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Abstract. Motivated by the concept of well-covered graphs, we define a graph to be well-
bicovered if every vertex-maximal bipartite subgraph has the same order (which we call
the bipartite number). We first give examples of them, compare them with well-covered
graphs, and characterize those with small or large bipartite number. We then consider graph
operations including the union, join, and lexicographic and cartesian products. Thereafter
we consider simplicial vertices and 3-colored graphs where every vertex is in triangle, and
conclude by characterizing the maximal outerplanar graphs that are well-bicovered.
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1. Introduction

Plummer [4] defined a graph to be well-covered if every maximal independent
set is also maximum. That is, a graph is well-covered if every maximal inde-
pendent set has the same cardinality, namely the independence number α(G).
Much has been written about these graphs. For example, Ravindra [6] charac-
terized well-covered bipartite graphs, Campbell, Ellingham, and Royle [1] char-
acterized well-covered cubic graphs, and Finbow, Hartnell, and Nowakowski
[2] characterized well-covered graphs of girth 5 or more.

Motivated by this idea, we define a graph to be well-bicovered if every
vertex-maximal bipartite subgraph has the same order. Equivalently, one can
define the bipartite number of a graph G, denoted b(G), as the maximum
cardinality of a bipartite induced subgraph in G. (We will henceforth just
assume that subgraph means induced subgraph.) Then, being well-bicovered
means all maximal bipartite subgraphs have cardinality b(G). The problem of
finding a maximum bipartite subgraph is well-studied. For instance, Zhu [8]
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showed that any triangle-free subcubic graph G with order n has b(G) ≥ 5
7n,

and the Four Color Theorem shows that b(G) ≥ n/2 for any planar graph G.
In this paper, we introduce and study well-bicovered graphs. We give

examples and compare well-bicovered graphs with well-covered graphs, and
characterize well-bicovered graphs with small or large bipartite numbers. We
then consider their relationship to graph operations including the union, join,
and lexicographic and cartesian products. Thereafter we consider 3-colorable
graphs and simplicial vertices, and conclude by characterizing the maximal
outerplanar graphs that are well-bicovered.

1.1. Definitions and terminology

Let G = (V (G), E(G)) be a simple, finite graph of order n(G) = |V (G)|. The
open neighborhood of a vertex v ∈ V (G) is N(v) = {x ∈ V (G) : xv ∈ E(G) }.
The degree of v ∈ V (G) is deg(v) = |N(v)|, and the maximum degree of G
is denoted Δ(G). Given a set X ⊆ V (G), we let G[X] represent the subgraph
induced by X. If degG(x) = 1, we refer to x as a leaf in G, and the edge
incident with x as a pendant edge. In general, a bridge is an edge whose
removal increases the number of components.

2. Examples of well-bicovered graphs

In this section, we construct examples of well-bicovered graphs and study well-
bicovered graphs whose maximal bipartite subgraphs have a given cardinality.

Trivially, every bipartite graph is well-bicovered. So are the complete graphs
and the cycles. Further, bridges are irrelevant, as adding or removing a bridge
does not alter the property. In particular, note for example that adding a
pendant edge to any well-bicovered graph results in a well-bicovered graph.

2.1. The relationship to well-covered graphs

While the concept of being well-bicovered was motivated by the concept of
being well-covered, the two properties are distinct. In particular, neither prop-
erty implies the other. For example, the path P3 is well-bicovered but not well-
covered. On the other hand, the graph F , obtained from K4 − e and adding
a pendant edge to a vertex of degree 2, is well-covered but not well-bicovered.
The house graph H (C5 plus a chord) is both. See Fig. 1.

The house graph and complete graph have the property that their bipartite
number is twice their independence number. But there are also examples where
this is not the case. Two such graphs are shown in Fig. 2.
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Figure 1. Two well-covered graphs

Figure 2. Two well-covered and well-bicovered graphs G
with b(G) < 2α(G)

Though not equivalent to being well-bicovered, there is another “bipartite
subgraph” property that is more closely related to being well-covered, that we
mention in passing. Let us define the “weight” of a subgraph as the sum of
twice the number of isolated vertices and the number of nonisolated vertices.
Then being well-covered implies that every maximal bipartite subgraph has
the same weight:

Lemma 1. If a graph G is well-covered, then the weight of every maximal bipar-
tite subgraph is the same.

