the left translate L′(x)f ∈ k[Σ] by
[L′(x)f ](y) := f(xy) for y ∈ Σ. R is called the right regular representation
of Σ. We define fx := L′(x)f − f(x)g ∈ k[Σ].

(c) T (g) := span{g, L′(x)g | x ∈ Σ} = span{g, gx | x ∈ Σ}. It is a subspace
of k[Σ].

Definition 3.2. Let F be a function on a semigroup Σ. It is said to be abelian if
F (x1x2 · · · xn) = F (xπ(1)xπ(2) · · · xπ(n)) for all x1, x2 . . . , xn ∈ Σ, all permuta-
tions π of n elements and all n = 2, 3, . . .. It is non-abelian if it is not abelian.
It is central if F (xy) = F (yx) for all x, y ∈ Σ.

Definition 3.3. By the help of the given involution x �→ x∗ of S we associate
to any F ∈ k[S] the function F ∗ ∈ k[S] defined by F ∗(x) := μ(x)F (x∗), x ∈ S.
The map F �→ F ∗ is an involution of k[S], i.e., an automorphism of the vector
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space k[S] such that (F ∗)∗ = F . The even part of F is Fe := (F + F ∗)/2, and
its odd part is Fo := (F − F ∗)/2. We say that F is even if F ∗ = F , and that
it is odd if F ∗ = −F .

Definition 3.4. For any vector space V we let L(V ) denote the algebra of linear
operators of V into V . The dual vector space of V is denoted V ∗, and we write
〈ϕ, v〉 for the value of ϕ ∈ V ∗ at v ∈ V . If W ⊆ V , we define W⊥ := {ϕ ∈ V ∗ |
〈ϕ,w〉 = 0 for all w ∈ W}. The transpose of A ∈ L(V ) is denoted At.

Definition 3.5. Let V be a 2-dimensional vector space. For A ∈ L(V ) we let
adj(A) ∈ L(V ) denote the adjugate operator of A from linear algebra. Proper-
ties of adjugation can easily be derived from its matrix form:

adj
(

a11 a12

a21 a22

)
=

(
a22 −a12

−a21 a11

)
.

adj : L(V ) → L(V ) is linear, and we have for any A,B ∈ L(V ) that

A + adj(A) = (tr A)I, A adj(A) = adj(A)A = (det A)I, adj(adj(A)) = A,

adj(AB) = adj(B) adj(A), adj(BAB−1) = B adj(A)B−1.

In the last identity B is assumed to be invertible.

Definition 3.6. Let π be a representation of a semigroup Σ on a vector space
V �= {0} over k, i.e., a map π : Σ → L(V ) such that π(xy) = π(x)π(y) for all
x, y ∈ Σ.

(i) A subspace W ⊆ V of V is π-invariant if π(x)W ⊆ W for all x ∈ Σ.
(ii) π is irreducible if {0} and V are the only π-invariant subspaces.
(iii) For ϕ ∈ V ∗ and v ∈ V we let cϕ,v ∈ k[Σ] denote the function

cϕ,v(x) := 〈ϕ, π(x)v〉, x ∈ Σ. The space of matrix coefficients is the
subspace span{cϕ,v | ϕ ∈ V ∗, v ∈ V } of k[Σ]. Its elements are called
matrix coefficients of π.

(iv) Cϕ denotes for ϕ ∈ V ∗ the subspace Cϕ := {cϕ,v | v ∈ V } of k[Σ].
(v) Let dim V < ∞. The matrix coefficient χπ := trπ ∈ k[Σ] is called the

character of π. The space of matrix coefficients of π consists of the func-
tions x �→ tr(Aπ(x)), x ∈ Σ, where A ∈ L(V ).

4. Auxiliary results about representations

If the semigroup Σ in Definition 3.6 is a monoid or a group, then the condition
π(e) = I is usually added to the definition of a representation. We do not do so
in the present paper, because it can be proved that π(e) = I in the situations
that are relevant for us: Proposition 4.1 takes care of Theorem 5.2(c), while
Proposition 6.1(h) has π as (a restriction of) the right regular representation
R that trivially satisfies R(e) = I.
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Proposition 4.1. If π is an irreducible representation of a monoid on a vector
space of dimension ≥ 2, then π(e) = I.

Proof. Let Σ denote the monoid and V the vector space. π(e) = π(e)2, so
π(e) is a projection. It suffices to prove that its range is all of V . π(e)V is a
π-invariant subspace of V , so π(e) has range {0} or V by the irreducibility of
π. If π(e)V = {0}, then π(e) = 0, so π(x) = π(ex) = π(e)π(x) = 0 for all
x ∈ Σ, so any subspace of V is π-invariant. This contradicts the irreducibility,
since dim V ≥ 2. Hence π(e) has range V . �

Burnside’s theorem is an important tool in the study of representations
and their matrix coefficients, which are essential for our proof of Theorem 5.2.
Burnside’s theorem holds for algebraically closed fields, which is one reason we
assume that k is algebraically closed. Theorem 4.2 is cited from Lomonosov
and Rosenthal [8], which contains a short, elementary and self-contained proof
of it.

Theorem 4.2. (Burnside) The only irreducible algebra of linear transforma-
tions on a vector space of finite dimension greater than 1 over an algebraically
closed field is the algebra of all linear transformations on the vector space.

We shall use the following corollary of Burnside’s theorem that works for
representations of semigroups. It is immediate from Theorem 4.2.

