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Approximately orthogonality preserving maps in Krein spaces

Ateyeh Saraei and Maryam Amyari

Abstract. In this paper, we investigate approximately orthogonality preserving maps in the
setting of Krein spaces. More precisely, suppose that K1 and K2 are two Krein spaces and
that T : K1 → K2 is a nonzero linear ε-orthogonality preserving map for some ε ∈ [0, 1)

such that T (K±
1 ) ⊆ K±

2 . We show that T is injective and continuous and there exists γ > 0

such that |[T (x), T (y)] − γ2[x, y]| ≤ δ min{γ2‖x‖‖y‖, ‖T (x)‖‖T (y)‖}, for x, y ∈ K1 with

δ = 12ε
(

1
1−ε

+
√

1+ε
1−ε

)
. We also give some conditions under which the Pythagorean equality

holds true in a Krein space.

Mathematics Subject Classification. Primary 46H05, Secondary 46C05.

Keywords. Orthogonality preserving map, Indefinite inner product space, Krein space.

1. Introduction

Let X and Y be two inner product spaces, a map T : X → Y is called orthog-
onality preserving if Tx and Ty are orthogonal for any orthogonal vectors x
and y in X; see [6,18].

For a given ε ∈ [0, 1), two vectors x, y ∈ X are said to be approximately
orthogonal or ε-orthogonal, denoted by x ⊥ε y, if |〈x, y〉| ≤ ε‖x‖‖y‖, where
〈·, ·〉 denotes the inner product in X and ‖·‖ denotes the norm in X induced by
〈·, ·〉. A map T : X → Y is said to be approximately orthogonality preserving
if x ⊥ y ⇒ Tx ⊥ε Ty for x, y ∈ X.

Approximately orthogonality preserving maps have been studied in several
settings; see [1,5,8–13,17].

Chmieliński in [9, Theorem 1] proved that a linear map T : X → Y
is orthogonality preserving if and only if there exists γ > 0 such that
〈T (x), T (y)〉 = γ2〈x, y〉, for x, y ∈ X. Furthermore, he showed that for a
nonzero linear ε-orthogonality preserving map T : X → Y for some ε ∈ [0, 1)
there is γ > 0 such that
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|〈T (x), T (y)〉 − γ2〈x, y〉| ≤ δ min{γ2‖x‖‖y‖, ‖T (x)‖‖T (y)‖}, for x, y ∈ X,

with δ = 4ε
(

1
1−ε +

√
1+ε
1−ε

)
.

In the present paper, we generalize these results to the setting of Krein
spaces. We first recall some basic facts on these structures; more details can
be found, for example, in [3,4,7,14–16].

Definition 1.1. Suppose that K is a linear vector space equipped with a map
[·, ·] : K × K → C such that

[x, y] = [y, x],

[αx + βy, z] = α[x, z] + β[y, z]

for each x, y, z ∈ K and α, β ∈ C. Then (K, [·, ·]) is called an indefinite inner
product space.

Recall that an indefinite inner product has all the properties of the usual
inner product except positive definiteness.

Vector spaces equipped with indefinite inner products were used for the
first time in the quantum field theory in physics and mechanics.

We denote the sets of all positive, negative, and neutral elements of K, by
K++ ≡ {x ∈ K : [x, x] > 0}, K−− ≡ {x ∈ K : [x, x] < 0}, and K0 ≡ {x ∈ K :
[x, x] = 0}, respectively.

Let x, y ∈ K. We say that x is orthogonal to y, denoted by x[⊥]y, when
[x, y] = 0. If L is a subspace of K, then the subspace L[⊥] ≡ {x ∈ K : [x, y] = 0,
for all y ∈ L}, is called the orthogonal complement of L with respect to [ , ], and
x0 ∈ L is an isotropic element of L if x0 �= 0 and x0[⊥]L. Also L0 ≡ L⋂ L[⊥]

is the isotropic part of L. If L0 = {0}, then L is called nondegenerate.
Azizov in [4, Theorem 1.24], proved that if L is a subspace of K such

that L admits a decomposition L = L+ ⊕ L−, where L+ ⊆ K++ ∪ {0} and
L− ⊆ K−−∪{0} into the direct sum of the subspaces, then L is nondegenerate.
In addition, if L+[⊥]L−, then we write

L = L+[⊕]L−.