Proof. Consider a maximal bipartite subgraph B. Let X denote the isolates
of B and let (Y1, Y2) denote the bipartition of V (B) − X. The maximality
condition means that adding to B any other vertex v produces an odd cycle.
This requires that vertex v be adjacent to both a vertex of Y1 and Y2. Further,
every vertex of Y1 has a neighbor in Y2 and vice versa, by the definition of Y .
Thus, both X ∪ Y1 and X ∪ Y2 are maximal independent sets in G: that is
2|X| + |V (B) − X| = 2α(G). �

2.2. Classifying graphs based on their bipartite number

First, we classify well-bicovered graphs with small bipartite number.
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Lemma 2. A connected graph G is well-bicovered with bipartite number 2 if
and only if G = Kn for n ≥ 2.

Proof. It is clear that if G = Kn for n ≥ 2, then G is well-bicovered with
bipartite number 2. On the other hand, if G is connected and not complete,
then it contains an induced P3, and so b(G) ≥ 3. �

Lemma 3. A connected graph G is well-bicovered with bipartite number 3 if and
only if G is obtained by taking a nontrivial complete graph Kn and attaching
a pendant edge to one vertex of Kn.

Proof. First, note that if G is obtained by taking a nontrivial complete graph
Kn and attaching a pendant edge to one vertex of Kn, then G is well-bipartite
with bipartite number 3. Conversely, suppose G is well-bicovered with bipartite
number 3. If G has order 3, then G = P3 and we are done. So we may assume
that G has order at least 4.

Since G is connected and not complete, there exists an induced P3 with
central vertex v; this must be a maximal bipartite subgraph in G. Thus, every
vertex of G is adjacent to v. Suppose there exists an induced P3 in G− v with
central vertex w. As before, this implies that every vertex of G is adjacent to
w. However, G[{v, w}] is then a maximal bipartite subgraph of G, which is a
contradiction. It follows that G − v is a disjoint union of cliques and we may
write G−v = Kn1 ∪· · ·∪Knj

. We can create a maximal bipartite subgraph H
of G by choosing one vertex from each Kni

= K1 and two vertices from each
Kni

where ni ≥ 2. Since H has order 3, it follows that G−v = K1 ∪Kn where
n ≥ 2. �

Next, we consider the other end of the spectrum and classify well-bicovered
graphs G with bipartite number n(G) − 1.

Lemma 4. A graph G is well-bicovered with bipartite number n(G) − 1 if and
only if there exists an odd cycle C in G such that every odd cycle of G contains
every vertex on C.

Proof. Suppose first that G is well-bicovered of bipartite number n(G) − 1.
Thus, G is not bipartite. Let C be a shortest odd cycle in G, and let v be any
vertex on C. Note that there exists a maximal bipartite subgraph H of G that
contains v. If v is not on every odd cycle in G, then the cardinality of H is at
most n(G) − 2. Thus, v must lie on every odd cycle in G.

Conversely, suppose that G contains an odd cycle C in G such that every
odd cycle of G contains every vertex on C. (Necessarily C is chordless.) Let H
be a maximal bipartite subgraph of G. We know that H must contain some
vertex v on C. Since G − v is bipartite, it follows that n(H) = n(G) − 1. �
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3. Graph operations

In this section we consider how the property of being well-bicovered relates to
several graph operations including disjoint union (and related “gluing” opera-
tions), join, lexicographic product, and cartesian product.

3.1. Union

The question for disjoint union of graphs is trivial. The disjoint union is well-
bicovered if and only if each component is well-bicovered. Indeed, we observed
earlier that bridges are irrelevant, and so one can take the disjoint union and
add a bridge.