Corollary 4.3. Let π be an irreducible representation of S on a vector space V
over k with 2 ≤ dim V < ∞. Then
(a) any A ∈ L(V ) can be written in the form A =

∑n
i=1 aiπ(xi) for some

n ∈ {1, 2, . . .}, ai ∈ k and xi ∈ S for i = 1, 2, . . . , n.
(b) Any element of L(V ∗) can be written in the form

∑n
i=1 aiπ(xi)t for some

n ∈ {1, 2, . . .}, ai ∈ k and xi ∈ S for i = 1, 2, . . . , n.

By the help of Corollary 4.3 we get Proposition 4.4 that contains some
results about matrix coefficients. Proposition 4.4(c) is related to Theo-
rem 8.3(a), while point (d) is a partial converse of Theorem 8.2, which is
one of our main results.

Proposition 4.4. Let ρ be a representation of a semigroup Σ on a 2-dimen-
sional vector space V over k. Define g ∈ k[Σ] and fA ∈ k[Σ] for A ∈ L(V ) by
g(x) := 1

2 tr ρ(x) and fA(x) := 1
2 tr(Aρ(x)) for x ∈ Σ. Then

(a) g is central. It is non-abelian, if and only if ρ is irreducible.
(b) T (g) ⊆ {fA | A ∈ L(V )} with equality if ρ is irreducible.
(c) {fA | A ∈ L(V ) has tr A = 0} ⊆ W (g).
(d) Let Σ = S, and assume that μ(x)ρ(x∗) = adj (ρ(x)) for all x ∈ S. Then

fA satisfies Wilson’s functional Eq. (1.2). In particular g = fI satisfies
d’Alembert’s functional Eq. (1.1).
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Proof. (a) Characters of representations are central, as is well known.
Let ρ be irreducible. We prove that g is non-abelian by contradiction, so

we assume g is abelian. Then g(xyz) = g(xzy) for all x, y, z ∈ Σ, so that

0 = tr(ρ(x)ρ(y)ρ(z) − ρ(x)ρ(z)ρ(y)) = tr(ρ(x)[ρ(y)ρ(z) − ρ(z)ρ(y)]).

Corollary 4.3(a) gives us that 0 = tr(A[ρ(y)ρ(z) − ρ(z)ρ(y)]) for all A ∈ L(V ),
which implies that ρ(y)ρ(z) = ρ(z)ρ(y) for all y, z ∈ Σ. Applying Corol-
lary 4.3(a) once more we obtain that BC = CB for all B,C ∈ L(V ). But
this contradicts that dimV = 2.

Assume conversely that ρ is not irreducible. Then V possesses a 1-
dimensional ρ-invariant subspace W . Choose a basis {w, v} of V such that
w ∈ W . With respect to this basis ρ has the matrix form

ρ(x) =
(

ρ11(x) ρ12(x)
0 ρ22(x)

)
for x ∈ Σ.

That ρ is a homomorphism implies that the functions ρ11 and ρ22 are multi-
plicative and hence abelian. Therefore g = 1

2 tr ρ = 1
2 (ρ11 + ρ22) is abelian.

(b) The inclusion ⊆. Clearly g = 1
2 tr ρ is the element of the right hand

side with A = I. If x, y ∈ Σ, then [L′(x)g](y) = g(xy) = 1
2 tr(ρ(xy)) =

1
2 tr (ρ(x)ρ(y)), so L′(x)g = fρ(x). This proves the inclusion ⊆, because {fA |
A ∈ L(V )} is a vector space over k.

The inclusion ⊇. According to Corollary 4.3(a) we may write any A ∈
L(V ) in the form A =

∑n
i=1 aiρ(xi), where n ∈ N, ai ∈ k and xi ∈ Σ for

i = 1, 2, . . . , n. For any x ∈ Σ we get

fA(x) =
1
2

tr

(
n∑

i=1

aiρ(xi)ρ(x)

)
=

1
2

n∑
i=1

ai tr(ρ(xix))

=
n∑

i=1

aig(xix) =
n∑

i=1

ai[L′(xi)g](x),

so fA =
∑n

i=1 aiL
′(xi)g ∈ T (g).

(c) Let A ∈ L(V ) have trA = 0. For any x, y ∈ Σ we compute that

2[2fA(x)g(y) + 2fA(y)g(x) − (fA(xy) + fA(yx))]

= tr(Aρ(x)) tr ρ(y) + tr(Aρ(y)) tr ρ(x) − tr(Aρ(x)ρ(y)) − tr(Aρ(y)ρ(x))

= tr(Aρ(x)[tr(ρ(y))I − ρ(y)]) + tr(Aρ(y)[tr(ρ(x))I − ρ(x)]).

Due to the identity C + adj(C) = tr(C)I for C ∈ L(V ) this expression equals
tr(AB), where B := ρ(x)adj(ρ(y)) + ρ(y)adj(ρ(x)). From adj(B) = B (from
the definition of B), we get that B = cI for some c ∈ k. Thus the end result
of the computation is that tr(AB) = c tr A = 0 as desired.

(d) results from the following calculation, in which x, y ∈ S are arbitrary.

2fA(xy) + 2μ(y)fA(xy∗) = tr(Aρ(xy)) + μ(y) tr(Aρ(xy∗))
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= tr(Aρ(x)[ρ(y) + μ(y)ρ(y∗)]) = tr(Aρ(x)[ρ(y) + adj(ρ(y))])

= tr(Aρ(x) tr(ρ(y))I) = tr(Aρ(x))2g(y) = 4fA(x)g(y).

�

5. The algebraic small dimension lemma

5.1. Statement and discussion

The Small Dimension Lemma was stated and proved by Yang [13,14]. Theo-
rem 5.1 reproduces its main points as found in [14].