This decomposition is called a canonical decomposition of the subspace L.

Definition 1.2. An indefinite inner product space (K, [·, ·]) is called a Krein
space, if the vector space K admits a canonical decomposition K = K+[⊕]K−

such that (K+, [·, ·]) and (K−,−[·, ·]) are Hilbert spaces relative to the norms
‖x‖ = [x, x]

1
2 (x ∈ K+) and ‖x‖ = (−[x, x]

1
2 ) (x ∈ K−).

Suppose that (K, [·, ·]) is a Krein space with a canonical decomposition
K = K+[⊕]K− such that P+ : K → K+ and P− : K → K− are two mutu-
ally orthogonal projection operators generated by the canonical decomposition
above so that P+ + P− = I, where I is the identity operator on K. Thus for
any x ∈ K, we have x = x+ + x−, where x+ = P+x and x− = P−x. The
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linear operator J : K → K, defined by J = P+ − P−, is called the canonical
symmetry operator of the Krein space K. Thus J is a bounded self-adjoint
operator such that J2 = I and J−1 = J∗ = J .

By using the canonical decomposition K = K+[⊕]K− on the Krein space
(K, [·, ·]), we can define an inner product as follows:

〈x, y〉 = [x+, y+] − [x−, y−], (1.1)

where x = x+ + x− and y = y+ + y− are elements in K.
Then (K, 〈·, ·〉) is a Hilbert space with respect to the norm ‖x‖2 = 〈x, x〉. In
fact, 〈x, y〉 = [x, y], for vectors x, y ∈ K+, and 〈x, y〉 = −[x, y] for x, y ∈ K−.

Relation (1.1) between the indefinite inner product [·, ·] and the definite
inner product 〈·, ·〉 on K implies that

〈x, y〉 = [Jx, y], [x, y] = 〈Jx, y〉
for each x, y ∈ K, where J is the canonical symmetry operator and J(x+ +
x−) = J(x+) + J(x−) = x+ − x−. In addition, ‖x‖2 = 〈x, x〉 = [Jx, x]. A
straightforward computation shows that

[x, y] = [x+, y+] + [x−, y−], [x, y] = 〈x+, y+〉 − 〈x−, y−〉,
[x, x] = ‖x+‖2 − ‖x−‖2.

Hence,

‖y‖2 = [Jy, y] = [J(y+ + y−), y+ + y−] = [y+ − y−, y+ + y−]
= [y+, y+] + [−y−, y−].

By the definition of J , we have J(y+) = y+, J(y−) = −y−. Therefore

‖y‖2 = [Jy+, y+] + [Jy−, y−] = ‖y+‖2 + ‖y−‖2.

2. Approximate orthogonality in Krein spaces

In this section, we define approximate orthogonality in the framework of Krein
spaces. We start our work with the following lemmata and prove them by
similar strategies to those of [9].

Lemma 2.1. Let (K, [·, ·], J) be a Krein space, let x, y ∈ K, and let ε ≥ 0. If

|[Jx + y, x − Jy]| ≤ ε‖Jx + y‖‖x − Jy‖,

then

|‖x‖2 − ‖y‖2| ≤ ε(‖x‖2 + ‖y‖2).
Proof. By a straightforward computation, we get

|[Jx + y, x − Jy]|2 = [Jx + y, x − Jy][x − Jy, Jx + y]

= (‖x‖2 − [x, y] + [y, x] − ‖y‖2)(‖x‖2 + [x, y] − [y, x] − ‖y‖2)
= ‖x‖4 + 2i‖x‖2Im [x, y] − ‖x‖2‖y‖2 − 2i‖x‖2Im[x, y]
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+ 4(Im[x, y])2 + 2iIm[x, y]‖y‖2 − ‖x‖2‖y‖2

− 2iIm[x, y]‖y‖2 + ‖y‖4

= ‖x‖4 + ‖y‖4 − 2‖x‖2‖y‖2 + 4(Im[x, y])2

= (‖x‖2 − ‖y‖2)2 + 4(Im[x, y])2.