But consider instead taking two disjoint well-bicovered graphs G and H
and identifying a vertex g of G with a vertex h of H to form vertex v. The
result need not be well-bicovered: consider for example G = H = K3. Indeed,
the result is guaranteed to be not well-bicovered unless for at least one of
the graphs, the identified vertex is in every maximal bipartite subgraph. This
holds, for example, when one of G or H is bipartite. This idea is generalized
slightly in the following operation:

Lemma 5. Let G be a well-bicovered graph with adjacent vertices u and v and
let H be a bipartite graph with adjacent vertices u′ and v′. Let F be the graph
formed from their disjoint union by identifying u with u′ and v with v′. Then
F is well-bicovered.

Proof. Any chordless odd cycle of F has all its vertices in G (since if it uses new
vertices in H then uv is a chord). Thus any maximal bipartite subgraph of G
can be extended to one of F by adding all vertices of H − {u′, v′}. Conversely,
any maximal bipartite subgraph of F contains all of H −{u′, v′}, and removal
thereof yields a maximal bipartite subgraph of G. �

A simple example of the above is the case that H is an even cycle. One
can also glue on odd cycles and general well-bicovered graphs under some
circumstances.

Lemma 6. Let G be a well-covered graph with clique C and let H be a well-
bicovered graph with clique D, where |C| = |D| = k. Then the graph F formed
from their disjoint union by adding k disjoint paths between C and D such
that all the added paths have the same parity, is well-bicovered.

Proof. Any chordless cycle of F containing a vertex of both G and H necessar-
ily consists of two of the added paths and the edges joining their end points,
and thus has even length. It follows that every chordless odd cycle is contained
entirely within either G or H. Thus, every maximal bipartite subgraph of F
consists of a maximal bipartite subgraph of G, a maximal bipartite subgraph
of H, and all the interior vertices of the added paths. �
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We consider for a moment girth. Finbow et al. [2] classified all connected
well-covered graphs of girth at least 5. But there does not appear an easy
characterization of well-bicovered graphs of large girth. For example, all cycles
are well-bicovered and both the above lemmas can be used to grow a well-
bicovered graph while preserving the girth. One can even grow the girth under
some circumstances using the following lemma:

Lemma 7. Let G be a well-bicovered graph with edge e incident with a vertex
y of degree 2. Then the graph G′ obtained from G by replacing the edge e by a
path of length 3 is well-bicovered.

Proof. Say the added path has interior vertices u and v. Every maximal bipar-
tite subgraph B of G can be augmented with u and v to be a maximal bipartite
subgraph of G′. Conversely, if B′ is a maximal bipartite subgraph of G′, then
it must contains at least two of u, v, y; form B by removing u, v if it contains
both, or the two of the triple it does contain. The resultant B is a maximal
bipartite subgraph of G. �

Of course, one can replace three by any odd number in the above lemma,
or equivalently, iterate use of the lemma.

3.2. Join

We consider the join next.

Theorem 1. Let G and H be graphs both with at least one edge. Then, the
join of G and H is well-bicovered if and only if each is both well-covered and
well-bicovered, and b(G) = b(H) = 2α(G) = 2α(H).

Proof. Let B be any maximal bipartite subgraph of the join. If B contains
vertices from both G and H, then it must consist of an independent set from
each graph. Indeed, its vertex set must be the union of a maximal independent
set from each graph. Since this cardinality is constant, we need both G and H
to be well-covered.

On the other hand, if B contains vertices only from G, then for its car-
dinality to be constant, it must be that G is well-bicovered. (And note that
since G has at least one edge, there do exist such B.) We get a similar result
if B contains only vertices from H. Thus it is necessary that b(G) = b(H) =
α(G)+α(H). But since b(G) ≤ 2α(G), this forces α(G) = α(H), and thus the
above conditions are necessary.

Finally, it easy to see that the conditions imply that all bipartite subgraphs
of the join have the same cardinality. �

For the case that one of the graphs is edgeless, one gets a similar result
with a similar proof:
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Figure 3. A well-bicovered graph

Theorem 2. The join of rK1 and H is well-bicovered if and only if H is both
well-covered and well-bicovered, and b(H) = r + α(H).