Theorem 5.1. (The Small Dimension Lemma) Let U(n) be the group of unitary
n × n matrices. Let π : G → U(n), where 2 ≤ n < ∞, be a continuous,
irreducible representation of a compact group G. Suppose that there exists a
non-zero vector v0 ∈ C

n such that[
π(x) + π(x−1)

]
v0 ∈ Cv0 for all x ∈ G. (5.1)

Then n = 2, and det π(x) = 1 for all x ∈ G.

Theorem 5.2 is our extension of Yang’s Small Dimension Lemma.

Theorem 5.2. (The Algebraic Small Dimension Lemma) Let π be a finite
dimensional, irreducible representation of S on a vector space V over k such
that dim V ≥ 2. Suppose that there exist a non-zero vector v0 ∈ V and a
function g ∈ k[S] such that

[π(x) + μ(x)π(x∗)]v0 = 2g(x)v0 for all x ∈ S. (5.2)

Then the following statements hold.
(a) dim V = 2.
(b) μ(x)π(x∗) = adj (π(x)) for all x ∈ S.
(c) If S is a monoid, then π(e) = I. If S is a group, and the involution

x �→ x∗ of S is the group inversion, then det π = μ.
(d) The property (5.2) extends from v0 ∈ V to all of V , in the sense that

π(x) + μ(x)π(x∗) = 2g(x)I for all x ∈ S.
(e) Define fA ∈ k[S] for A ∈ L(V ) by fA(x) := 1

2 tr(Aπ(x)), x ∈ S. Then fA

satisfies Wilson’s functional equation (1.2).
(f) g = χπ/2, and g is a central, non-abelian d’Alembert function.

Theorem 5.1 is a result in analysis, while Theorem 5.2 is an algebraic result
that requires neither compactness, continuity, unitarity, groups nor the field
of complex numbers.

(a), (b) and (c) of Theorem 5.2 generalize Theorem 5.1, while (d), (e) and
(f) register some connections between (5.2) and d’Alembert’s and Wilson’s
functional equations that Theorem 5.1 does not touch on.
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According to Theorem 5.2(d) the identity π(x) + μ(x)π(x∗) = 2g(x)I is
equivalent to the formally weaker assumption (5.2). The identity of (d) occurs
as a hypothesis in [13, Condition (2.1)] instead of (5.1).

A representation π satisfying (5.1) or (5.2) can arise in various ways, given a
d’Alembert function g. Yang [13,14] found a π via the operator valued Fourier
transformation. In the present paper π is a natural object derived from g: It is
the right regular representation of S on T (g) (the vector space spanned by g
and its left translates), or more precisely its restriction to a subspace of T (g).
See Proposition 6.1(h) and the proof of Theorem 8.2.

5.2. Proof of the algebraic small dimension lemma

Note dim V ≥ 2, so that Burnside’s theorem (Corollary 4.3) applies in the
proof. Let ρ denote the representation ρ(x) := μ(x∗)π(x), x ∈ S.

(a) We denote the matrix coefficients of π as in Definition 3.6, while those
of ρ are marked with a superscript ρ. Thus cϕ,v(x) := 〈ϕ, π(x)v〉 and cρ

ϕ,v(x) :=
〈ϕ, ρ(x)v〉 for ϕ ∈ V ∗, x ∈ S, v ∈ V .

Let V0 := span(v0). The proof of (a) is based on three claims about the
matrix coefficients of π. The key observation is the first claim, which is the
only one that uses (5.2).

Claim. If ϕ1, ϕ2 ∈ V ⊥
0 \ {0}, then Cϕ1 = Cϕ2 .

Proof of the claim. Let τ(x) := x∗ for all x ∈ S. It suffices to prove that
Cϕ = {cρ

ψ,v0
◦ τ | ψ ∈ V ∗} for any ϕ ∈ V ⊥

0 \ {0}, because the right hand
side does not depend on ϕ. So let ϕ ∈ V ⊥

0 \ {0}. By Corollary 4.3 we have
Cϕ = {cϕ,v | v ∈ V } = span{cϕ,π(x)v0 | x ∈ S}, which leads us to the
computation (using that ϕ ∈ V ⊥

0 ) that

cϕ,π(x)v0(y
∗) = 〈ϕ, π(y∗)π(x)v0〉 = 〈ϕ, π(y∗x)v0〉

= 〈ϕ, 2g(y∗x)v0 − ρ((y∗x)∗)v0〉 = −〈ϕ, ρ((y∗x)∗)v0〉
= −〈ϕ, ρ(x∗)ρ(y)v0〉 = −〈ρ(x∗)tϕ, ρ(y)v0〉 = −cρ

ρ(x∗)tϕ,v0
(y).

Now,

Cϕ = span{cϕ,π(x)v0 | x ∈ S} = span{cρ
ρ(x∗)tϕ,v0

◦ τ | x ∈ S}
= span{cρ

ρ(x)tϕ,v0
◦ τ | x ∈ S}.

Since ϕ �= 0, we get from Corollary 4.3(b) that Cϕ = span{cρ
ψ,v0

◦ τ | ψ ∈ V ∗}
as desired. �

Claim. Cϕ �= {0}, when ϕ ∈ V ∗ \ {0}.
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Proof of the claim. Let ϕ �= 0. It suffices to prove that cϕ,v �= 0, when v �= 0.
Assume for contradiction that cϕ,v = 0. Then 〈ϕ, π(x)v〉 = 0 for all x ∈ S.
Corollary 4.3 implies that 〈ϕ, v′〉 = 0 for all v′ ∈ V , which means that ϕ = 0.
But this contradicts that ϕ �= 0. �

Claim. If ϕ1, ϕ2 ∈ V ∗ are linearly independent, then Cϕ1 and Cϕ2 form a
direct sum in k[S].

