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Abstract. We study some interesting characterizations of real inner product spaces expressed
in terms of angular distances. We first discuss the equivalence of characterizing an inner
product space via the usual angular distance and the p-angular distance. Then, we establish
a parametric family of upper bounds for the usual angular distance which also serves as a
characterization of an inner product space. As an application, bounds for the usual angu-
lar distance are utilized in obtaining improvements of the real Cauchy–Schwarz inequality.
Finally, we give several comparative relations for angular distances in inner product spaces.
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1. Introduction

The problem of finding necessary and sufficient conditions for a normed space
to be an inner product space has been studied by numerous authors (see, e.g.
[4,6,19] and the references therein). In the present article we deal with a class
of norm inequalities closely connected with characterizations of inner product
spaces. One of the most interesting characterizations has been based on the
so-called Dunkl–Wiliams inequality. In 1964, Dunkl and Wiliams [12], proved
that the inequality
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≤ 4 ‖x − y‖
‖x‖ + ‖y‖ (1)

holds for all nonzero vectors x, y in a real normed linear space X. Moreover,
the authors also showed that the constant 4 can be replaced by 2 if X is an
inner product space. On the other hand, Kirk and Smiley [14], showed that
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the inequality
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≤ 2 ‖x − y‖
‖x‖ + ‖y‖ (2)

characterizes inner product spaces.
The above inequalities (1) and (2) provide an upper bound for the angular

distance

α[x, y] =
∥
∥
∥
∥

x

‖x‖ − y

‖y‖
∥
∥
∥
∥

between nonzero vectors x and y. This quantity, also called the Clarkson dis-
tance, was introduced by Clarkson [8], while studying the triangle inequality
in uniformly convex spaces.

Recently, numerous interesting improvements and generalizations of bounds
for angular distance α[x, y] have been established (see e.g. [3,9,16–18,23,25]
and the references therein). In particular, Al-Rashed [3], generalized the char-
acterization of an inner product space given by (2), in the following way: if
q > 0, then a normed linear space X = (X, ‖·‖) is an inner product space if
and only if the inequality

α[x, y] ≤ 2
1
q ‖x − y‖

(‖x‖q + ‖y‖q)
1
q

(3)

holds for all nonzero vectors x, y ∈ X.
In [16], Maligranda introduced the notion of p-angular distance between

nonzero elements x, y in a normed linear space X as

αp[x, y] =
∥
∥‖x‖p−1x − ‖y‖p−1y

∥
∥ , p ∈ R,

as a generalization of the concept of angular distance (note that α0[x, y] =
α[x, y]).

There are several recent extensions of the characterization given by (3). In
2019, Rooin et al. [24], proved that if p, q, r ∈ R, 0 ≤ p

q < 1, q �= 0, then a
normed linear space X is an inner product space if and only if the inequality

αp[x, y] ≤ 2
1
r αq[x, y]

(‖x‖r(q−p) + ‖y‖r(q−p)
) 1

r

holds for all nonzero elements x, y ∈ X. Similarly, Amini-Harandi et al. [5],
extended the concept of p-angular distance to θ-angular distance, i.e.

αθ[x, y] =
∥
∥
∥
∥

x

θ (‖x‖)
− y

θ ‖y‖)

∥
∥
∥
∥

,

where θ : R
+ → R

+ is an increasing function such that t �→ t
θ(t) is non-

decreasing on R
+. In this setting, they proved that if q > 0, then a normed
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linear space X is an inner product space if and only if the inequality

αθ[x, y] ≤ 2
1
q ‖x − y‖

(θ (‖x‖)q + θ (‖x‖)q)
1
q

holds for all nonzero vectors x, y ∈ X (see also [9]).
In 2018, Rooin et al. [25], established a characterization of an inner product

space by giving an explicit formula for p-angular distance. More precisely, they
proved that if p �= 1, then a normed space X is an inner product space if and
only if the relation

α2
p[x, y] = ‖x‖p−1‖y‖p−1‖x−y‖2+

(‖x‖p−1 − ‖y‖p−1
) (‖x‖p+1 − ‖y‖p+1

)

(4)

holds for all nonzero elements x, y ∈ X. In the same paper, the authors intro-
duced a concept of skew p-angular distance between nonzero elements x, y in
a normed linear space X as

βp[x, y] =
∥
∥‖y‖p−1x − ‖x‖p−1y

∥
∥ p ∈ R. (5)

We set β[x, y] for βp[x, y] when p = 0 and call it simply skew angular distance
between x and y. It is easy to see that p-angular distance and skew p-angular
distance are related by

βp[x, y] = ‖x‖p−1‖y‖p−1α2−p[x, y]. (6)

In 2013, Dehghan [10], established an interesting characterization of an inner
product space relying on the relationship between α[x, y] and β[x, y]. More
precisely, he proved that a normed space X is an inner space if and only if
α[x, y] ≤ β[x, y] holds for all nonzero elements x, y ∈ X.

On the other hand, one of the most important inequalities in inner product
spaces is the Cauchy–Schwarz inequality which asserts that if X = (X, 〈·, ·〉)
is a real or complex inner product space, then

|〈x, y〉| ≤ ‖x‖‖y‖ (7)

holds for all vectors x, y ∈ X. In addition, equality in (7) holds if and only
if x and y are linearly dependent. For diverse applications, improvements and
generalizations of the Cauchy–Schwarz inequality, the reader is referred, for
example, to [1,11,20,21] and the references therein.

