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Abstract. In this paper, some integral inequalities for uniformly convex functions are studied
by using unordered submajorization for cumulative functions. Strongly convex functions and
superquadratic functions are considered, too. A Levin–Stečkin like theorem is obtained for
such functions. As applications, some bounds for the Fejér functional are derived. A result
on the Schur-convexity of averages of convex functions is extended to uniformly convex func-
tions. Some specifications for symmetric functions are also given. A corollary for symmetric
probability density functions is established. A Levin–Stečkin type inequality for generalized
ψ-uniformly convex functions is provided. Some interpretations for Simpson distributions
are presented.
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1. Introduction and summary

Throughout I ⊂ R is an interval. For z = (z1, z2, . . . , zn) ∈ R
n and i =

1, 2, . . . , n, the symbol z[i] stands for the ith largest entry of z.
An n-tuple y = (y1, y2, . . . , yn) ∈ In is said to be weakly majorized by an

n-tuple x = (x1, x2, . . . , xn) ∈ In, written as y ≺w x, if
k∑

i=1

y[i] ≤
k∑

i=1

x[i] for all k = 1, 2, . . . , n (1)

(see [9, p. 12]). If, in addition,
n∑

i=1

yi =
n∑

i=1

xi,
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then y is said to be majorized by x, written as y ≺ x (see [9, p. 8]).
A function F : In → R is said to be Schur-convex (resp. Schur-concave) on

In if

y ≺ x implies F (y) ≤ (resp. ≥)F (x),

provided x,y ∈ In (see [9, p. 80]).
Let g1, g2 : [a, b] → R be two integrable real functions. The function g2 is

said to be unordered submajorized by g1, written as g2 ≺u
w g1, if

s∫

a

g2(t) dt ≤
s∫

a

g1(t) dt for s ∈ [a, b].

If, moreover,
b∫

a

g2(t) dt =

b∫

a

g1(t) dt,

then g2 is said to be (unordered) majorized by g1, written as g2 ≺u g1 (see [4],
cf. [9, p. 22]).

By a cumulative function induced by an integrable function g : [a, b] → R,
we mean the integral function

G(s) =

s∫

a

g(t) dt, s ∈ [a, b]. (2)

In what follows, we assume that there exist all integrals under consideration.
Elezović and Pečarić in [5] established the following result.

Theorem A. [5] Let f be a continuous function on an interval I. Then the
function

F (x, y) =

⎧
⎨

⎩
1

y−x

y∫
x

f(t) dt for x, y ∈ I, x �= y,

f(x) for x = y ∈ I,

is Schur-convex (Schur-concave) on I2 iff f is convex (concave) on I.

It is well-known that if f : I → R is a convex function on an interval I ⊂ R,
a, b ∈ I with a < b, then the following Hermite–Hadamard inequality holds:

f

(
a + b

2

)
≤ 1

b − a

b∫

a

f(x) dx ≤ f(a) + f(b)
2

(3)

(see [3, p. 137]).
A more general result is incorporated in the following [1,7,11].
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Theorem B. [1] Let f : I → R be a convex function on an interval I ⊂ R,
a, b ∈ I with a < b, and let p : [a, b] → R be a non-negative integrable weight on
I. Assume that p is symmetric about a+b

2 . Then the following Fejér inequality
holds:

f

(
a + b

2

) b∫

a

p(t) dt ≤
b∫

a

f(t)p(t) dt ≤ f(a) + f(b)
2

b∫

a

p(t) dt. (4)

Throughout, we denote by G1 and G2 the cumulative functions of g1 and
g2 on [a, b], respectively, in the sense that

G1(s) =

s∫

a

g1(t) dt and G2(s) =

s∫

a

g2(t) dt for s ∈ [a, b]. (5)

Likewise, we denote by G1 and G2 the cumulative functions of G1 and G2 on
[a, b], respectively, that is

G1(s) =

s∫

a

G1(t) dt and G2(s) =

s∫

a

G2(t) dt for s ∈ [a, b]. (6)

We now present the Levin–Stečkin theorem [8].

Theorem C. [8] Let g1, g2 : [a, b] → R be integrable functions and G1, G2,G1,
G2 : [a, b] → R defined by (5), (6) be functions satisfying the condition

G1(b) = G2(b) and G1(b) = G2(b). (7)

If

G2 ≺u
w G1,

then
b∫

a

f(t)g2(t) dt ≤
b∫

a

f(t)g1(t) dt (8)

for all continuously twice differentiable convex functions f : [a, b] → R.