Proof of the claim. We shall for any fixed v1, v2 ∈ V prove that

cϕ1,v1 + cϕ2,v2 = 0 (5.3)

implies that cϕ1,v1 = cϕ2,v2 = 0. It suffices to prove that v1 = 0, because this
entails that cϕ1,v1 = 0, and then (5.3) gives cϕ2,v2 = 0.

(5.3) means that ϕ1(π(x)v1)+ϕ2(π(x)v2) = 0 for all x ∈ G, or equivalently
that (π(x)tϕ1)(v1) + (π(x)tϕ2)(v2) = 0 for all x ∈ G. Corollary 4.3(b) applied
to V ∗ gives us that

(Tϕ1)(v1) + (Tϕ2)(v2) = 0 for all T ∈ L(V ∗). (5.4)

ϕ1 and ϕ2 are linearly independent, so to any ϕ ∈ V ∗ there exists a T ∈ L(V ∗)
such that Tϕ1 = ϕ and Tϕ2 = 0. By (5.4) we then get that ϕ(v1) = 0. However,
ϕ is arbitrary in V ∗, so v1 = 0 as desired. �

To finish (a) assume for contradiction that dimV ≥ 3 = dim V0 + 2. Then
there exist two linearly independent elements ϕ1, ϕ2 ∈ V ⊥

0 . Combining the
first and third claims we get that Cϕ1 = Cϕ2 = {0}, which contradicts the
second claim. This finishes the proof of (a).

(b) Let us for brevity momentarily write σ for the representation x �→
σ(x) := adj (ρ(x∗)). Note that the subspace V1 := {v ∈ V | π(x)v =
σ(x)v for all x ∈ S} of V is π-invariant. Indeed, if v1 ∈ V1, we get for any
x, y ∈ S that

π(x)[π(y)v1] = π(xy)v1 = σ(xy)v1 = σ(x)σ(y)v1 = σ(x)[π(y)v1],

so π(y)v1 ∈ V1. It follows from the irreducibility of π that V = V1 if V1 �= {0}.
The content of (b) is that π and σ agree. To prove (b) it suffices to show that
v0 ∈ V1, so that V1 �= {0}, i.e., to show that π(x)v0 = adj (ρ(x∗))v0 for all
x ∈ S. This we proceed to do.

dim V = 2 by (a), so we may assume that V = k2, and that the non-zero

vector v0 from (5.2) is v0 =
(

1
0

)
. We write π in matrix form as

π =
(

π11 π12

π21 π22

)
, where πij ∈ k[S] for i, j = 1, 2.

Similarly for ρ. Note for use below that there exists an x0 ∈ S such that

π21(x0) �= 0. If not, then the line {α

(
1
0

)
| α ∈ k} is a π-invariant, proper
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subspace of V , contradicting the irreducibility of π. The second component of
(5.2) says that

π21(x) + ρ21(x∗) = 0 for all x ∈ S. (5.5)

Note π21 is odd: For any x ∈ S we find by the definition of ρ that

π∗
21(x) = μ(x)π21(x∗) = −μ(x)ρ21(x) = −μ(x)μ(x∗)π21(x) = −π21(x).

We shall show that π(x)v0 = adj (ρ(x∗))v0 for all x ∈ S, which in coordinates
boils down to the two requirements π11(x) = ρ22(x∗) and π21(x) = −ρ21(x∗).
The latter equality is (5.5), so to get (b) it remains to show that

δ(x) := π11(x) − ρ22(x∗) = 0 for all x ∈ S.

The homomorphism property π(xy) = π(x)π(y) of π gives us the formula
π21(xy) = π21(x)π11(y) + π22(x)π21(y) for all x, y ∈ S. Combining this with
(5.5) we obtain for any x, y ∈ S that

π21(x)π11(y) + π22(x)π21(y) = π21(xy) = −ρ21((xy)∗) = −ρ21(y∗x∗)

= −ρ21(y∗)ρ11(x∗) − ρ22(y∗)ρ21(x∗) = π21(y)ρ11(x∗) + ρ22(y∗)π21(x).

Comparing the left and right hand sides we get that

π21(x)[π11(y) − ρ22(y∗)] = π21(y)[ρ11(x∗) − π22(x)].

On the right ρ11(x∗) − π22(x) = μ(x)π11(x∗) − π22(x) = μ(x)[π11(x∗) −
μ(x∗)π22(x)] = μ(x)δ(x∗) = δ∗(x), so we get that π21(x)δ(y) = π21(y)δ∗(x).
Since π21 is odd and π21(x0) �= 0, we infer that δ is odd, which reduces the
formula to π21(x)δ(y) = −π21(y)δ(x). It is elementary for an identity of this
form that either π21 = 0 or δ = 0, when char(k) �= 2 (see [12, Exercise 1.1(b)]).
But π21(x0) �= 0, so δ = 0.

(c) If S is a monoid, then π(e) = I by Proposition 4.1. If S is a group, and
the involution is the group inversion, we get the rest of (c) from

I = π(e) = π(xx−1) = π(xx∗) = π(x)π(x∗) = π(x)μ(x)−1adj (π(x))

= μ(x)−1π(x)adj (π(x)) = μ(x)−1 det(π(x))I.