The main objective of the present paper is a study of characterizations
of inner product spaces closely connected to (2), (3) and (4). The paper is
divided into six sections as follows: after this Introduction, in Sect. 2 we first
discuss a classical geometric background of the above relations. In Sect. 3, we
discuss the equivalence of characterizing an inner product space via the usual
angular distance α[x, y] and the p-angular distance αp[x, y], p ∈ R, |p| �= 1. As
a consequence, we obtain an alternative proof of the fact that (4) characterizes
an inner product space. In Sect. 4, we interpolate relations (2) and (3), which
yields a new characterization of an inner product space. Further, by virtue of
some known bounds for angular distance, closely connected to our results from
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Sect. 4, in Sect. 5 we give the corresponding refinements and reverses of the
real Cauchy–Schwarz inequality. As an application, in Sect. 6, we give several
comparative relations for angular distances in inner product spaces.

If nothing else is explicitly stated, in this paper we deal with real normed
and real inner product spaces. Further, in order to simplify our discussion, the
quantities α[x, y], β[x, y], αp[x, y] and βp[x, y] will sometimes be referred to
simply as angular distances, for brevity.

2. Classical geometric interpretation and motivation

For the reader’s convenience, we first discuss a geometric background of rela-
tions (2) and (4). Namely, the notion of the angular distance α[x, y] is closely
connected to the concept of an angle between vectors x and y. To see this, we
first give a classical geometric interpretation of inequality (2).

Let ABC be a triangle in R
2 with sidelengths a = |BC|, b = |CA|, c = |AB|,

and let ha and wa be the lengths of the altitude and internal angle bisector
opposite BC, respectively. Further, let α stand for a measure of the angle
∠CAB.

In [7], one can find an old geometric inequality of Ballieu (1949) which
asserts that

2t−1 sint α

2
≤ at

bt + ct
, 0 ≤ t ≤ 1,

holds in a triangle ABC. In particular, if t = 1, the inequality of Ballieu
reduces to

sin
α

2
≤ a

b + c
. (8)

The classical proof of inequality (8) is quite simple. Namely, multiplying (8) by
2bc
a cos α

2 and utilizing the well-known trigonometric formulas ha = bc sinα
a and

wa = 2bc
b+c cos α

2 , it turns out that (8) is equivalent to the inequality ha ≤ wa,
which is obvious.

Now, we show that (8) is a special case of relation (2) that characterizes an
inner product space. Namely, let x =

−−→
AB, y =

−→
AC, and let

−−→
AM,

−−→
AN be the

unit vectors in directions x, y, respectively.

Then,
−−→
AM = x

‖x‖ ,
−−→
AN = y

‖y‖ , and so |−−→MN | =
∥
∥ x

‖x‖ − y
‖y‖

∥
∥ represents the

angular distance between vectors x and y. Consequently, since the triangle
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AMN is isosceles, it follows that sin α
2 = 1

2

∥
∥ x

‖x‖ − y
‖y‖

∥
∥, so inequality (8) can

be rewritten as relation (2).
To give a geometric interpretation of relation (4), let us apply the law of

cosines to triangles AMN and ABC. It follows that

cos α =
2 − |MN |2

2
=

b2 + c2 − a2

2bc
.

In accordance with our previous discussion, the corresponding vector form of
the last relation reads

α2[x, y] =
‖x − y‖2 − (‖x‖ − ‖y‖)2

‖x‖ ‖y‖ . (9)

It should be noted here that identity (9) is a special case of (4), when p = 0.
Of course, identities (4) and (9) are equivalent since they characterize an inner
product space. In the next section we will discuss this equivalence without
presuming that (4) and (9) characterize an inner product space.

3. Equivalence of characterizations via usual angular and p-angular
distances

In this section, we discuss the equivalence of characterizing an inner product
space via the usual angular distance α[x, y] and the p-angular distance αp[x, y],
p ∈ R, p �= 1. We start with showing that relations (4) and (9) are equivalent,
without presuming that they characterize an inner product space. Then we will
show that relation (9) is characteristic for an inner product space. As a conse-
quence, we will establish an alternative proof of the fact that (4) characterizes
an inner product space for |p| �= 1.

Theorem 1. Let X = (X, ‖·‖) be a normed linear space and let p ∈ R be such
that |p| �= 1. Then relation (9) holds for all nonzero vectors x, y ∈ X, if and
only if (4) holds for all nonzero vectors x, y ∈ X.

Proof. Let p ∈ R, p �= 1, and suppose that (9) holds for all nonzero vectors
x, y ∈ X. Then, considering (9) with ‖x‖p−1x, ‖y‖p−1y instead of x, y respec-
tively, we obtain

α2
[‖x‖p−1x, ‖y‖p−1y

]

=
α2

p[x, y] − (‖x‖p − ‖y‖p)2

‖x‖p‖y‖p
,

that is,
‖x‖p‖y‖pα2[x, y] = α2

p[x, y] − (‖x‖p − ‖y‖p)2 , (10)

since α[x, y] = α[ax, by], for a, b ∈ R such that ab > 0. Finally, substituting
(9) in the last equality and making several simple calculations we obtain (4),
as claimed.
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Conversely, suppose that (4) holds for a fixed p ∈ R, |p| �= 1. Then, consid-
ering (4) with ‖x‖ 1

p−1x, ‖y‖ 1
p−1y instead of x, y respectively, we obtain

‖x − y‖2 = ‖x‖1− 1
p ‖y‖1− 1

p α2
1
p
[x, y] +

(

‖x‖1− 1
p − ‖y‖1− 1

p

) (

‖x‖1+ 1
p − ‖y‖1+ 1

p

)

,

that is,

α2
1
p
[x, y] = ‖x‖ 1

p−1‖y‖ 1
p−1‖x − y‖2 +

(

‖x‖ 1
p−1 − ‖y‖ 1

p−1
) (

‖x‖ 1
p+1 − ‖y‖ 1

p+1
)

,

after rewriting. This means that if (4) holds for p-angular distance, then it also
holds for 1

p -angular distance. Hence, without loss of generality we can suppose
that |p| < 1. In addition, considering (4) with ‖x‖p−1x, ‖y‖p−1y instead of x, y,
it follows that

α2
p2 [x, y] = ‖x‖p(p−1)‖y‖p(p−1)α2

p[x, y]

+
(

‖x‖p(p−1) − ‖y‖p(p−1)
)(

‖x‖p(p+1) − ‖y‖p(p+1)
)

.