3.3. Well-bicovered graphs with large cliques

We next ask what operations can be applied to a complete graph to create
other well-bicovered graphs.

Lemma 8. Let G be the graph obtained by taking a nontrivial complete graph
Kn and, for each edge e ∈ E(Kn), adding a vertex ve that is adjacent to both
vertices incident to e. Then G is well-bicovered.

Proof. Let B be a maximal bipartite subgraph of G. Note that |V (B) ∩
V (Kn)| ≤ 2. If B contains no vertices of the clique Kn, then V (B) = {ve :
e ∈ E(Kn)}. However, this is not maximal, as the graph induced by {ve : e ∈
E(Kn)}∪ {v} for any v ∈ V (Kn) is also bipartite in G. If B contains only one
vertex from Kn, say w, then V (B) = {w}∪{ve : e ∈ E(Kn)}. If B contains two
vertices from Kn, say u and w, then V (B) = {u,w}∪{ve : e ∈ E(Kn)−{uw}}.
In every case, |V (B)| = n + 1. �

As an example of Lemma 8, if we start with K3 then we get the Hajós
graph or 3-sun, shown in Fig. 3.

Lemma 9. Let G be the graph obtained by taking a disjoint union of nontrivial
complete graphs Kn1 ∪ · · · ∪ Kn�

and adding edges between the cliques so that
the added edges form a matching. Then G is well-bicovered.

Proof. Let M represent the matching added and let S be a subset of V (G)
formed by taking two vertices from Kni

for each 1 ≤ i ≤ �. Then in G[S]
the edges not in M form a matching. This means that every cycle in G[S]
alternates between M and non-M edges and so has even length. It follows
that G[S] is bipartite. On the other hand, no bipartite subgraph can have
three vertices from any of the cliques. It follows that every maximal bipartite
subgraph has exactly two vertices from each clique. The result follows. �
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3.4. Lexicographic product

Recall that the lexicographic product (or composition) of graphs G and H,
denoted G ◦ H, is the graph with V (G ◦ H) = V (G) × V (H) whereby (u, v)
and (x, y) are adjacent if ux ∈ E(G), or u = x and vy ∈ E(H).

Topp and Volkmann [7] proved that the lexicographic product G◦H of two
graphs G and H both containing edges is well-covered if and only if G and
H are well-covered graphs. We now determine when the lexicographic product
G ◦ H is well-bicovered. If H is edgeless, the result is immediate:

Lemma 10. G ◦ mK1 is well-bicovered if and only if G is well-bicovered.

Now we consider the case when both G and H contain edges. In the fol-
lowing, given a vertex x ∈ V (G), we refer to the subgraph of G ◦ H induced
by {(x, v) : v ∈ V (H)} as the Hx-fiber.

Theorem 3. Let G and H be graphs both containing at least one edge. Then
G ◦ H is well-bicovered if and only if

(i) G is well-covered; and
(ii) H is both well-covered and well-bicovered, and also b(H) = 2α(H).

Proof. Assume first that G ◦ H is well-bicovered. Define a good pair (X,Y ) as
disjoint subsets X and Y of V (G) such that X is independent, there is no edge
between X and Y , and Y induces a bipartite subgraph without isolates. We
say that a good pair is maximal if there is no other good pair (X ′, Y ′) such
that X ⊆ X ′ and Y ⊆ Y ′. Note that a maximal good pair has the following
property: If z is any vertex of V (G) − (X ∪ Y ), and z is not in N(X), then
since z cannot be added to X it must have a neighbor in Y , and since z cannot
be added to Y , it must create an odd cycle with Y . By definition, any good
pair can be extended to a maximal good pair.

Now, given a maximal good pair P = (X,Y ), one can construct a subset
BP of V (G ◦ H) as follows. For every Hx-fiber where x ∈ X, take a maximal
bipartite subgraph of H. For every Hy-fiber where y ∈ Y , take a maximal
independent set of H. The resultant set BP is clearly bipartite. Further:

Claim 1. The subgraph induced by the set BP is maximal bipartite.