On the other hand,

‖Jx + y‖2‖x − Jy‖2 = ([x + Jy, Jx + y])([Jx − y, x − Jy])

= (‖x‖2 + [x, y] + [y, x]

+ ‖y‖2)(‖x‖2 − [x, y] − [y, x] + ‖y‖2)
= ‖x‖4 + ‖y‖4 + 2‖x‖2‖y‖2 − 4(Re[x, y])2

= (‖x‖2 + ‖y‖2)2 − 4(Re[x, y])2.

The first inequality of the assumption implies that

(‖x‖2 − ‖y‖2)2 + 4(Im[x, y])2 ≤ ε2((‖x‖2 − ‖y‖2)2 − 4(Re[x, y])2)

≤ ε2(‖x‖2 + ‖y‖2)2.
Hence

∣
∣‖x‖2 − ‖y‖2∣∣ ≤ ε(‖x‖2 + ‖y‖2). �

Lemma 2.2. Suppose that (K1, [·, ·], J1) and (K2, [·, ·], J2) are two Krein spaces
and that T : K1 → K2 is a map such that for each x ∈ K1, T (x±) = (Tx)± and
for some δ ≥ 0 and γ > 0, the functional inequality

∣
∣
∣[T (x), T (y)] − γ2[x, y]

∣
∣
∣ ≤

δγ2‖x‖‖y‖ holds. Then
∣
∣
∣[J2T (x), T (y)] − γ2[J1x, y]

∣
∣
∣ ≤ 2δγ2‖x‖‖y‖ x, y ∈ K1.

Proof. From the properties of canonical symmetry operators, and from ‖x+‖ ≤
‖x‖ and ‖x−‖ ≤ ‖x‖, we get

∣
∣
∣[J2T (x), T (y)] − γ2[J1x, y]

∣
∣
∣ =

∣
∣
∣[T (x)+ − T (x)−

, T (y)] − γ2([x+ + x−, y])
∣
∣
∣

=
∣
∣
∣[T (x+), T (y)] − [T (x−), T (y)]

− γ2([x+, y] − [x−, y])
∣
∣
∣

≤
∣
∣
∣[T (x+), T (y)]

− γ2[x+, y]
∣
∣
∣ +

∣
∣
∣[T (x−), T (y)] − γ2[x−, y]

∣
∣
∣

≤ δγ2‖x+‖‖y‖
+ δγ2‖x−‖‖y‖ ≤ 2δγ2‖x‖‖y‖.

�
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Lemma 2.3. Under the assumptions of Lemma 2.2, T is a quasi-linear map,
that is, T is quasiadditive,

‖T (x + y) − T (x) − T (y)‖ ≤
√

8
√

δγ(‖x‖ + ‖y‖), (x, y ∈ K1)

and quasihomogeneous

‖T (λx) − λT (x)‖ ≤
√

8
√

δγ|λ|‖x‖. (x ∈ K1, λ ∈ C).

Proof. Let x, y ∈ K1 be arbitrary. Then
‖T (x + y) − T (x) − T (y)‖2 =[J2(T (x + y) − T (x) − T (y)), T (x + y) − T (x) − T (y)]

≤
∣
∣
∣[J2T (x + y), T (x + y)] − γ2[J1(x + y), x + y]

∣
∣
∣

+
∣
∣
∣ − [J2T (x + y), T (x)] + γ2[J1(x + y), x]

∣
∣
∣

+
∣
∣
∣ − [J2T (x + y), T (y)] + γ2[J1(x + y), y]

∣
∣
∣

+
∣
∣
∣ − [J2T (x), T (x + y)] + γ2[J1(x), x + y]

∣
∣
∣

+
∣
∣
∣[J2T (x), T (x)] − γ2[J1(x), x]

∣
∣
∣

+
∣
∣
∣[J2T (x), T (y)] − γ2[J1(x), y]

∣
∣
∣

+
∣
∣
∣ − [J2T (y), T (x + y)] + γ2[J1(y), x + y]

∣
∣
∣

+
∣
∣
∣[J2T (y), T (x)] − γ2[J1(y), x]

∣
∣
∣

+
∣
∣
∣[J2T (y), T (y)] − γ2[J1(y), y]

∣
∣
∣.