Now, substituting (4) in the last relation, we obtain

α2
p2 [x, y] = ‖x‖p2−1‖y‖p2−1‖x − y‖2 +

(

‖x‖p2−1 − ‖y‖p2−1
) (

‖x‖p2+1 − ‖y‖p2+1
)

,

which means that if (4) holds for p-angular distance, then it also holds for
p2-angular distance. Consequently, the identity

α2
pn

[x, y] = ‖x‖pn−1‖y‖pn−1‖x − y‖2 +
(‖x‖pn−1 − ‖y‖pn−1) (‖x‖pn+1 − ‖y‖pn+1)

holds for each term of the sequence pn = p2
n

, n ∈ N. Finally, since the norm
is continuous, the last relation also holds for limn pn = limn p2

n

= 0, which
yields relation (9). The proof is now complete. �

Now, our next step is to show that relation (9) characterizes an inner prod-
uct space.

Theorem 2. Let X = (X, ‖·‖) be a normed linear space. Then, X is an inner
product space if and only if relation (9) holds for all nonzero vectors x, y ∈ X.

Proof. Suppose that X is an inner product space. Then, for x, y ∈ X and
a, b ∈ R, we have

‖ax − by‖2 = 〈ax − by, ax − by〉 = a2‖x‖2 − 2ab〈x, y〉 + b2‖y‖2.
Furthermore, it follows that

(b − a)
(

a‖x‖2 − b‖y‖2) + ‖ax − by‖2 = ab
(‖x‖2 − 2〈x, y〉 + ‖y‖2)

= ab‖x − y‖2, (11)

and consequently, we obtain (9) after substituting a = 1
‖x‖ and b = 1

‖y‖ in the
last equality.

Conversely, suppose that X is a normed space with a norm satisfying rela-
tion (9). Our intention is to show that this hypothesis implies that inequality
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(2) holds for all nonzero elements x and y. Namely, by squaring the triangle
inequality ‖x − y‖ ≤ ‖x‖ + ‖y‖, we have that ‖x − y‖2 ≤ (‖x‖ + ‖y‖)2. In
addition, multiplying the previous inequality by (‖x‖ − ‖y‖)2 both-sidedly, we
obtain the inequality

(‖x‖ − ‖y‖)2 ‖x − y‖2 ≤ (‖x‖ − ‖y‖)2 (‖x‖ + ‖y‖)2 .

Clearly, the last inequality implies the relation

(‖x‖ + ‖y‖)2 ‖x − y‖2 − (‖x‖ − ‖y‖)2 (‖x‖ + ‖y‖)2 ≤ 4‖x‖‖y‖‖x − y‖2,
which holds for all vectors x, y ∈ X. Therefore, dividing the previous inequality
by ‖x‖‖y‖ (‖x‖ + ‖y‖)2 , provided that x and y are nonzero vectors, we obtain
the inequality

‖x − y‖2 − (‖x‖ − ‖y‖)2

‖x‖ · ‖y‖ ≤ 4 ‖x − y‖2
(‖x‖ + ‖y‖)2

,

which is equivalent to α2[x, y] ≤ 4 ‖x − y‖2
(‖x‖ + ‖y‖)2

, due to hypothesis (9). Finally,

by taking a square root, the previous relation reduces to (2), which implies
that X is an inner product space. �

Remark 1. In conclusion, Theorems 1 and 2 provide an alternative proof of
the fact that relation (4) characterizes an inner product space for |p| �= 1.
The corresponding proof established in [25] (see Theorem 4.3) relies on char-
acterizations due to Ficken [13] and Lorch [15]. It should be noted here that
this proof also covers the case when p = −1. If p = −1, relation (4) reduces
to α−1[x, y] = ‖x−y‖

‖x‖‖y‖ . Since this relation also characterizes an inner product
space, it is equivalent to (9), although we do not have direct equivalence as it
has been done in Theorem 1. �

Remark 2. It should be noted here that if a + b = 0, a, b �= 0, then relation
(11) reduces to the parallelogram law, which induces the inner product space
via the polarization identity. �

In order to conclude this section, we summarize our previous discussion.

Corollary 1. Let X = (X, ‖·‖) be a normed linear space. Then, the following
statements are equivalent:

(i) X is an inner product space;
(ii) relation (9) holds for all nonzero vectors x, y ∈ X;
(iii) relation (4) holds for all nonzero vectors x, y ∈ X and p �= 1.
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4. Characterization of an inner product space obtained via
interpolation

In this section, we give a characterization of an inner product space that fol-
lows by interpolating inequalities (2) and (3). We have already discussed that
inequality (3), obtained by Al-Rashed [3], generalizes characterization (2) ob-
tained by Kirk and Smiley. Since the function f(s) = st is concave (convex)
for 0 < t < 1 (t > 1), it follows that inequality (3) is weaker than (2) when
0 < t < 1, while for t > 1, inequality (3) is stronger than (2).

We start with interpolating relations (2) and (3). This can be done via the
parametric family of functions Hλ,t : X × X → R defined by

Hλ,t(x, y) = ((1 − λ)‖x‖ + λ‖y‖)t + (λ‖x‖ + (1 − λ)‖y‖)t
, (12)

where 0 ≤ λ ≤ 1 and t > 0. The following interpolating series of inequalities
will also be utilized for characterizing an inner product space.