(d) The identity π(x) + adj(π(x)) = tr(π(x))I and (b) give that

π(x) + μ(x)π(x∗) = π(x) + adj(π(x)) = tr(π(x))I. (5.6)

Comparing this with (5.2) we see that tr π = 2g, so (5.6) is (d).
(e) is immediate from Proposition 4.4(d).
(f) We saw during the proof of (d) that trπ = 2g, so g = 1

2χπ. Proposi-
tion 4.4(a) and Proposition 4.4(d) give that g is a central, non-abelian solution
of d’Alembert’s functional equation. Furthermore g �= 0, g being non-abelian,
so g is a d’Alembert function.
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6. Some properties of d’Alembert functions

In this section we derive some properties of k-valued d’Alembert functions
on semigroups. For complex valued functions and monoids they are in the
literature, and many of the arguments in, say, Davison [4] and Stetkær [12]
carry over word for word when we extend from C to k and from monoids to
semigroups.

The notations F ∗, fx, Wil(g), W (g), R etc. were introduced in Sects. 1
and 3.

Proposition 6.1. Let g ∈ k[S] be a d’Alembert function. The following state-
ments hold:
(a) g is central and g∗ = g.
(b) g satisfies for all x, y, z ∈ S the pre-d’Alembert functional equation

g(xyz) + g(xzy) = 2g(x)g(yz) + 2g(y)g(xz) + 2g(z)g(xy) − 4g(x)g(y)g(z).

(c) If x ∈ S, then (gx)∗ = −gx, and gx ∈ W (g).
(d) dg(x) := 2g(x)2 − g(x2), x ∈ S, is a multiplicative function.
(e) For all x, y ∈ S the following formula holds:

Δg(x, y) :=
g

(
x2y2

)
− g

(
(xy)2

)
2

= gx(x)gy(y) − gx(y)2.

(f) g is abelian, if and only if Δg = 0.
(g) T (g) ⊆ kg + W (g).
(h) T (g) is invariant under the right regular representation R. Let ρ denote

the restriction of R to T (g). Then the map x �→ ρ(x) ∈ L(T (g)) is a
representation of S on T (g) satisfying

ρ(x) + μ(x)ρ(x∗) = 2g(x)I for all x ∈ S. (6.1)

If S is a monoid, then ρ(e) = I.

Proof. (a) can be proved like [12, Proposition 9.17(a) and (b)].
(b) Replace C by k in [4, Proposition 5.2] or [12, Proposition 9.17(c)].
(c) For any y ∈ S we find, using (1.1) and g∗ = g, that

(gx)∗(y) = μ(y)gx(y∗) = μ(y)g(xy∗) − μ(y)g(x)g(y∗)

= [2g(x)g(y) − g(xy)] − g(x)g∗(y) = 2g(x)g(y) − g(xy) − g(x)g(y)

= −[g(xy) − g(x)g(y)] = −gx(y).

For the last statement note (b) and do the computations in the proof of
[12, Lemma 8.8] with k instead of C.

(d) Replacing y by yy∗ in d’Alembert’s functional equation (1.1) we find
that g(xyy∗) = g(x)g(yy∗). Using that g is central we obtain that

dg(xy) = μ(xy)g(xy(xy)∗) = μ(x)μ(y)g(xyy∗x∗) = μ(x)μ(y)g(x∗xyy∗)
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= μ(x)μ(y)g(x∗x)g(yy∗) = μ(x)g(xx∗)μ(y)g(yy∗) = dg(x)dg(y).

(e) Put w := gy ∈ W (g) in [12, Formula (6.6)] and use that g is central, so
that gx(y) = gy(x) for all x, y ∈ S.

(f) Δg = 0 by the definition of Δg, when g is abelian. To get the converse
we assume that Δg = 0 and prove that g is abelian. Since g is central by (a),
it suffices to prove that g satisfies Kannappan’s condition g(xyz)− g(xzy) = 0
for all x, y, z ∈ S. The rest of the proof proceeds like the proof of [4, Proposi-
tion 2.7], which is reproduced in [12, Lemma 8.10].

(g) T (g) is by definition spanned by g, which is in kg, and elements of the
form L′(x)g = g(x)g+gx. The elements on the right are in kg+W (g), because
gx ∈ W (g) according to (c).

(h) The invariance is easy, because g is central. The homomorphism prop-
erty of ρ is trivial, because R is a representation. Also (6.1) is easy to derive
by simple computations from the definition of T (g). �

We recognize (6.1) as a version of the hypothesis (5.2) of Theorem 5.2.
Another central hypothesis of Theorem 5.2 is that the representation is finite
dimensional, which here means that dim T (g) < ∞. By applying methods from
Davison [4] we shall extend the existing proof of the finite dimensionality of
T (g) from C to k and monoids to semigroups (Lemma 8.1(c)). However, ρ may
not be irreducible, so we shall work with an irreducible sub-representation π
of ρ.

The exposition splits into the cases of g abelian (Sect. 7) and g non-abelian
(Sect. 8). We finish this section by presenting examples of solutions of d’A-
lembert’s functional equation, both abelian and non-abelian. They are meant
as illustrations of the theory in the next sections.

Examples 6.2. (1) Let λ ∈ C. Some abelian solutions of the equation g(x +
y) + eλyg(x − y) = 2g(x)g(y), x, y ∈ R, are gα ∈ C(R), where α ∈ C, defined
by

gα(x) =
eαx + e(λ−α)x

2
, x ∈ R.

For λ = 0 and α = i we obtain the well known solution x �→ cos x of
d’Alembert’s classic functional equation on R.

(2) A non-abelian solution of the equation g(xy) + (det y)g(xy−1) =
2g(x)g(y), x, y ∈ GL(2, k), is g(x) := 1

2 tr x, x ∈ GL(2, k). Writing

a :=
(

1 0
0 −1

)
, b :=

(
0 1

−1 0

)
and c :=

(
0 1
1 0

)
,

we compute that g(abc) = 1 and g(acb) = −1, so g(abc) �= g(acb).
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7. Abelian d’Alembert functions

The abelian case does not involve the Small Dimension Lemma.