By using the above lemma and the assumption, we obtain

‖T (x + y) − T (x) − T (y)‖2 ≤2δγ2(‖x + y‖2 + 2‖x‖‖x + y‖
+ 2‖y‖‖x + y‖ + 2‖x‖‖y‖ + ‖x‖2 + ‖y‖2)

≤8δγ2(‖x‖ + ‖y‖)2.

In a similar way, for λ ∈ C, we have

‖T (λx) − λT (x)‖2 ≤
∣
∣
∣[J2T (λx), T (λx)] − γ2[J1(λx), λx]

∣
∣
∣

+
∣
∣
∣ − λ[J2T (λx), T (x)] + γ2λ[J1(λx), x]

∣
∣
∣

+
∣
∣
∣ − λ[J2T (x), T (λx)] + γ2λ[J1x, λx]

∣
∣
∣

+
∣
∣
∣|λ|2[J2T (x), T (x)] + γ2|λ|2[J1x, x]

∣
∣
∣.

Hence

‖T (λx) − λT (x)‖2 ≤ 2δγ2(‖λx‖2 + 2|λ|‖x‖‖λx‖ + |λ|2‖x‖2)
= 8δγ2‖λx‖2.

�
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Lemma 2.4. [4, Lemma 7.7] Let (K, [·, ·]) be a Krein space and let L be a
subspace of K. Then L + L[⊥] = K if and only if L is nondegenerate.

Recall that 〈y〉 is the closure of the linear span {y}. The following lemma
states the condition under which 〈y〉 is nondegenerate.

Proposition 2.5. Let (K, [·, ·], J) be a Krein space and let y be a nonzero ele-
ment of K. Then 〈y〉 is nondegenerate if and only if y is not a neutral vector.

Proof. Let 〈y〉 be nondegenerate. On the contrary, if y is neutral, then

[y, y] = 0 ⇒ ([y, λy] = 0 for some λ ∈ C) ⇒ y ∈ 〈y〉[⊥]. (2.1)

Therefore y ∈ 〈y〉[⊥] ∩ 〈y〉. Then 〈y〉[⊥] ∩ 〈y〉 �= {0}, that is a contradiction,
since 〈y〉 is nondegenerate.
Conversely, let y not be neutral. On the contrary, if 〈y〉[⊥] ∩ 〈y〉 �= {0}, then
there exists a nonzero scalar number λ ∈ C such that λy ∈ 〈y〉[⊥] ∩ 〈y〉. Then
for all μ ∈ C, we reach 0 = [λy, μy] = λμ̄[y, y]. Thus [y, y] = 0, that is, y is a
neutral vector which is a contradiction. �
Corollary 2.6. Let (K, [·, ·]) be a Krein space. If y is not a neutral vector in K,
then 〈y〉 + 〈y〉[⊥] = K.

Proof. Let y not be a neutral vector. Then Proposition 2.5 ensures that 〈y〉
is nondegenerate and Lemma 2.4 yields 〈y〉 + 〈y〉[⊥] = K. On the other hand,
since 〈y〉 is a finite-dimensional subspace and 〈y〉[⊥] is closed, so 〈y〉 + 〈y〉[⊥] is
closed and we can write 〈y〉 + 〈y〉[⊥] = K. �

In Corollary 2.6, the condition that y is not a neutral vector is a necessary
condition. The following example shows that if y is a neutral vector, then it
may happen that K �= 〈y〉 + 〈y〉[⊥].

Example 2.7. Consider the Krein space (C2, [·, ·]) with the sesquilinear form
[x, y] = x1y1 − 4x2y2. Take y = (4, 2). Then [(4, 2), (4, 2)] = 0, and so y is a
neutral vector and y[⊥] = {k(2, 1); k ∈ R}. If x = (5, 6), then there are no
λ1, λ2 ∈ C such that x = λ1y1 + λ2y2 for some y1 ∈ 〈y〉 and y2 ∈ 〈y〉[⊥].

