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When is a spherical body of constant diameter of constant width?

Marek Lassak

Abstract. We prove that a smooth convex body of diameter δ < π
2

on the d-dimensional unit

sphere Sd is of constant diameter δ if and only if it is of constant width δ. We also show
this equivalence for all convex bodies on S2. Since, as shown earlier, the equivalence on Sd

is true for every δ ≥ π
2
, the question whether spherical bodies of constant diameter and

constant width on Sd coincide remains open for non-smooth bodies on Sd, where d ≥ 3.
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1. Introduction

The subject of this paper belongs to spherical geometry. For a larger context
see the monographs [2,9] and [10].

In the next section we recall the notions of a spherical convex body and
of a spherical convex body of constant width. Shortly speaking, by a body of
constant width on the d-dimensional unit sphere Sd we mean a spherical convex
body all of whose widths are equal (see [5] and [7]). Here by the width of C
determined by a supporting hemisphere K of C we understand the thickness
of any narrowest lune K ∩ K∗, where K∗ is a different hemisphere, containing
C. In [8] the notion of the spherical body of constant width is considered in
the larger context of bodies of constant width in other spaces.

Let C ⊂ Sd be a convex body of diameter δ. If the spherical distance |pq|
of points p, q ∈ C is δ, we call pq a diametral chord of C and we say that p, q
are diametrically opposed points of C. Clearly, p, q ∈ bd(C).

After Part 4 of [7] we say that a convex body D ⊂ Sd of diameter δ is of
constant diameter δ provided for every point p ∈ bd(D) there exists at least
one point p′ ∈ bd(D) such that |pp′| = δ (in other words, that pp′ is a diametral
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chord of D). For the analogous notion of a body of constant diameter in Ed

see [1].
In this paper, in order to point out that a body is of constant diameter we

denote it by D, and not by C, which is used for arbitrary convex bodies on
Sd.

Recall that in Theorem 5 of [7] it is proved that an arbitrary convex body
on Sd of diameter δ ≥ π

2 is of constant diameter if and only if it is a body of
constant width δ. Moreover, it is shown that the “if” part holds also for δ < π

2 .
At the end of [7] the problem is put whether every spherical body of constant
diameter δ < π

2 on Sd is also a body of constant width δ?
In Sect. 4 we prove that a smooth convex body of diameter δ < π

2 on Sd is
of constant diameter δ if and only if it is of constant width δ. Also that this
equivalence holds true for all convex bodies on S2. As a consequence of these
facts and those from the preceding paragraph, the above problem remains open
only for non-smooth bodies of diameter below π

2 on Sd with d ≥ 3.
By the way, in [3,4] and [6] spherical bodies of constant width and constant

diameter π
2 are applied for the relevant task of recognizing if a Wulff shape is

self-dual.

2. On spherical geometry

By Sd denote the unit sphere in the (d+1)-dimensional Euclidean space Ed+1,
where d ≥ 2. The intersection of Sd with any (k + 1)-dimensional Euclidean
space, where 0 ≤ k ≤ d − 1, is called a k-dimensional subsphere of Sd. For
k = 1 we call it a great circle, and for k = 0 a pair of antipodes. If different
points a, b ∈ Sd are not antipodes, by the arc ab connecting them we mean
that part of the great circle containing a and b, which does not contain any
pair of antipodes. By the spherical distance |ab|, or shortly distance, of these
points we understand the length of the arc connecting them.

By a d-dimensional spherical ball of radius ρ ∈ (0, π
2 ], or shorter a ball,

we mean the set of points of Sd which are at a distance at most ρ from a
fixed point, called the center of this ball. For d = 2 it is called a disk, and its
boundary is called a circle of radius δ. Spherical balls of radius π

2 are called
hemispheres. In other words, by a hemisphere of Sd we mean the common part
of Sd with any closed half-space of Ed+1. We denote by H(c) the hemisphere
whose center is c. Two hemispheres whose centers are antipodes are called
opposite hemispheres.

By a spherical (d − 1)-dimensional ball of radius ρ ∈ (0, π
2 ] we mean the

set of points of a (d − 1)-dimensional great sphere of Sd at a distance at most
ρ from a point, called the center of this ball. The (d − 1)-dimensional balls of
radius π

2 are called (d − 1)-dimensional hemispheres.
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Let a set C ⊂ Sd not contain any pair of antipodes. We say that C is convex
if together with every two of its points, C contains the whole arc connecting
them. If the interior of a closed convex set C is non-empty, we call C a convex
body. Its boundary is denoted by bd(C).

If a hemisphere H contains a convex body C and if p ∈ bd(H) ∩ C, we say
that H supports C at p or that H is a supporting hemisphere of C at p. If
exactly one hemisphere supports a convex body C at its boundary point p, we
say that p is a smooth point of bd(C), and in the opposite case we say that
p is an acute point of bd(C). If every boundary point of C ⊂ Sd is smooth,
then C is called smooth. We call C strictly convex if bd(C) does not contain
any arc.