Theorem 3. Let X = (X, 〈·, ·〉) be an inner product space with a norm ‖·‖
induced by an inner product 〈·, ·〉, and let Hλ,t : X × X → R be defined by
(12). If 0 < t ≤ 1, then the series of inequalities

α[x, y] ≤ 2 ‖x − y‖
‖x‖ + ‖y‖ ≤ 2

1
t ‖x − y‖

H
1
t

λ,t(x, y)
≤ 2

1
t ‖x − y‖

(‖x‖t + ‖y‖t)
1
t

(13)

holds for 0 ≤ λ ≤ 1 and for all nonzero vectors x, y ∈ X. Further, if t > 1,
then

α[x, y] ≤ 2
1
t ‖x − y‖

(‖x‖t + ‖y‖t)
1
t

≤ 2
1
t ‖x − y‖

H
1
t

λ,t(x, y)
≤ 2 ‖x − y‖

‖x‖ + ‖y‖ (14)

holds for 0 ≤ λ ≤ 1 and for all nonzero vectors x, y ∈ X.

Proof. If f : I → R is a concave function, then the series of inequalities

f

(
a + b

2

)

= f

(
(1 − λ)a + λb + λa + (1 − λ)b

2

)

≥ f((1 − λ)a + λb) + f(λa + (1 − λ)b)
2

≥ f(a) + f(b)
2

(15)

holds for all a, b ∈ I and 0 ≤ λ ≤ 1. Considering the above relation with a
concave function f(s) = st, s ≥ 0, 0 < t ≤ 1, and a = ‖x‖, b = ‖y‖, the above
set of inequalities becomes

(‖x‖ + ‖y‖
2

)t

≥ Hλ,t(x, y)
2

≥ ‖x‖t + ‖y‖t

2
,
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which is equivalent to
2t

(‖x‖ + ‖y‖)t ≤ 2
Hλ,t(x, y)

≤ 2
‖x‖t + ‖y‖t

.

Then, combining the last relation and (2), we obtain (13), as claimed.
On the other hand, if f : I → R is a convex function, then the signs of

inequalities in (15) are reversed. Therefore, since f(s) = st, s ≥ 0, t > 1 is a
convex function, similarly to the first case, we have

2t

(‖x‖ + ‖y‖)t ≥ 2
Hλ,t(x, y)

≥ 2
‖x‖t + ‖y‖t

.

Finally, combining the last relation with (3) we get (14), as claimed. �
Clearly, due to the interpolating series (13) and (14) established in Theorem

3, we obtain a parametric family of upper bounds for angular distance which
can also be interpreted as a characterization of an inner product space.

Corollary 2. Let X = (X, ‖·‖) be a normed linear space, let t > 0, 0 ≤ λ ≤ 1,
and let Hλ,t : X × X → R be defined by (12). Then, X is an inner product
space if and only if the inequality

α[x, y] ≤ 2
1
t ‖x − y‖

H
1
t

λ,t(x, y)

holds for all nonzero vectors x, y ∈ X. �

5. More accurate Cauchy–Schwarz inequality in inner product spaces

Upper bounds for angular distances α[x, y] discussed in the previous two sec-
tions can be utilized in establishing reverses of the Cauchy–Schwarz inequality
in a real inner product space. A crucial step in this direction is a representation
of inner product via angular distance, established by Aldaz [2] (see also [22]).
Namely, if X = (X, 〈·, ·〉) is a real inner product space with norm ‖·‖ induced
by an inner product, then

〈x, y〉 = ‖x‖ ‖y‖
(

1 − 1
2
α2[x, y]

)

(16)

holds for all nonzero vectors x, y ∈ X. Consequently, this representation en-
ables us to establish a reverse of the Cauchy–Schwarz inequality.

Theorem 4. Let X = (X, 〈·, ·〉) be an inner product space and let ‖·‖ be the
norm induced by an inner product 〈·, ·〉. Then inequalities

‖x‖‖y‖ − |〈x, y〉| ≤ ‖x‖‖y‖ − 〈x, y〉 ≤ 2‖x‖‖y‖‖x − y‖2
(‖x‖ + ‖y‖)2

(17)

hold for all nonzero vectors x, y ∈ X. �
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Proof. Relation (16) can be rewritten as

‖x‖‖y‖ − 〈x, y〉 =
1
2

‖x‖ ‖y‖ α2[x, y].

Now, the result follows from (2). �

Remark 3. It should be noted here that (17) represents a reverse of the Cauchy–
Schwarz inequality (7). However, in order to simplify our further discussion,
in the sequel we consider only estimates for the difference ‖x‖‖y‖ − 〈x, y〉.
Remark 4. The second inequality in (17) is a simple consequence of inequality
(2). It should be noted here that this inequality can be refined by virtue of the
series of inequalities in (14). In particular, if t > 1, then

‖x‖‖y‖ − 〈x, y〉 ≤ 2
2−t
t ‖x‖‖y‖‖x − y‖2

(‖x‖t + ‖y‖t)
2
t

≤ 2
2−t
t ‖x‖‖y‖‖x − y‖2

H
2
t

λ,t(x, y)
≤ 2‖x‖‖y‖‖x − y‖2

(‖x‖ + ‖y‖)2 .

However, the second inequality in (17) will be relevant in our further discussion.

We have just shown that the characterizations of inner product spaces
described via inequalities in (2), (3), (13) and (14) provide reverses of the
Cauchy–Schwarz inequality. Our next intention is to establish the correspond-
ing refinements of the Cauchy–Schwarz inequality. To do this, we first discuss
some mutual bounds for the angular distance α[x, y], known from the litera-
ture, which are closely connected to our characterization of an inner product
space established in Theorem 2.