The main theorem is based on the property of Hilbert spaces that states
that, if x1 ⊥ x2 and x = x1 + x2, then ‖x‖2 = ‖x1‖2 + ‖x2‖2, but we do
not have this property in Krein spaces [2,11]. This means that we may have
x = x1+x2 and x1[⊥]x2 but ‖x‖2 �= ‖x1‖2+‖x2‖2. In the following lemma, we
investigate some conditions under which we can write ‖x‖2 = ‖x1‖2 + ‖x2‖2
for an element x in a Krein space.

Lemma 2.8. Let (K, [·, ·], J) be a Krein space. If x, y ∈ K are linearly indepen-
dent so that y ∈ K+ (or y ∈ K−) is not neutral, then we can write

x = x1 + x2, ‖x‖2 = ‖x1‖2 + ‖x2‖2,
where x1 ∈ 〈y〉 and x2 ∈ 〈y〉[⊥].
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Proof. Let y ∈ K+ and y is not neutral. By Corollary 2.6, we can write 〈y〉 +
〈y〉[⊥] = K. Note that in this case 〈y〉 ⊆ K+. Thus x = x1 +x2, where x1 ∈ 〈y〉
and x1[⊥]x2. Then

‖x‖2 = ‖x1 + x2‖2 = [Jx1 + Jx2, x1 + x2]

= [Jx1, x1] + [Jx1, x2] + [Jx2, x1] + [Jx2, x2]

= ‖x1‖2 + ‖x2‖2 + 2Re[Jx1, x2]

= ‖x1‖2 + ‖x2‖2 + 2Re[x1, x2].

Thus ‖x‖2 = ‖x1‖2 + ‖x2‖2. Similarly, it is true, when y ∈ K−. �

The next theorem shows that an approximately orthogonality preserving
linear map T between two Krein spaces such that T (K±

1 ) ⊆ K±
2 is injective,

continuous, and satisfies (2.2). To achieve the next result we adopt some argu-
ments from [9, Theorem 3.1]. We also need the following facts about the polar-
ization formula for [x, y] in the Krein space. A straightforward computation
shows that

[x, y] =
1
4
(‖x + y‖2 − ‖x − y‖2) − 1

2
(‖x− + y−‖2 − ‖x− − y−‖2)

+
i

4
(‖x + iy‖2 − ‖x − iy‖2) − i

2
(‖x− + iy−‖2 − ‖x− − iy−‖2).

Theorem 2.9. Let (K1, [·, ·]1, J1) and (K2, [·, ·]2, J2) be two Krein spaces, let
T : K1 → K2 be a nonzero linear map such that T (K±

1 ) ⊆ K±
2 , and let T be

an approximately orthogonality preserving map for some ε ∈ [0, 1). Then T is
injective and continuous, and there exists γ > 0 such that for x, y ∈ K1,

|[T (x), T (y)] − γ2[x, y]| ≤ δ min{γ2‖x‖‖y‖, ‖T (x)‖‖T (y)‖} (2.2)

with

δ = 12ε

(
1

1 − ε
+

√
1 + ε

1 − ε

)

.

Conversely, if T : K1 → K2 satisfies (2.2) with some δ ≥ 0 and γ > 0 and
T (x±) = (Tx)±, then T is a quasilinear approximately orthogonality preserving
map and

x[⊥]y ⇒ T (x)[⊥]δT (y) and T (x)[⊥]T (y) ⇒ x[⊥]δy

for x, y in K1.

Proof. If dim K1 = 1, then the assertion trivially holds. We assume that
dim K1 ≥ 2.

Let x and y be two nonzero elements in K1, and we want to show that
1
δ1

λ(y) ≤ λ(x) ≤ δ1λ(y), (2.3)
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where λ(x) = ‖T (x)‖
‖x‖ with δ1 =

√
1+ε
1−ε + 2ε

√
1+ε
1−ε ≥ 1.

Let y = y+ + y− be a decomposition of y, and put

y′ =

{
y+, λ(y+) < λ(y−),
y−, λ(y−) < λ(y+);

therefore y′ is not neutral and ‖y‖2 = [Jy, y] = [Jy+, y+]+[Jy−, y−] = ‖y+‖2+
‖y−‖2 (recall that Jy+ = y+ and Jy− = −y−). Also, we have ‖Ty‖2 =
‖Ty+‖2 + ‖Ty−‖2.