If hemispheres G and H of Sd are different and not opposite, then L = G∩H
is called a lune of Sd. This notion is considered in many books and papers. The
parts of bd(G) and bd(H) contained in G∩H are denoted by G/H and H/G,
respectively. By the thickness Δ(L) of the lune L = G∩H ⊂ Sd we mean the
spherical distance of the centers of the (d − 1)-dimensional hemispheres G/H
and H/G.

For any convex body C ⊂ Sd and any hemisphere K supporting C we
define the width widthK(C) of C determined by K as the thickness of any
narrowest lune K ∩ K∗ containing C (so that no lune of the form K ∩ K ′

with a smaller thickness contains C). By the thickness Δ(C) of C we mean the
minimum of widthK(C) over all hemispheres K supporting C. Clearly, Δ(C)
is nothing else but the thickness of a “narrowest” lune containing C. We say
that C is of constant width w if all its widths widthK(C) are equal to w.

The above notions are given and a few properties of lunes and convex bodies
in Sd are presented in [5] and [7].

Lemma. Let K be a hemisphere of Sd and let p ∈ bd(K). Moreover, let pq ⊂ K
be an arc orthogonal to bd(K) with q in the interior of K and |pq| < π

2 .
Then amongst all the lunes of the form K ∩ M , with q in the boundary of the
hemisphere M , only the lune K ∩ K� such that pq is orthogonal to bd(K�) at
q has the smallest thickness.

Proof. Denote by m the center of M/K. Observe that m ∈ K \ M . Con-
sequently, |pm| ≥ |pq| with equality only when m coincides with q. Since
Δ(K ∩ M) = |pm| and Δ(K ∩ K�) = |pq|, we conclude that only the lune
K ∩ K� is of the smallest thickness amongst all our lunes K ∩ M . �

3. Spherical bodies of constant diameter

The notion of a spherical body of constant diameter is recalled in the Intro-
duction. In this section we present a few propositions on bodies of constant
diameter.



396 M. Lassak AEM

Proposition 1. Every convex body D ⊂ Sd of constant diameter δ < π
2 is

strictly convex.

Proof. Assume the opposite that D is not strictly convex. Then bd(D) contains
an arc xz. Denote its midpoint by y. Clearly, y ∈ bd(D). Since D is of constant
diameter δ, there is a point y′ ∈ bd(D) such that |yy′| = δ. This, y ∈ xz and
δ < π

2 imply that |y′x| > δ or |y′z| > δ. Thus diam(D) > δ in contradiction to
the fact that D is of constant diameter δ. Consequently, D is strictly convex.

�
Proposition 2. Let D ⊂ S2 be a body of constant diameter. Then every two
diametral chords of D intersect.

Proof. Denote the diameter of D by δ. Suppose that some diametral chords ab
and cd of D do not intersect (let for instance a, b, d, c be in this order on bd(D)).
Then abdc is a convex spherical non-degenerate quadrangle. Hence ad and bc
intersect at exactly one point. Denote it by x. Since |ab| = δ and |cd| = δ, by
the triangle inequality we get |ax|+ |xb| ≥ δ and |cx|+ |xd| ≥ δ. What is more,
since x �∈ ab and x �∈ cd, we get |ax| + |xb| > δ and |cx| + |xd| > δ. This leads
to |ax| + |xb| + |cx| + |xd| > 2δ. So |ax| + |xd| > δ or |cx| + |xb| > δ. In other
words, |ad| > δ or |bc| > δ in contradiction to diam(D) = δ. Consequently,
every two diametral chords of D intersect. �
Proposition 3. If a hemisphere K supports a convex body D ⊂ Sd of constant
diameter δ < π

2 at a smooth point of its boundary, then widthK(D) = δ.

Proof. Let p be a smooth point of bd(D) (see Fig. 1). Since D is of constant
diameter, there exists a diametrally opposed point p′ ∈ bd(D). Hence the ball
B of radius δ and center p′ contains D. Clearly, p ∈ bd(B).

Since p is a smooth point of bd(D), we see that K is the only supporting
hemisphere of D at p. Consequently, the hemisphere K supports the ball B
at p.

From diam(D) = δ and p′ ∈ bd(D) we see that the spherical ball B′ of
radius δ centered at p contains D and supports it at p′.

Denote by K ′ the hemisphere supporting B′ at p′. Clearly, we have D ⊂
B ∩ B′ ⊂ K ∩ K ′.

Since our chord pp′ of length δ is orthogonal to bd(K) at p and to bd(K ′)
at p′, by the definition of the thickness of a lune we see that the lune K ∩ K ′

has thickness |pp′| = δ. Consequently, by D ⊂ K ∩ K ′ we conclude that
widthK(D) ≤ δ.