More precisely, Maligranda [16], established the following refinement and re-
verse of a triangle inequality in an arbitrary normed linear space X = (X, ‖ · ‖):

‖x + y‖ ≤ ‖x‖ + ‖y‖ −
(

2 −
∥
∥
∥
∥

x

‖x‖ +
y

‖y‖
∥
∥
∥
∥

)

min{‖x‖, ‖y‖} (18)

and

‖x + y‖ ≥ ‖x‖ + ‖y‖ −
(

2 −
∥
∥
∥
∥

x

‖x‖ +
y

‖y‖
∥
∥
∥
∥

)

max{‖x‖, ‖y‖}. (19)

In addition, it has been proved that if either ‖x‖ = ‖y‖ = 1 or y = cx, c > 0,
then equality holds in both relations. The above two relations can be utilized
in establishing mutual bounds for the angular distance. Namely, by replacing
y with −y in inequalities (18) and (19), and noting that

2min{‖x‖, ‖y‖} =‖x‖ + ‖y‖ − |‖x‖ − ‖y‖|,
2max{‖x‖, ‖y‖} =‖x‖ + ‖y‖ + |‖x‖ − ‖y‖|,

one obtains mutual bounds for angular distance

‖x − y‖ − |‖x‖ − ‖y‖|
min{‖x‖, ‖y‖} ≤ α[x, y] ≤ ‖x − y‖ + |‖x‖ − ‖y‖|

max{‖x‖, ‖y‖} , (20)
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which hold for all nonzero vectors x, y ∈ X. It is easy to see that the upper
bound in (20) interpolates in between the right-hand sides of inequalities (1)
and (2).

Remark 5. The proof of inequalities (18) and (19) can be found in [16]. How-
ever, the proof of (20) is quite simple in an inner product space X. Namely, by
virtue of Theorem 2, we have α[x, y] =

√
AB, where A = ‖x−y‖−|‖x‖−‖y‖|

min{‖x‖,‖y‖} and

B = ‖x−y‖+|‖x‖−‖y‖|
max{‖x‖,‖y‖} . Now, it is easy to see that A ≤ B, and so A ≤ √

AB ≤ B,
which implies (20).

Remark 6. Motivated by (18) and (19), Dehghan [10], established yet another
pair of refinement and reverse of the triangle inequality which provided mutual
bounds for skew-angular distance β[x, y] (for more details, see [10]).

Mutual bounds in (20) can be parameterized via a pair of nonzero real
parameters of the same sign. More precisely, since α[x, y] = α[ax, by], where
a, b ∈ R, ab > 0, we have the following slight extension of (20).

Corollary 3. Let X = (X, ‖·‖) be a normed linear space and let a, b ∈ R be
such that ab > 0. Then the inequalities

‖ax − by‖ − |a‖x‖ − b‖y‖|
min{|a|‖x‖, |b|‖y‖} ≤ α[x, y] ≤ ‖ax − by‖ + |a‖x‖ − b‖y‖|

max{|a|‖x‖, |b|‖y‖} (21)

hold for all nonzero vectors x, y ∈ X. �
Remark 7. Similarly to Remark 5, it is interesting that if the square of angu-
lar distance is equal to the product of bounds in (21), then we deal with
an inner product space. More precisely, if we replace x, y, a, b in (11) by

x
‖x‖ , y

‖y‖ , a‖x‖, b‖y‖, respectively, we get

α2[x, y] =
‖ax − by‖2 − (a ‖x‖ − b ‖y‖)2

ab ‖x‖ ‖y‖ , (22)

provided that ab �= 0. On the other hand, if ab > 0, then by putting 1
ax and

1
b y in (22) instead of x and y respectively, we obtain relation (9). This means
that if ab > 0, then relation (22) also characterizes an inner product space.

�
Remark 8. Since 2‖x−y‖

‖x‖+‖y‖ ≤ ‖x−y‖+|‖x‖−‖y‖|
max{‖x‖,‖y‖} , inequality (2) is more accurate

than the second inequality in (20). On the other hand, inequality (2) can also
be extended in view of Corollary 3. Namely, a normed linear space X is an
inner product space if and only if the relation

α[x, y] ≤ 2 ‖ax − by‖
|a|‖x‖ + |b|‖y‖ (23)

holds for all nonzero vectors x, y ∈ X, provided that ab > 0. In the same way,
inequality (23) is more accurate than the second inequality in (21). �
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However, the left inequality signs in (20) and (21) provide refinements of the
Cauchy–Schwarz inequality. Our next result is an interpolating set of inequal-
ities which yields a more accurate version of the Cauchy–Schwarz inequality.

Theorem 5. Let X = (X, 〈·, ·〉) be an inner product space and let ‖·‖ be the
norm induced by an inner product 〈·, ·〉. If a, b ∈ R are such that ab > 0, then
the series of inequalities

1
2ab

(‖ax − by‖ − |a‖x‖ − b‖y‖|)2

≤ max{|a|‖x‖, |b|‖y‖}
2abmin{|a|‖x‖, |b|‖y‖} (‖ax − by‖ − |a‖x‖ − b‖y‖|)2

≤ ‖x‖‖y‖ − 〈x, y〉

≤ 2‖x‖‖y‖‖ax − by‖2
(|a|‖x‖ + |b|‖y‖)2

≤ 1
2ab

‖ax − by‖2

(24)

holds for all nonzero vectors x, y ∈ X.

Proof. Since ‖x‖‖y‖ − 〈x, y〉 = 1
2 ‖x‖ ‖y‖ α2[x, y], applying the first inequality

in (21), we get that

‖x‖‖y‖ − 〈x, y〉 ≥ ‖x‖‖y‖
2

(‖ax − by‖ − |a‖x‖ − b‖y‖|
min{|a|‖x‖, |b|‖y‖}

)2

=
max{|a|‖x‖, |b|‖y‖}

2abmin{|a|‖x‖, |b|‖y‖} (‖ax − by‖ − |a‖x‖ − b‖y‖|)2 ,

which yields the second inequality sign in (24). Moreover, since max{|a|‖x‖,|b|‖y‖}
min{|a|‖x‖,|b|‖y‖}

≥ 1, we have the first inequality sign in (24).
In the same way, utilizing relation (23), we obtain the third inequality

sign in (24). Finally, the last inequality sign in (24) holds by the arithmetic-
geometric mean inequality since

2‖x‖‖y‖
(|a|‖x‖ + |b|‖y‖)2

≤ 2‖x‖‖y‖
4ab‖x‖‖y‖ =

1
2ab

.