There are three cases for x and y′.
(i) Suppose that x and y′ are linearly dependent, that is, x = μy′ for some

μ ∈ C. Then

λ(y′) = λ(x). (2.4)

If λ(y+) < λ(y−), then ‖T (y+)‖
‖y+‖ < ‖T (y−)‖

‖y−‖ .

Similarly, if λ(y−) < λ(y+), then ‖T (y−)‖
‖y−‖ < ‖T (y+)‖

‖y+‖ .Thus

‖T (y+)‖2
‖y+‖2 ≤ ‖T (y+)‖2 + ‖T (y−)‖2

‖y+‖2 + ‖y−‖2 ≤ ‖T (y−)‖2
‖y−‖2

or
‖T (y−)‖2

‖y−‖2 ≤ ‖T (y+)‖2 + ‖T (y−)‖2
‖y+‖2 + ‖y−‖2 ≤ ‖T (y+‖2

‖y+‖2 .

That means λ(y′)2 ≤ λ(y)2, so equivalently from (2.4), λ(x) ≤ λ(y). Put
δ1 = 1.

(ii) Suppose that x and y′ are linearly independent and x[⊥]y′.

Define u = x
‖x‖ , v = y′

‖y′‖ . Then ‖u‖ = ‖v‖ = 1, ‖T (u)‖ = λ(x) and
‖T (v)‖ = λ(y′); also [u, v] = 0 and J1u + v[⊥]u − J1v. By the assumption

J2T (u) + T (v)[⊥]εT (u) − J2T (v).

Thus |[J2T (u) + T (v), T (u) − J2T (v)]| ≤ ε‖J2T (u) + T (v)‖‖T (u) − J2T (v)‖.
Lemma 2.1 implies that

|‖T (u)‖2 − ‖T (v)‖2| ≤ ε(‖T (u)‖2 + ‖T (v)‖2),
that is, |λ(x)2 − λ(y′)2| ≤ ε(λ(x)2 + λ(y′)2) and we reach λ(x) ≤

√
1+ε
1−ελ(y′).

So by (2.4), we obtain

λ(x) ≤
√

1 + ε

1 − ε
λ(y′) ≤

√
1 + ε

1 − ε
λ(y). (2.5)

Then λ(x) ≤
√

1+ε
1−ελ(y). Put δ1 =

√
1+ε
1−ε .
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(iii) Now, we assume that x and y′ are linearly independent but not orthog-
onal. By Lemma 2.8, we can choose two nonzero elements x1 and x2 in K1 such
that x = x1+x2, x1 ∈ 〈y′〉, and x2[⊥]x1. ‖x‖2 = ‖x1‖2+‖x2‖2 and therefore

‖x1‖ ≤ ‖x‖, ‖x2‖ ≤ ‖x‖, ‖x1‖‖x2‖ ≤ ‖x‖2.
Since x1 = μy′ for some μ ∈ C by (i), λ(x1) = λ(y′) and since x2[⊥]x1 by (ii),
we have

√
1 − ε

1 + ε
λ(y′) ≤ λ(x2) ≤

√
1 + ε

1 − ε
λ(y′).

We prove that |[J2T (x1), T (x2)]| = |[T (x1), T (x2)]|
T (x1) ∈ K−

2 ⇒ [J2T (x1), T (x2)] = [−T (x1), T (x2)] = −[T (x1), T (x2)]

T (x1) ∈ K+
2 ⇒ [J2T (x1), T (x2)] = [T (x1), T (x2)].

Therefore

[J2T (x1), T (x2)] = ±[T (x1), T (x2)] ⇒ |[J2T (x1), T (x2)]| = |[T (x1), T (x2)]|
and also since T (x1) = T (λy′) that is T (x1) ∈ K+

2 or T (x1) ∈ K−
2 , we get

|[J2T (x1), T (x2)]| = |[T (x1), T (x2)]|
Re[J2T (x1), T (x2)] ≤ |[J2T (x1), T (x2)]| = |[T (x1), T (x2)]| ≤ ε‖T (x1)‖‖T (x2)‖

= ελ(y′)‖x1‖λ(x2)‖x2‖ ≤ ε

√
1 − ε

1 + ε
λ(y′)2‖x‖2.