Proof. Consider adding another vertex v to BP ; say from the Hw-fiber. If
w ∈ X, then vertex v creates an odd cycle with BP , since we already took
a maximal bipartite subgraph of such Hw. If w ∈ N(X), say adjacent to
x ∈ X, then vertex v creates a triangle with the vertices of BP in Hx, since
any maximal bipartite subgraph of Hx has at least one edge. If w ∈ Y , say
adjacent to y ∈ Y , then vertex v creates a triangle with a vertex of BP in Hw

and in Hy. Finally, by the maximality of the good pair, if w ∈ V (G)−N [X]−Y ,
then vertex v creates an odd cycle with BP , since w creates an odd cycle with
Y . �
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Consider a good pair P1 with X a maximal independent set of G and Y
empty; necessarily P1 is a maximal good pair. Since all resultant sets BP1 must
have the same size, it follows that H must be well-bicovered, and G must be
well-covered. Further, every maximal bipartite subgraph of G ◦ H must have
size

|BP1 | = α(G) b(H).

Consider a maximal good pair P2 where Y is nonempty and X ∪ Y is
maximal bipartite. (This exists since G has at least one edge: start with such
an edge, extend to a maximal bipartite subgraph, and then partition into
isolates and nonisolates.) Since every resultant set BP2 must have the same
size, it follows that H must be well-covered. Further, the resultant BP2 must
have size

|BP2 | = |X|b(H) + |Y |α(H).

By Lemma 1, it holds that 2|X| + |Y | = 2α(G). Thus the condition |BP1 | =
|BP2 | is equivalent to |Y |α(H) = 2|Y |b(H). Since |Y | 	= 0, it follows that (it
is necessary and sufficient that) α(H) = 2b(H). That is, we have shown that
conditions (i) and (ii) are necessary.

Conversely, assume conditions (i) and (ii) hold. Let B′ be a maximal bipar-
tite subgraph in the composition. Let P be the subset of V (G) in the projection
of B′ onto G. Say X is the isolated vertices in the subgraph induced by P ,
and Y the non-isolates. By the maximality of B′, for every Hx-fiber where
x ∈ X, the set B′ must contain a maximal bipartite subgraph of H, and for
every Hy-fiber where y ∈ Y , it must contain a maximal independent set of H.
It follows that

|B′| = |X|b(H) + |Y |α(H).

Furthermore, the maximality of B′ means that (X,Y ) is a maximal good pair
and as above, by Lemma 1 we get that |Y | = 2(α(G) − |X|). It follows that
B′ has size α(G)b(H). Since this is true for all maximal bipartite subgraphs
of G ◦ H, we have that G ◦ H is well-bipartite. �

3.5. Cartesian product

Recall that the Cartesian product of graphs G and H, denoted G�H, is the
graph with V (G�H) = {(u, v) : u ∈ V (G) and v ∈ V (H)} and (u, v)(x, y) ∈
E(G�H) if either u = x and vy ∈ E(H) or ux ∈ E(G) and v = y. An
obvious guess is that the product of two well-bicovered graphs is well-bicovered.
However, this is far from true. Indeed, it does not hold even if one graph is K2.
For example, the house graph H has bipartite number 4, and so b(K2�H) =
8. But in the prism shown in Fig. 4, the dark vertices represent a maximal
bipartite subgraph of order 7.
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Figure 4. A Cartesian product that is not well-bicovered

One can at least observe that if H is bipartite, then a necessary condition
for G�H to be well-bicovered is that G is well-bicovered. For, one can build
a maximal bipartite subgraph of the product by starting with any maximal
bipartite subgraph B of G and taking these vertices in all copies of G. In order
for the result to always be the same size, it is necessary that all the B have
the same cardinality.

In [3], Hartnell and Rall showed that if G�H is well-covered, then one of
G or H must be well-covered. We do not know the answer to the analogous
question: namely, if G�H is well-bicovered, then must one of G or H be
well-bicovered?