�

Clearly, the first two inequality signs in (24) provide a refinement, while the
last two signs yield a reverse of the Cauchy–Schwarz inequality when ab > 0.

Remark 9. If we had utilized the upper bound in (21) instead of (23) in the
proof of Theorem 5, we would have got the following reverse of the Cauchy–
Schwarz inequality:

‖x‖‖y‖ − 〈x, y〉 ≤ min{|a|‖x‖, |b|‖y‖}
2abmax{|a|‖x‖, |b|‖y‖} (‖ax − by‖ + |a‖x‖ − b‖y‖|)2

≤ 1
2ab

(‖ax − by‖ + |a‖x‖ − b‖y‖|)2 .
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Although the above relation is, in some way, symmetric to the corresponding
refinement in (24), it is obviously weaker than the reverse given in (24).

Remark 10. In particular, if a = b, then the set of inequalities in (24) implies
the relation

1
2

(‖x − y‖ − |‖x‖ − ‖y‖|)2 ≤ ‖x‖‖y‖ − 〈x, y〉 ≤ 1
2
‖x − y‖2. (25)

It should be noted here that the reverse of the Cauchy–Schwarz inequality in
the above relation is more accurate than the corresponding one established in
[20] (see also Remarks 8 and 9). �

Our next consequence of Theorem 5 represents the refinement and reverse
of the Cauchy–Schwarz inequality expressed in terms of p-angular distance
αp[x, y].

Corollary 4. Let X = (X, 〈·, ·〉) be an inner product space and let ‖·‖ be the
norm induced by an inner product 〈·, ·〉. If p ≥ 0, then the series of inequalities

1
2‖x‖p−1‖y‖p−1

(αp[x, y] − |‖x‖p − ‖y‖|p)2

≤ ‖x‖‖y‖
2min{‖x‖2p, ‖y‖2p} (αp[x, y] − |‖x‖p − ‖y‖|p)2

≤ ‖x‖‖y‖ − 〈x, y〉

≤ 2‖x‖‖y‖
(‖x‖p + ‖y‖p)2

α2
p[x, y] ≤ 1

2‖x‖p−1‖y‖p−1
α2

p[x, y]

(26)

holds for all nonzero vectors x, y ∈ X.

Remark 11. If p = 0, then the series of inequalities in (26) reduces to equality
(16) obtained by Aldaz [2]. Furthermore, if p = 1, then (26) implies inequalities
in (25).

So far, we have shown that the Cauchy–Schwarz inequality is closely con-
nected to bounds for angular distance. Namely, upper bounds for α[x, y] pro-
vide reverses, while lower bounds yield refinements of the Cauchy–Schwarz
inequality. Due to (16), it turns out that this problem can also be considered
in the opposite direction. Namely, refinements and reverses of the Cauchy–
Schwarz inequality provide lower and upper bounds for angular distance. In
order to illustrate this equivalence, we give the following result with which we
conclude this section.

Theorem 6. Let X = (X, 〈·, ·〉) be an inner product space with norm ‖·‖ in-
duced by an inner product 〈·, ·〉, and let x, y ∈ X be nonzero vectors such that
‖x‖ �= ‖y‖. Then,

‖x‖‖y‖ + min{‖x‖2, ‖y‖2} ≤ 2〈x, y〉 (27)
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holds if and only if

α[x, y] ≤ ‖x − y‖
max{‖x‖, ‖y‖} . (28)

Proof. Without loss of generality, we can assume that ‖x‖ < ‖y‖. Then, due
to (16), it follows that (28) is equivalent to

α2[x, y] =
2‖x‖‖y‖ − 2〈x, y〉

‖x‖‖y‖ ≤ ‖x − y‖2
‖y‖2 =

‖x‖2 − 2〈x, y〉 + ‖y‖2
‖y‖2 .

After rearranging, the last inequality can be rewritten as

(‖y‖ − ‖x‖)
(−‖x‖‖y‖ − ‖x‖2 + 2〈x, y〉) ≥ 0,

wherefrom we get ‖x‖‖y‖ + ‖x‖2 ≤ 2〈x, y〉, i.e. we obtain (27), due to our
hypothesis. �

Remark 12. It should be noted here that the estimate in (28) is more accurate
than the upper bounds given by (2) and (20). Further, considering relations
(27) and (28) with reversed signs of inequality, we get lower bounds for angular
distance.

6. Comparative relations for angular distances in inner product
spaces

Besides characterizations of an inner product space, paper [25] also deals with
some geometric aspects of angular distances. In particular, the authors es-
tablished several results on the comparison of angular distances αp[x, y] and
αq[x, y] for arbitrary values p, q ∈ R. For example, they proved that the relation

αp[x, y] ≥ |p|
|p| + |p − q| min

{‖x‖p−q, ‖y‖p−q
}

αq[x, y] (29)

holds for arbitrary p, q ∈ R and for all nonzero vectors x, y in a normed space
X.

The main objective of this section is to show applications of relations (4)
and (9) in obtaining some new comparative relations for angular distances.
Since we will utilize relations that characterize inner product spaces, the esti-
mates that follow will hold in an inner product space.

The following comparative relations between both p-angular distances
(αp[x, y], βp[x, y]) and the usual angular distance α[x, y] are immediate conse-
quences of the characterizing relation (9).