Theorem 7.1. The abelian d’Alembert functions in k[S] are the functions (χ+
χ∗)/2, where χ ∈ k[S] ranges over the non-zero multiplicative functions on S.

The decomposition of g is essentially unique: If g = (χ1 + χ2)/2, where
χ1, χ2 ∈ k[S] are multiplicative, then either χ1 = χ and χ2 = χ∗, or χ1 = χ∗

and χ2 = χ.

Proof. We first prove that any abelian d’Alembert function g ∈ k[S] has the
form described. Note that g = g∗ by Proposition 6.1(a). By Proposition 6.1(c)
ga ∈ W (g) for any a ∈ S, and this reduces to the sine addition law ga(xy) =
ga(x)g(y) + ga(y)g(x), since g is abelian. There are two cases.

Case 1. ga = 0 for all a ∈ S. This means that g(ax) = g(a)g(x) for all
a, x ∈ S, so g is a multiplicative function. As χ we may choose χ := g, because
g = g∗.

Case 2. ga �= 0 for some a ∈ S. Using that k is algebraically closed we get,
like in the proof of [12, Theorem 4.1], that there exist multiplicative functions
χ1, χ2 ∈ k[S], such that g = (χ1 + χ2)/2. Substituting this into d’Alembert’s
functional equation (1.1) we find that

χ1(x)[χ∗
1(y) − χ2(y)] + χ2(x)[χ∗

2(y) − χ1(y)] = 0 for all x, y ∈ S. (7.1)

Now g = g∗, so χ1 + χ2 = χ∗
1 + χ∗

2 or equivalently χ∗
2 − χ1 = χ2 − χ∗

1, which
substituted into (7.1) gives us that [χ1(x) − χ2(x)][χ∗

1(y) − χ2(y)] = 0, so that
χ1 = χ2 or χ2 = χ∗

1. In the first possibility we may take χ := χ1, because
g = g∗. In the second the formula for g obviously holds.

Conversely let g = (χ + χ∗)/2, where χ ∈ k[S] is a non-zero multi-
plicative function. It is elementary to verify that g is an abelian solution
of d’Alembert’s functional equation (1.1). It is left to show that g �= 0,
which we do by contradiction. If χ + χ∗ = 0, we get for any x ∈ S that
χ(x)2 = χ(x2) = −χ∗(x2) = −χ∗(x)2 = −(−χ(x))2 = −χ(x)2, so that
χ(x)2 = 0. But then χ = 0, contradicting that χ is non-zero.

The essential uniqueness is a general fact about multiplicative functions
(modify for instance [12, Corollary 3.19] from C to k). �

The k-valued solutions of d’Alembert’s classic functional equation (2.1) are
described in Aczél and Dhombres [1, p. 220-222] for abelian groups, and in
Corovei [3, Theorem 6] for P3-groups. Theorem 7.1 occurs as Stetkær [12,
Proposition 9.31], except that k = C in [12].
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8. Non-abelian d’Alembert functions

Throughout Sect. 8 we let g ∈ k[S] denote a fixed non-abelian d’Alembert
function. Our main result, Theorem 8.2, derives the form of g.

We start by a study of the vector spaces W (g) and T (g) that play an
important role in the proof of Theorem 8.2. They are related (Lemma 8.1(c)).
Theorem 8.3 provides more information about them.

Lemma 8.1. (a) Choose a, b ∈ S such that Δg(a, b) �= 0 (this can be done by
Proposition 6.1(f)).
If w ∈ W (g) and w(a) = w(b) = w(ab) = 0, then w = 0.

(b) dim W (g) = 3, and W (g) = span {gx | x ∈ S}.
(c) T (g) = kg + W (g), where the sum is direct.
(d) dim T (g) = 4.

Proof. (a) An inspection shows that the computations in the proof of [12,
Corollary 6.2] work for any field k with char(k) �= 2 and not just for C, as is
formally the case in [12, Chapter 6]. Note that (in the notation of [12]) Δ̃ = 4Δ
due to [12, Lemma B.7(c)] and our Proposition 6.1(a) and (d).

(b) Note that gx ∈ W (g) for any x ∈ S by Proposition 6.1(c). We view
elements of k3 as column vectors. The linear map L : W (g) → k3, defined by
Lw := (w(a) w(b) w(ab))t for w ∈ W (g), is injective according to (a), so it
suffices to show that Lga, Lgb and L(gab−gba) are linearly independent vectors
in k3. Using that g is central (Proposition 6.1(a)) we deduce that

gb(a) = ga(b), gab(a) − gba(a) = gab(b) − gba(b) = 0,

gab(ab) − gba(ab) = −2Δg(a, b) (by the definition of Δg),

which reduces the determinant
∣∣Lga Lgb L(gab − gba)

∣∣ to∣∣∣∣∣∣
ga(a) gb(a) gab(a) − gba(a)
ga(b) gb(b) gab(b) − gba(b)
ga(ab) gb(ab) gab(ab) − gba(ab)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ga(a) ga(b) 0
ga(b) gb(b) 0
ga(ab) gb(ab) −2Δg(a, b)

∣∣∣∣∣∣
=

(
ga(a)gb(b) − ga(b)2

)
(−2Δg(a, b)) = −2Δg(a, b)2 �= 0.

(c) We prove that the sum is direct by contradiction. If it is not, then
g ∈ W (g), so g(xy) + g(yx) = 4g(x)g(y) for all x, y ∈ S. Thus γ := 2g satisfies
γ(xy) + γ(yx) = 2γ(x)γ(y), so γ is multiplicative (by Stetkær [10]). But then
g = γ/2 is abelian, contradicting that g is non-abelian.