4. 3-Colorable graphs

As we mentioned earlier, Ravindra [6] characterized the well-covered bipar-
tite graphs. So one might hope to classify well-bicovered 3-colorable graphs,
but this seems challenging. We note that in the case of well-covered bipartite
graphs, one can trivially assume that every vertex is in a K2. So perhaps one
can characterize well-bicovered 3-colorable graphs where every vertex is in a
triangle. We present here some partial results. We then use these to charac-
terize well-bicovered maximal outerplanar graphs.

4.1. Triangles and simplicial vertices

Lemma 11. Let G be a 3-colorable well-bicovered graph such that every vertex
is in a triangle. Then each color class Vi in every proper 3-coloring of G has
size b(G)/2. Further, if every edge of G is in a triangle, then each subgraph
G − Vi is well-covered.

Proof. Let Ti = G−Vi for each 1 ≤ i ≤ 3. Because the subgraph Ti is induced
by two color classes, it is bipartite. If w is any other vertex, then it has color
i; by construction Ti contains all the neighbors of w and so adding w to Ti

would create a triangle with Ti. That is, Ti is a maximal bipartite subgraph.
Therefore, |T1| = |T2| = |T3|. It follows that |V1| = |V2| = |V3|; and indeed,
each is b(G)/2.
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Now, suppose every edge is in a triangle. We can build a bipartite subgraph
B of G by starting with the color class Vi and then adding a maximal indepen-
dent set S of Ti. Consider some other vertex x of Ti. Then x has a neighbor y
in S; further, the edge xy is in a triangle, say with vertex z, where z is in Vi.
That is, if we add x to B we complete a triangle. It follows that B is maximal
bipartite. Since all such B must have the same cardinality, we get that Ti is
well-covered. �

Recall that a simplicial vertex is one whose neighborhood is complete. Pris-
ner, Topp, and Vestergaard [5] considered simplicial vertices in well-covered
graphs. In particular, they defined a simplex as a maximal clique containing a
simplicial vertex, and showed that if a graph is well-covered then the simplices
are vertex-disjoint, and if every vertex belongs to exactly one simplex then the
graph is well-covered.

It is unclear what the exact analogue of their results should be. For example,
Lemma 8 showed the well-bicovered graphs can have overlapping simplices. But
here are two results in that spirit.

Lemma 12. Suppose graph G has vertices u and v that are nonadjacent sim-
plicial vertices with N(u) ∩ N(v) nonempty, and there exist distinct vertices
x ∈ N(u) and y ∈ N(v) that are nonadjacent. Then G is not well-bicovered.

Proof. Let c ∈ N(u) ∩ N(v). Note that the condition implies that x /∈ N(v)
and y /∈ N(u). Take the set {c, x, y} and extend to a maximal bipartite set B.
Necessarily, the set B cannot contain u or v nor any other vertex of N(u) ∪
N(v). Now, let B′ be the set (B ∪ {u, v}) − {c}. Then this set is bipartite and
bigger than B, a contradiction. �

Define a bisimplex S as a maximal clique that contains a simplicial vertex
s (implying it has no neighbor outside S) and a second vertex t that has at
most one neighbor outside S.

Lemma 13. If the vertex set of graph G has a partition into bisimplices, then
G is well-bicovered.

Proof. Let the partition of V (G) into bisimplices be S1, . . . , Sm, with si the
simplicial vertex of Si and ti the other relevant vertex of Si. Let B be the
subgraph induced by all the si and ti. Then B is bipartite: indeed, every
component in B is a path either of length 1 (of the form siti) or of length 3
(of the form sititjsj). Since one cannot take more than two vertices from each
bisimplex, it follows that b(G) = 2m.

Now consider any maximal bipartite subgraph B′ of G. Suppose B′ contains
no vertex from some bisimplex Si. Then one can add the vertex si to B′ and
preserve bipartiteness. Suppose B′ contains only one vertex from Si. If that
vertex is not si, then one can just add it. If that vertex is si, then one can
add ti, as it is adjacent to at most one other vertex in B′. In either case
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si

ti

ui+1

ui

Figure 5. The unique whirlygigs of orders 6 and 15

this contradicts the claimed maximality of B′. It follows that B′ contains two
vertices from each bisimplex, and so has cardinality 2m. �

4.2. Maximal outerplanar graphs

Recall that graph G is outerplanar if G has a planar drawing for which all
vertices belong to the outer face of the drawing. We say that G is maximal
outerplanar, or a MOP, if G is outerplanar and the addition of any edge results
in a graph that is not outerplanar. Since every MOP is a 2-tree and every 2-tree
is chordal, we point out that Prisner, Topp, and Vestergaard [5] classified well-
covered chordal graphs. In this section, we classify all well-bicovered MOPs.