Corollary 5. Let X = (X, 〈·, ·〉) be an inner product space and let ‖·‖ be the
norm induced by an inner product 〈·, ·〉. If p ∈ R, then the inequalities

αp[x, y] ≥ ‖x‖ p
2 ‖y‖ p

2 α[x, y] (30)
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and
βp[x, y] ≥ ‖x‖ p

2 ‖y‖ p
2 α[x, y] (31)

hold for all nonzero vectors x, y ∈ X.

Proof. Inequality (30) is an immediate consequence of relation (10). Further,
considering identity (9) with x and y respectively replaced by ‖y‖p−1x and
‖x‖p−1y, we arrive at the relation

α2
[‖y‖p−1x, ‖x‖p−1y

]

=
β2

p [x, y] − (‖x‖‖y‖p−1 − ‖x‖p−1‖y‖)2

‖x‖p‖y‖p
.

In addition, since α[x, y] = α[ax, by], for a, b ∈ R, the above relation can be
rewritten in the following form:

β2
p [x, y] − ‖x‖p‖y‖pα2[x, y] = ‖x‖2‖y‖2 (‖x‖p−2 − ‖y‖p−2

)2
. (32)

Clearly, inequality (31) holds since the right-hand side of (32) is nonnegative.
�

Remark 13. If q = 0, inequality (29) reduces to αp[x, y] ≥ min {‖x‖p, ‖y‖p}
α[x, y]. Now, since min {‖x‖p, ‖y‖p} ≤ √‖x‖p‖y‖p = ‖x‖ p

2 ‖y‖ p
2 , it follows

that inequality (30) is more accurate than (29). Of course, this is meaningful
since (30) holds in an inner product space.

Remark 14. Combining relations (10) and (32), we arrive at the following re-
lationship between p-angular distance and skew p-angular distance (see also
[25]):

α2
p[x, y] − β2

p [x, y] = (‖x‖p − ‖y‖p)2 − ‖x‖2‖y‖2 (‖x‖p−2 − ‖y‖p−2
)2

=
(‖x‖2 − ‖y‖2) (‖x‖2p−2 − ‖y‖2p−2

)

.

By a more precise analysis, we can derive comparative relations for quanti-
ties αp[x, y] and αq[x, y], as well as for βp[x, y] and βq[x, y], where p and q are
arbitrary real parameters. Our next result is an extension of inequality (30).

Theorem 7. Let X = (X, 〈·, ·〉) be an inner product space and let ‖·‖ be the
norm induced by an inner product 〈·, ·〉. If |p| ≥ |q|, then the inequality

αp[x, y] ≥ ‖x‖ p−q
2 ‖y‖ p−q

2 αq[x, y] (33)

holds for all nonzero vectors x, y ∈ X. Otherwise, the sign of inequality (33)
is reversed. If |p − 2| ≥ |q − 2|, then the inequality

βp[x, y] ≥ ‖x‖ p−q
2 ‖y‖ p−q

2 βq[x, y] (34)

holds for all nonzero vectors x, y ∈ X. Otherwise, the sign of inequality (34)
is reversed.
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Proof. Obviously, inequality (33) holds for ‖x‖ = ‖y‖. Hence, without loss of
generality we can suppose that ‖x‖ > ‖y‖, due to symmetry.

Now, consider the function f : R → R, defined by f(p) = α2
p[x,y]

‖x‖p‖y‖p , where
x, y ∈ X are nonzero vectors. Then, by (10), it follows that

f(p) =
(‖x‖p − ‖y‖p)2

‖x‖p‖y‖p
+ α2[x, y].

Therefore, we have

f(p) − f(q) =
(‖x‖p − ‖y‖p)2

‖x‖p‖y‖p
− (‖x‖q − ‖y‖q)2

‖x‖q‖y‖q

=
‖x‖2p+q‖y‖q + ‖x‖q‖y‖2p+q − ‖x‖p+2q‖y‖p − ‖x‖p‖y‖p+2q

‖x‖p+q‖y‖p+q

=
(‖x‖p‖y‖q − ‖x‖q‖y‖p) (‖x‖p+q − ‖y‖p+q)

‖x‖p+q‖y‖p+q

=
((‖x‖

‖y‖
)p

−
(‖x‖

‖y‖
)q)

(

1 −
(‖y‖

‖x‖
)p+q

)

.

Moreover, with an abbreviation t = ‖x‖
‖y‖ , we have

f(p) − f(q) =
(tp − tq) (tp+q − 1)

tp+q
, (35)

where t > 1. Now, according to (35), it follows that f(p) ≥ f(q) if and only if
p ≥ q, p+ q ≥ 0 or p ≤ q, p+ q ≤ 0. Clearly, this set of conditions is equivalent
to |p| ≥ |q|, which yields inequality (33).

To prove inequality (34), we utilize the relationship between p-angular and
skew p-angular distance given by (6). Then, our assertion follows from the
proof of inequality (33), after several elementary calculations. �

Remark 15. According to (35), equality in (33) holds if and only if ‖x‖ = ‖y‖
or p = q or p = −q. Similarly, equality in (34) holds if and only if ‖x‖ = ‖y‖
or p = q or p + q = 4.

Remark 16. Similarly to Remark 13, inequality (33) is more accurate than
(29) since

|p|
|p| + |p − q| min

{‖x‖p−q, ‖y‖p−q
} ≤

√

‖x‖p−q‖y‖p−q = ‖x‖ p−q
2 ‖y‖ p−q

2 .