T (g) ⊆ kg + W (g) by Proposition 6.1(g). Conversely, g ∈ T (g) by the
definition of T (g), and so gx = L′(x)g−g(x)g ∈ T (g). Hence kg+W (g) ⊆ T (g).

(d) follows from (b) and (c). �

We next show that the given non-abelian d’Alembert function g has the
form g = 1

2χπ (Theorem 8.2), and we express the associated vector spaces W (g)
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and T (g) in terms of matrix elements of π (Theorem 8.3). Proposition 4.4(d)
is a converse of Theorem 8.2.

Theorem 8.2. There exists an irreducible, 2-dimensional representation π of S
with the property that μ(x)π(x∗) = adj (π(x)) for all x ∈ S, such that g = 1

2χπ.
If S is a monoid, then π(e) = I.

If π′ is any irreducible representation of S on a finite dimensional vector
space over k, such that g = 1

2χπ′ , then π′ and π are equivalent.

Proof. The proof combines the Algebraic Small Dimension Lemma with the
fact that dim T (g) = 4 (Lemma 8.1(d)).

Since T (g) is invariant under R (by Proposition 6.1(h)) and finite dimen-
sional (dim T (g) = 4 by Lemma 8.1(d)), it contains an irreducible subspace
V (take an invariant subspace of minimal dimension ≥ 1). Define π := R|V .
If dim V = 1, then π = γIV for some multiplicative function γ ∈ k[S]. From
the formula (6.1) we see that g = (γ + γ∗)/2, so that g is abelian, which
contradicts the assumption on g. Hence dim V ≥ 2. Combining (6.1) and The-
orem 5.2 we see that dim V = 2, that μ(x)π(x∗) = adj (π(x)) for all x ∈ S,
and that g = 1

2χπ.
If S is a monoid, then R(e) = I, so π(e) = R(e)|V = I.
Let π′ be a finite dimensional, irreducible representation of S, such that

g = 1
2χπ′ . Assume to arrive at a contradiction that π and π′ are not equivalent.

Then the subspaces kχπ and kχπ′ of k[S] form a direct sum by standard
knowledge (see for instance Bourbaki [2], Proposition 2 of Chap. VIII, §13,
no. 3). Since they furthermore agree, because χπ = χπ′ = 2g, they are {0}. In
particular g = 1

2χπ = 0. But g �= 0, being a d’Alembert function. �
We next show that T (g) is the space of matrix coefficients of the represen-

tation π from Theorem 8.2, and we characterize the subspace W (g) of T (g) in
a similar way.

Theorem 8.3. Let g = 1
2χπ, where π is an irreducible representation of S on a

2-dimensional vector space V such that μ(x)π(x∗) = adj (π(x)) for all x ∈ S.
Then
(a) W (g) = {tr(Aπ(·)) ∈ k[S] | A ∈ L(V ) with tr A = 0}.
(b) T (g) = kg + W (g) = {tr(Aπ(·)) ∈ k[S] | A ∈ L(V )}.

Proof. (a) Let w ∈ W (g). According to Lemma 8.1(b) it is a linear combination
of the functions gx ∈ W (g), so to get the inclusion ⊆ we may assume that
w = gx for some x ∈ S. For any y ∈ S we find that

gx(y) = g(xy) − g(x)g(y) =
1
2

tr ([π(x) − g(x)I]π(y)) ,

which is the desired expression, since A := 1
2 (π(x) − g(x)I) has tr A = 0. The

converse inclusion is Proposition 4.4(c).
(b) T (g) = kg + W (g) according to Lemma 8.1(c). The rest follows from

(a). �
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Davison observed [4, Proposition 4.2], that the only central function in
W (g) is the zero function when g is a non-abelian, complex valued d’Alembert
function on a monoid. Proposition 8.4 extends his result to any field of char-
acteristic �= 2 and any semigroup. It is not necessary that g is a d’Alembert
function. We do not need the result.

Proposition 8.4. Let k1 be any field k of characteristic �= 2, and let Σ be a
semigroup. If g1 ∈ k1[Σ] is non-abelian, then the set of central functions in
W (g1) is {0}.

Proof. Let w ∈ k1[Σ] be central. That w ∈ W (g1) then reduces to the sine
addition law w(xy) = w(x)g1(y) + g1(x)w(y), x, y ∈ Σ. If w �= 0, then g1 is
abelian (by [12, Theorem 4.1(e)]), contradicting the assumption on g1. Hence
w = 0. �

9. Bounded and continuous d’Alembert functions

Section 9 studies bounded and continuous d’Alembert functions. Earlier works
have been done on such functions on topological monoids or groups. Here we
extend the theory to functions on topological semigroups.

Proposition 9.1. Let g ∈ C[S] be a bounded d’Alembert function. Then |g(x)| ≤
1 for all x ∈ S.
(a) Let g be abelian, and write it as g = 1

2 (χ + χ∗), where χ ∈ C[S] is
multiplicative (by Theorem 7.1). Then |χ(x)| ≤ 1 and |χ∗(x)| ≤ 1 for all
x ∈ S.

(b) Let g be non-abelian, and write it as g = 1
2χπ, where π is the representa-

tion from Theorem 8.2. Then π is bounded.

Proof. We prove that |g(x)| ≤ 1 under each of the points (a) and (b).
(a) It follows from general principles (see [12, Theorem 3.18(c)]), that χ and

χ∗ are bounded. A bounded multiplicative function is bounded by 1. Indeed,
let C > 0 be such that |χ(x)| ≤ C for all x ∈ S. Letting n → ∞ in |χ(x)| =
|χ(xn)|1/n ≤ C1/n we get that |χ(x)| ≤ 1. Similarly for χ∗. Consequently
|g(x)| = 1

2 |χ(x) + χ∗(x)| ≤ 1.
(b) That π is bounded means that each matrix coefficient is a bounded

function. According to Theorem 8.3(b) the space of matrix coefficients is T (g).
But any translate of g is bounded, because g is bounded. Hence π is bounded.