We construct a class of graphs W referred to as whirlygigs as follows. Take
a MOP M with m ≥ 3 vertices and let C represent the outside cycle of M . For
each edge uiui+1 on C, add a new vertex ti adjacent only to ui and ui+1, and
then add another vertex si that is adjacent to only ti and ui. Figure 5 shows
the whirlygig of order 15 (there is only one MOP of order 5). We can extend
this definition to m = 2 by considering the MOP K2 to be a cycle with two
edges; the resultant whirlygig is P 2

6 , the square of the path.

Lemma 14. If G ∈ W , then G is well-bicovered.

Proof. This follows from Lemma 13. Each {si, ti, ui} is a bisimplex, and these
partition the vertex set of G. �

Theorem 4. A MOP G is well-bicovered if and only if G is K3, the Hajós
graph, or a whirlygig.

Proof. Let G be a well-bicovered MOP. It is well-known that outerplanar
graphs are 3-colorable. Let V1, V2, and V3 be the color classes of G. Let
Ti = G − Vi for each 1 ≤ i ≤ 3. Note that Ti is a tree. (This follows for
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example from the fact that G is chordal and therefore the subgraph induced
by the vertices of a cycle cannot be 2-colored.) By Lemma 11, we know that
the cardinality of V1, V2, and V3 must be equal; say |Vi| = m for 1 ≤ i ≤ 3.
Moreover, each Ti is well-covered. By the characterization of Ravindra [6], it
follows that each Ti is a corona of a tree.

We partition V (G) into three sets. Let LL represent the vertices in G that
are a leaf with respect to Ti and Tj for some 1 ≤ i < j ≤ 3. Let LN represent
the vertices that are a leaf with respect to Ti and a non-leaf with respect to
Tj , and let NN represent the vertices that are a non-leaf with respect to Ti

and Tj for some 1 ≤ i < j ≤ 3. We know that the only MOP of order 3 is K3.
So we may assume that n(G) ≥ 6.

Case 1 Suppose first that G contains a vertex v1 in LN. Without loss of
generality, we may assume v1 has color 1, is a leaf in T2 and is a non-leaf in T3.
Thus, v1 has exactly one neighbor of color 3, say x1, and at least two neighbors
of color 2, say w1 and x2.

Since in a MOP the open neighborhood of a vertex induces a path, any
vertex must have almost equal representation of the other two colors in its
neighborhood. It follows that v1 has exactly two neighbors of color 2, and in
particular, its open neighborhood induces the path w1x1x2. Further, one of
w1 and x2 is a leaf in T3, say w1. Since w1 has only one neighbor of color 1, it
must be that the edge w1x1 is an exterior edge. Since v1 has only one neighbor
of color 3, the edge v1w1 is also an exterior edge. In particular, w1 has degree
2 in G.

1
v1

2
w1

3
x1

2
x2

Note that the above argument holds for any vertex that is in LN. We refer
to v1w1x1 as a leafy triangle as all three vertices are leaves in their respective
coronas. Note too that any vertex in G is incident with exactly one pendant
edge from two different coronas Ti and Tj . In particular, x1 is not contained
in another leafy triangle of G.

Next, consider vertex x2. Since w1 is a leaf in both T1 and T3, it follows that
x2 must be a non-leaf in both T1 and T3. Therefore, x2 has a leaf-neighbor in
T1 and a leaf-neighbor in T3. We claim that one of these leaf-neighbors, call it
v2, must be in LN. Indeed, if both leaf-neighbors were in LL, then they would
each have degree 2 in G making x2 a cut-vertex, which cannot happen.