Clearly, this is consistent with the fact that (33) holds in an inner product
space. �

Remark 17. In 2019, Rooin et al. [24], established more accurate versions of
inequalities (30) and (33). Namely, by a more precise analysis, they proved
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that the inequality

αp[x, y] ≥ ‖x‖p + ‖y‖p

2
α[x, y] (36)

holds for all p ∈ R, while the inequality

αp[x, y] ≥ ‖x‖p−q + ‖y‖p−q

2
αq[x, y] (37)

holds for p
q ≥ 1. Clearly, inequalities (36) and (37) are more accurate than (30)

and (33), by the arithmetic-geometric mean inequality. Therefore, our aim is
to establish improved forms of inequalities (30) and (33) and compare them
with the above estimates.

Inequalities (30) and (31) have been derived as immediate consequences
of identities (10) and (32), by neglecting the corresponding terms in these
identities. By a more precise analysis of identities (10) and (32), we obtain
more accurate forms of inequalities (30) and (31).

Theorem 8. Let X = (X, 〈·, ·〉) be an inner product space and let ‖·‖ be the
norm induced by an inner product 〈·, ·〉. If x, y ∈ X are nonzero vectors and
p ≥ 1, then

p2 (‖x‖ − ‖y‖)2 (min{‖x‖, ‖y‖})2p−2

≤ α2
p[x, y] − ‖x‖p‖y‖pα2[x, y]

≤ p2 (‖x‖ − ‖y‖)2 (max{‖x‖, ‖y‖})2p−2
.

(38)

If p < 1, then the inequalities in (38) are reversed. In addition, if p ≥ 3, then

(p − 2)2‖x‖2‖y‖2 (‖x‖ − ‖y‖)2 (min{‖x‖, ‖y‖})2p−6

≤ β2
p [x, y] − ‖x‖p‖y‖pα2[x, y]

≤ (p − 2)2‖x‖2‖y‖2 (‖x‖ − ‖y‖)2 (max{‖x‖, ‖y‖})2p−6
,

(39)

while for p < 3 the inequalities in (39) are reversed.

Proof. From relation (10) we have α2
p[x, y]−‖x‖p‖y‖pα2[x, y] = (‖x‖p − ‖y‖p)2.

On the other hand, by the Lagrange mean value theorem, it follows that there
exists φ ∈ (‖x‖, ‖y‖) such that ‖x‖p − ‖y‖p = (‖x‖ − ‖y‖) pφp−1. Clearly, by
squaring the last relation we obtain inequalities in (38) since min{‖x‖, ‖y‖} <
φ < max{‖x‖, ‖y‖}.

Similarly, by virtue of the Lagrange mean value theorem, there exists φ ∈
(‖x‖, ‖y‖) such that ‖x‖p−2 − ‖y‖p−2 = (‖x‖ − ‖y‖) (p − 2)φp−3. Now, our
assertion follows from (32).

Remark 18. The first inequality in (38) represents an improvement of inequal-
ity (30), while the second one is the corresponding reverse. The first inequalities
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in (38) and (36) are not comparable in general. To see this, consider the first
inequality in (38), i.e.

α2
p[x, y] ≥ ‖x‖p‖y‖pα2[x, y] + p2 (‖x‖ − ‖y‖)2 (min{‖x‖, ‖y‖})2p−2

.

Now, if we subtract
(‖x‖p+‖y‖p

2

)2
α2[x, y] from both sides of the previous in-

equality, we have

α2
p[x, y] −

(‖x‖p + ‖y‖p

2

)2

α2[x, y]

≥ −1
4
α2[x, y] (‖x‖p − ‖y‖p)2 + p2 (‖x‖ − ‖y‖)2 (min{‖x‖, ‖y‖})2p−2

.

(40)
Now, if p = 1, then the right-hand side of (40) reduces to

(

1− 1
4α2[x, y]

)

(‖x‖ − ‖y
‖)2, which is nonnegative since α[x, y] ≤ 2, by the triangle inequality. This
means that if p = 1, our inequality (38) is more precise than (36).

On the other hand, let X = R
2, with the usual Euclidean inner product

defined to be the sum of component-wise multiplication, and let x = (2, 0),
y = (0, 1). Then, ‖x‖ = 2, ‖y‖ = 1 and α[x, y] =

√
2. Consequently, if p = 2,

then the right-hand side of (40) takes the value − 1
2 , which means that the first

inequality in (38) is weaker than (36) in this setting. �

In order to conclude the paper, we discuss a special case of inequality (33)
when q = 1. In this case, inequality (33) reduces to

αp[x, y] ≥ ‖x‖ p−1
2 ‖y‖ p−1

2 ‖x − y‖, (41)

which holds for |p| ≥ 1, while for |p| < 1 the inequality is reversed. The same
conclusion can be drawn from identity (4) by neglecting the term

(‖x‖p−1 − ‖y‖p−1
) (‖x‖p+1 − ‖y‖p+1

)

.

Now, similarly to Theorem 8, we give a more accurate form of inequality (41).

Theorem 9. Let X = (X, 〈·, ·〉) be an inner product space and let ‖·‖ be the
norm induced by an inner product 〈·, ·〉. If x, y ∈ X are nonzero vectors and
p ≥ 2, then

(

p2 − 1
)

(‖x‖ − ‖y‖)2 (min{‖x‖, ‖y‖})2p−2

≤ α2
p[x, y] − ‖x‖p−1‖y‖p−1‖x − y‖2

≤ (

p2 − 1
)

(‖x‖ − ‖y‖)2 (max{‖x‖, ‖y‖})2p−2
.

(42)

In addition, if p < −1 then the inequalities in (42) are reversed.

Proof. By identity (4) and the Lagrange mean value theorem, it follows that
there exist φ, ψ ∈ (‖x‖, ‖y‖) such that

α2
p[x, y] − ‖x‖p−1‖y‖p−1‖x − y‖2 =

(

p2 − 1
)

(‖x‖ − ‖y‖)2 φp−2ψp,
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which proves our assertion. �
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