By the Lemma the lune K ∩ K ′ is the narrowest lune from the family L1

of lunes of the form K ∩ M with p′ ∈ bd(M) containing pp′. From pp′ ⊂ D ⊂
K ∩K ′ we conclude that K ∩K ′ is also the narrowest lune from the family L2

of all lunes of the form K ∩M containing D. Since every lune from L2 contains
a lune from L1, every lune from L2 is of thickness at least δ. Consequently,
widthK(D) ≥ δ.
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Figure 1. Illustration to the Proof of Proposition 3

From the above two paragraphs we conclude that widthK(D) = δ. �

4. Two cases in which spherical convex bodies of constant diameter
are of constant width

Since the question is answered for δ ≥ π
2 and since, as mentioned in the

Introduction, every spherical body of constant width is of constant diameter,
now we concentrate on checking when a spherical body of constant diameter
δ < π

2 is of constant width. The following theorem gives a partial answer. It
results immediately from Proposition 3 and from the fact that every body of
constant width δ is of constant diameter δ.

Theorem 1. Let 0 < δ < π
2 . A spherical smooth convex body on Sd is of

constant diameter δ if and only if it is of constant width δ.

Below is our main theorem. Since in its proof we apply polar sets, let us
recall this notion. For a convex body C ⊂ Sd by its polar we mean the set
C◦ = {r : C ⊂ H(r)}. It is known that C◦ is a convex body. Recall that
bd(C◦) is the set of points r such that H(r) is a supporting hemisphere of C.

Theorem 2. Let 0 < δ < π
2 . A convex body on the two-dimensional sphere is

of constant diameter δ if and only it is of constant width δ.

Proof. In the first part of Theorem 5 of [7] it is shown that every body of
constant width on Sd is a body of constant diameter.

It remains to show that every body D ⊂ S2 of constant diameter δ < π
2 is

of constant width δ, i.e., that widthK(D) = δ for every supporting hemisphere
K of D.
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Figure 2. Illustration to the proof of Theorem 2

By Proposition 1 there is exactly one point p of support of D by K.
When p is a smooth point of bd(D), then we apply Proposition 3.
Consider the case when p is an acute point of bd(D). Denote by H1 =

H(r1) the first supporting hemisphere and by H2 = H(r2) the last supporting
hemisphere of D at p, as we go counterclockwise with the center r of H(r) on
bd(D◦), see Fig. 2.

For i = 1, 2 provide the arc ppi ⊂ Hi of length δ orthogonal to bd(Hi) at
p. So pi ∈ pri for i = 1, 2. By Bi denote the disc of radius δ centered at pi,
where i = 1, 2.

Of course, D ⊂ B1 ∩ B2 ⊂ H1 ∩ H2.
Consider the piece P of the circle with center p and radius δ when we go

counterclockwise from p1 to p2. Denote by si the point of bd(D) in the arc
ppi, where i = 1, 2, and by S the piece of bd(D), when going counterclockwise
from s1 to s2. Take any s ∈ S. There exists a diametrally opposed point s′ of
D in bd(D). By Proposition 2 the diametral chord ss′ intersects the diametral
chords pp1 and pp2. Consequently, s′ must be at p. This and |ss′| = δ imply
that s ∈ P , which means that the whole P is in the boundary of D.

Consequently, for every hemisphere H supporting D at p the chord of D
orthogonal to H at p is a diametral chord of D. Thus by the Lemma we get
widthH(D) = δ also if p is an acute point of bd(D).

We see that widthK(D) = δ both when K supports D at a smooth and
acute boundary point of bd(D), as required. �
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By the proof of Theorem 2 and also Proposition 3 any supporting hemi-
sphere H = H(r) of D determines a unique diametral chord pp′ of D; it is
orthogonal to the great circle bounding H. Moreover, the center r of H belongs
to bd(D◦). On the other hand, take any r ∈ bd(D◦). Then H(r) supports D
at exactly one point p. Clearly, D ⊂ H(r). Consequently, for any body D ⊂ S2

we have a one-to-one correspondence between the following objects:
– the supporting hemispheres of D,
– the points of bd(D◦),
– the diametral chords of D.
Every position of a diametral chord is determined by a supporting hemi-

sphere of D. It is also determined by a point of bd(D◦); still such a point r
determines exactly one point p, and the considered diametral chord is in the
arc pp′.

A forthcoming paper is devoted to showing analogous facts as in Proposi-
tions 1–3 and Theorems 1 and 2 for any diameter δ > 0 in the Euclidean space
(we conjecture that they are also true in the hyperbolic space). The proofs of
these analogous statements apply parallelism, which does not make sense here
on the sphere.
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