Applying the above argument where v2 plays the role of v1, it follows that
v2 has exactly two neighbors other than x2, say w2 and x3, where x2w2v2x3

is a path on the exterior of G and x2, w2, and v2 induce a leafy triangle.
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Continuing this same line of reasoning, we establish the exterior path P =
x1w1v1x2w2v2 . . . xkwkvk where each xi is in NN, each wi is in LL, and each
vi is in LN. Furthermore, from above we know that vk has degree 3 in G and
is adjacent to xk and wk.

Let k be the first index where the third neighbor of vk is z which is already
on P . Since each wi has degree 2 in G, and each vi is only adjacent to wi,
xi, and xi+1, it must be that z = xi for some 1 ≤ i ≤ k. If k = 2, then G
is the graph depicted P 2

6 . So we may assume that k ≥ 3. If i 	= 1, then xi is
a cut-vertex as the exterior edges of G contain the cycle xiwivi . . . xkwkvkxi.
It follows that all vertices of NN are on the cycle x1x2 . . . xkx1. Moreover, the
vertices in NN must induce a MOP, and thus G is in fact a whirlygig.

Case 2 Next, suppose LN = ∅. Let v be a vertex in LL with color 1. Thus,
v has degree 2 in G. Let u be the neighbor of v with color 2 and let w be the
neighbor of v with color 3. It follows that u and w are adjacent in G. Since w is
not a leaf in T1, w has a neighbor, call it x, in LL that has degree 2 and color 2.
Let z be the other neighbor of x which is necessarily in NN, has color 1 and is
also adjacent to w. Continuing this same line of reasoning, we deduce that the
exterior edges of G can be expressed as v1w1v2w2 · · · vkwkv1 where each vi is
in LL and each wi is in NN. Further, G contains the cycle C = w1w2 · · · wkw1

as each vi has degree 2 in G. Without loss of generality, we may assume v1 has
color 1 and w1 has color 2. From the above argument, it follows that v2 has
color 3, w2 has color 1 and so forth. This implies that on C, the order of the
colors starting with the color of w1 is 2, 1, 3, 2, 1, 3, . . . , 2, 1, 3.

Let H be the MOP induced by the vertices of NN. We claim that based on
the pattern of colors on C, each vertex of degree 3 or more in H is adjacent to
a vertex of degree 2 in H. Indeed, let uvw be on C where u has color 2, v has
color 1 and w has color 3. We shall assume that v has degree at least 3 in H
and that v is adjacent to a vertex z 	= u with color 2. Thus, on C vertex z is
followed by a vertex t with color 1. However, either uz or vt must be an edge
in H, which is a contradiction based on their color assignment. Thus, either u
has degree 2, or the only neighbor of v with color 2 is u. However, assuming
that u is adjacent to a vertex p 	= w with color 3, the same argument implies
that w has degree 2 in H.

Next, we claim that the subgraph J of G containing all vertices of degree
2 in H along with all vertices in LL in G is maximal bipartite. Indeed, for
v ∈ V (G) − V (J), v is in NN and therefore contained in a triangle vxw where
x has degree 2 in H and w is in LL. Thus, |V (J)| = 2

3n = |LL| + x = n
2 + x

where x represents the number of vertices in H of degree 2. It follows that
x = n

6 and every third vertex on C is a vertex of degree 2 in H. Recoloring if
necessary, we may assume every vertex of degree 2 in H has color 1 and each
vertex of H with color 2 or 3 has degree at least 3 in H. If |V (H)| = 3, then G
is the Hajós graph. However, if |V (H)| ≥ 6, then H does not induce a MOP as
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each vertex of color 2 is adjacent to exactly one vertex of color 1 and therefore
only two vertices of color 3, and so that case is impossible. �

5. Further thoughts

Apart from the questions mentioned in the text, there are several natural
questions yet to be resolved. For example, it would be nice to characterize
well-bicovered planar or outerplanar graphs of given girth, or well-bicovered
triangulations. Another obvious direction is to establish the complexity of rec-
ognizing well-bicovered graphs.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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