Therefore

‖T (x)‖2 = ‖T (x1) + T (x2)‖2
=

[
J2

(
T (x1)

)
+ J2

(
T (x2)

)
, T (x1) + T (x2)

]

= ‖T (x1)‖2 + ‖T (x2)‖2 + 2Re[J2T (x1), T (x2)]

≤ λ(y′)2‖x1‖2 +
1 + ε

1 − ε
λ(y′)2‖x2‖2 + 2ε

√
1 + ε

1 − ε
λ(y′)2‖x‖2

= λ(y′)2
(

‖x1‖2 + ‖x2‖2 +
(1 + ε

1 − ε
− 1

)‖x2‖2 + 2ε

√
1 + ε

1 − ε
‖x‖2

)

≤ λ(y′)2
(
‖x‖2 +

(1 + ε

1 − ε
− 1

)‖x‖2 + 2ε

√
1 + ε

1 − ε
‖x‖2

)

= λ(y′)2
(1 + ε

1 − ε
+ 2ε

√
1 + ε

1 − ε

)
‖x‖2,

and we get
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λ(x) ≤ λ(y′)

√
1 + ε

1 − ε
+ 2ε

√
1 + ε

1 − ε

≤ λ(y)

√
1 + ε

1 − ε
+ 2ε

√
1 + ε

1 − ε
. (2.6)

Put δ1 =
√(

1+ε
1−ε + 2ε

√
1+ε
1−ε

)
and hence λ(x) ≤ δ1λ(y).

If x and y are arbitrary, then δ1 = max{1,

√
1+ε
1−ε + 2ε

√
1+ε
1−ε ,

√
1+ε
1−ε} and

we reach (2.3).
Let ker T �= {0}. Then there exists a nonzero element y ∈ ker T such that

T (y) = 0, so λ(y) = 0. By (2.3), λ(x) = 0 for all x �= 0, that is T ≡ 0, which
is contrary to the assumptions. Therefore ker T = {0} and T is injective.

Now, we show that T is continuous. Fix a nonzero element y0 of K1, and
take γ = λ(y0) > 0. From (2.3), we have

1
δ1

γ‖x‖ ≤ ‖T (x)‖ ≤ δ1γ‖x‖, x ∈ K1. (2.7)

This inequality gives the continuity of T . Moreover, (2.7) gives that
∣
∣‖T (x)‖ − γ‖x‖∣∣ ≤ (δ1 − 1)γ‖x‖, x ∈ K1, (2.8)

∣
∣‖T (x)‖2 − γ2‖x‖2∣∣ ≤ (δ21 − 1)γ2‖x‖2, x ∈ K1, (2.9)

and
1
δ1

‖T (x)‖ ≤ γ‖x‖ ≤ δ1‖T (x)‖, x ∈ K1.

In a similar fashion, from inequalities (2.8) and (2.9), we get
∣
∣‖T (x)‖ − γ‖x‖∣∣ ≤ (δ1 − 1)γ‖T (x)‖, x ∈ K1, (2.10)

∣
∣‖T (x)‖2 − γ2‖x‖2∣∣ ≤ (δ21 − 1)γ2‖T (x)‖2, x ∈ K1. (2.11)

Let x, y ∈ K1 be arbitrary. Then
∣
∣
∣[T (x), T (y)] − γ2[x, y]

∣
∣
∣ =

∣
∣
∣
1
4
(‖T (x) + T (y)‖2 − ‖T (x) − T (y)‖2)

−1
2
(‖T (x−) + T (y−)‖2 − ‖T (x−) − T (y−)‖2)

+
i

4
(‖T (x) + iT (y)‖2 − ‖T (x) − iT (y)‖2)

− i

2
(‖(Tx)− + i(Ty)−‖2 − ‖(Tx)− − i(Ty)−‖2)

−γ2
(1

4
(‖x + y‖2 − ‖x − y‖2)

−1
2
(‖x− + y−‖2 − ‖x− − y−‖2)
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+
i

4
(‖x + iy‖2 − ‖x − iy‖2)

− i

2
(‖x− + iy−‖2 − ‖x− − iy−‖2)