Let λ(x) ∈ C be an eigenvalue of π(x) with a corresponding eigenvector f ∈
V . From π(xn)f = π(x)nf = λ(x)nf we see that {λ(x)n ∈ C | n = 1, 2, . . .}
is bounded, so that |λ(x)| ≤ 1. Let {λ1(x), λ2(x)} be the eigenvalues of π(x),
counted with multiplicity. Then tr π(x) = λ1(x) + λ2(x), and so |g(x)| =
1
2 |λ1(x) + λ2(x)| ≤ 1

2 (|λ1(x)| + |λ2(x)|) ≤ 1
2 (1 + 1) = 1. �
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Definition 9.2. A topological semigroup is a semigroup Σ with a topology such
that the composition map (x, y) �→ xy of Σ × Σ into Σ is continuous.

Definition 9.3. A representation π of a topological semigroup Σ on a topolog-
ical vector space V over C is said to be continuous if the map (x, v) �→ π(x)v
of Σ × V into V is continuous. If dimV < ∞, then the continuity of π is
equivalent to its matrix coefficients being continuous.

Definition 9.4. If X is a topological space, we let C(X) denote the complex
vector space of continuous, complex valued functions on X.

Let S be a topological semigroup. As we have seen in Theorems 7.1 and 8.2
any d’Alembert function g on S can be expressed in terms of multiplicative
functions and 2-dimensional representations. Theorem 9.5 states that these
ingredients are continuous when g is continuous.

Theorem 9.5. Let S be a topological semigroup, and let g ∈ C(S) be a d’Alem-
bert function.
(a) Let g be abelian. Such a g can be written as g = (χ + χ∗)/2, where

χ ∈ C[S] is a non-zero multiplicative function, and χ, χ∗ ∈ C(S).
This decomposition of g is essentially unique: If g = (χ1 + χ2)/2, where
χ1, χ2 ∈ C[S] are multiplicative functions, then χ1 = χ and χ2 = χ∗, or
χ1 = χ∗ and χ2 = χ.

(b) Let g be non-abelian. Such a g can be written as g = 1
2χπ, where π is a

continuous, irreducible representation of S on a 2-dimensional complex
vector space such that μ(x)π(x∗) = adj (π(x)) for all x ∈ S.
Any finite dimensional, irreducible representation π′ of S on a complex
vector space, such that g = 1

2χπ′ , is equivalent to π.
Finally W (g) ⊆ C(S).

Proof. (a) That g can be written in the form g = (χ + χ∗)/2, where χ ∈ C[S]
is a non-zero multiplicative function was derived in Theorem 7.1. It is known
from general principles that χ and χ∗ are continuous ( [12, Theorem 3.18(d)])
when g is. The uniqueness statement also follows from general principles (see
for instance [12, Corollary 3.19]).

(b) Apart from the continuity statement Theorem 8.2 gives that g can be
written in the desired form. The equivalence is also found in Theorem 8.2.

Left is the continuity of π, which means that its matrix coefficients are
continuous. According to Theorem 8.3(b) the space of matrix coefficients of π
is T (g). Any translate of g is continuous, because S is a topological semigroup
and g ∈ C(S), so T (g) ⊆ C(S). Hence π is continuous.

Finally W (g) ⊆ kg + W (g) = T (g) ⊆ C(S), in which Lemma 8.1(b) gives
the equality sign. �

Corollary 9.6 contains [14, Theorem 3.1], because it considers the general
form (1.1) of d’Alembert’s functional equation and not just the classic form
(2.1).
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A character of a group G is a homomorphism χ : G → C
∗. It is unitary, if

|χ(x)| = 1 for all x ∈ G.

Corollary 9.6. Assume that G is a compact group, that μ ∈ C(G) and that the
involution x �→ x∗ of G into G is continuous.
(a) Let g ∈ C(G) be an abelian d’Alembert function. Then g can be written

as g = (χ+χ∗)/2, where χ ∈ C(G) is a unitary character. This decompo-
sition of g is essentially unique: If g = (χ1 + χ2)/2, where χ1, χ2 ∈ C[S]
are multiplicative functions, then χ1 = χ and χ2 = χ∗, or χ1 = χ∗ and
χ2 = χ.

(b) Let g ∈ C(G) be a non-abelian d’Alembert function. Then g can be writ-
ten as g = 1

2χπ, where π is a continuous, unitary, irreducible representa-
tion of G on a 2-dimensional complex vector space with the property that
μ(x)π(x∗) = adj (π(x)) for all x ∈ G.
Any finite dimensional, unitary, irreducible representation π′ of G on a
complex vector space such that g = 1

2χπ′ is unitarily equivalent to π.

Proof. We use the notation and results of Theorem 9.5.
(a) Any non-zero multiplicative function on a group is a character (by [12,

Lemma 3.4(a)]), so χ is a character. It is bounded, being a continuous
function on a compact set, and so it is unitary (by [12, Lemma 3.4(b)]).

(b) g is bounded, being a continuous function on a compact set, so π is
bounded (by Proposition 9.1). But a bounded representation of a group
on C

n is equivalent to a unitary representation (see [7, 22.23(c)]), so
π may be assumed unitary. The uniqueness claim follows from the well
known fact that unitary representations are unitarily equivalent if they
are equivalent. �
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