)∣
∣
∣

≤ 1
4

∣
∣
∣‖T (x) + T (y)‖2 − γ2‖x + y‖2

∣
∣
∣

+
1
4

∣
∣
∣‖T (x) − T (y)‖2 − γ2‖x − y‖2

∣
∣
∣

+
1
2

∣
∣
∣‖T (x−) + T (y−)‖2 − γ2‖x− + y−‖2

∣
∣
∣

+
1
2

∣
∣
∣‖T (x−) − T (y−)‖2 − γ2‖x− − y−‖2

∣
∣
∣

+
∣
∣
∣
i

4

(
‖T (x) + iT (y)‖2 − γ2‖x + iy‖2

)∣
∣
∣

+
∣
∣
∣ − i

4

(
‖T (x) − iT (y)‖2 − γ2‖x − iy‖2

)∣
∣
∣

+
∣
∣
∣ − i

2

(
‖T (x−) + iT (y−)‖2 − γ2‖x− + iy−‖2

)∣
∣
∣

+
∣
∣
∣
i

2

(
‖T (x−) − iT (y−)‖2 − γ2‖x− − iy−‖2

)∣
∣
∣.

From inequality (2.9), we get
∣
∣
∣[T (x), T (y)] − γ2[x, y]

∣
∣
∣ ≤ 1

4
γ2(δ21 − 1)(‖x + y‖2 + ‖x − y‖2)

+
1

2
γ2(δ21 − 1)(‖x− + y−‖2 + ‖x− − y−‖2)

+
1

4
γ2(δ21 − 1)(‖x − iy‖2 + ‖x + iy‖2)

+
1

2
γ2(δ21 − 1)(‖x− − iy−‖2 + ‖x− + iy−‖2)

≤ γ2(δ21 − 1)
1

4

(
4‖x‖2 + 4‖y‖2

)
+

1

2

(
4‖x−‖2 + 4‖y−‖2

)

= γ2(δ21 − 1)(‖x‖2 + ‖y‖2 + 2‖x−‖2 + 2‖y−‖2

≤ γ2(δ21 − 1)(‖x‖2 + ‖y‖2 + 2‖x‖2 + 2‖y‖2)
≤ 3γ2(δ21 − 1)(‖x‖2 + ‖y‖2). (2.12)

Similarly, from inequality (2.11), we obtain
∣
∣
∣[T (x), T (y)] − γ2[x, y]

∣
∣
∣ ≤ 3(δ21 − 1)

(
‖T (x)‖2 + ‖T (y)‖2

)
.

Thus
∣
∣
∣[T (x), T (y)] − γ2[x, y]

∣
∣
∣ ≤ 3(δ21 − 1)min{γ2‖x‖2

+γ2‖y‖2, ‖T (x)‖2 + ‖T (y)‖2}. (2.13)
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Now, suppose that x and y are two nonzero elements in K1. By applying (2.12)
to vectors x

‖x‖ and y
‖y‖ , we get

∣
∣
∣[

T (x)
‖x‖ ,

T (y)
‖y‖ ] − γ2

[ x

‖x‖ ,
y

‖y‖
]∣∣
∣ ≤ 3(δ21 − 1)

(
γ2

∥
∥ x

‖x‖
∥
∥2 + γ2 y

‖y‖
∥
∥2

)

≤ 6γ2(δ21 − 1).

Hence
∣
∣
∣[T (x), T (y)] − γ2[x, y]

∣
∣
∣ ≤ 6(δ21 − 1)γ2‖x‖‖y‖.

Applying (2.13) to vectors x
‖T (x)‖ and y

‖T (y)‖ , we arrive at
∣
∣
∣[T (x), T (y)] − γ2[x, y]

∣
∣
∣ ≤ 6(δ21 − 1)‖T (x)‖‖T (y)‖. (2.14)

Since 6(δ21 − 1) = δ, equation (2.2) follows for all x, y ∈ K1.
Conversely, if T : K1 → K2 satisfies (2.2) with some δ ≥ 0 and γ > 0, then

by Lemma 2.3, T is quasilinear.
If x[⊥]y, then [x, y] = 0, and by (2.2), we reach |[Tx, Ty]| ≤ δ‖Tx‖‖Ty‖.

This means that
Tx[⊥]δTy. Thus T is an approximately orthogonality preserving map. �
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