In this paper, we study integral inequalities of type (8) for uniformly con-
vex functions, strongly convex functions and superquadratic functions. Our
purpose is to establish some further results related to Theorems A, B and C.
Similar problems for real convex functions f are well-known (see [8,12–14,16–
19]).

The paper is arranged as follows. In Sect. 2, first we point out that for
a given generalized uniformly convex function f : [a, b] → R, the unordered
submajorization of cumulative functions G1 and G2 induced by g1 and g2,
respectively, implies a refinement of inequality (8) (see Theorem 1).
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Next, we provide some sufficient conditions under which the cumulative
functions are unordered submajorized (see Lemma 2). In consequence, we are
able to demonstrate sufficient conditions on two given functions g1 and g2 so
that the refinement of inequality (8) holds (see Theorem 2). As an application,
for uniformly convex functions we refine a result due to Elezović and Pečarić
[5] (see Theorem A). This corresponds to the case of Theorem 1 when g1 and
g2 represent two pdf’s of uniform distribution.

In Sect. 3 we focus on symmetric functions. This leads to some simplifica-
tions of the results of Sect. 2. After giving some properties of cumulative func-
tions (see Lemma 3), we interpret the previous results for symmetric functions
(see Theorem 3). We establish a Levin–Stečkin type inequality with uniformly
convex f . We also specify the obtained results for symmetric probability den-
sity functions (see Corollary 3). Finally, we show applications for Simpson
distributions.

2. Results

Let I = [a, b] be an interval and ψ : [0, b − a] → R be a function. A function
f : [a, b] → R is said to be generalized ψ-uniformly convex if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) − t(1 − t)ψ(|x − y|)
for x, y ∈ Iand t ∈ [0, 1] (9)

(cf. [2]). If in addition ψ ≥ 0, then f is said to be ψ-uniformly convex (see
[15,20]).

Observe that the case ψ = 0 corresponds to usual convex functions. More-
over, a ψ-uniformly convex function f (so, ψ ≥ 0) is necessarily convex. Con-
versely, if ψ ≤ 0, then a (usual) convex function f is generalized ψ-uniformly
convex.

In general, if ψ1 ≤ ψ2, then generalized ψ2-uniform convexity implies gen-
eralized ψ1-uniform convexity.

We are now in a position to prove a Levin–Stečkin type theorem for gen-
eralized ψ-uniformly convex functions. Some simplifications of conditions (10)
and (11) will be discussed after the end of the proof of Theorem 1. A similar
approach for convex or n-convex functions can be found in [17–19].

Theorem 1. Let I = [a, b] be an interval and ψ : [0, b − a] → R be a function.
Let f : [a, b] → R be a continuously twice differentiable generalized ψ-uniformly
convex function on [a, b]. Denote ϕ(t) = ψ(t)

t2 for t ∈ (0, b − a] and ϕ(0) =
lim

t→0+
ϕ(t).

Let g1, g2 : [a, b] → R be integrable functions and G1, G2,G1,G2 : [a, b] → R

defined by (5), (6) be functions satisfying the condition

f(b)[G1(b) − G2(b)] − f ′(b)[G1(b) − G2(b)] ≥ 0. (10)
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If

G2 ≺u
w G1 (11)

then

R +

b∫

a

f(t)g2(t) dt ≤
b∫

a

f(t)g1(t) dt, (12)

where R = 2ϕ(0)
b∫

a

(G1(t) − G2(t)) dt. In particular, R ≥ 0 whenever f is a

ψ-uniformly convex function on [a, b].

Proof. Inequality (11) means that
s∫

a

G2(t) dt ≤
s∫

a

G1(t) dt for s ∈ [a, b]. (13)

By using (6) and (13) we obtain

G2(t) ≤ G1(t) for t ∈ [a, b]. (14)

By integrating by parts twice [6, p. 129], we have (see (5) and (6))
b∫

a

f(t)[g1(t) − g2(t)] dt = f(t)[G1(t) − G2(t)]|ba −
b∫

a

f ′(t)[G1(t) − G2(t)] dt

= f(t)[G1(t) − G2(t)]|ba − f ′(t)[G1(t) − G2(t)]|ba

+

b∫

a

f ′′(t)[G1(t) − G2(t)] dt. (15)

It is easily seen from (5), (6) that

G1(a) = G2(a) = 0 and G1(a) = G2(a) = 0. (16)

In consequence, by (16) and (10),

f(t)[G1(t) − G2(t)]|ba − f ′(t)[G1(t) − G2(t)]|ba
= f(b)[G1(b) − G2(b)] − f ′(b)[G1(b) − G2(b)] ≥ 0. (17)

It follows from (9) that

(f ′(x) − f ′(y))(x − y) ≥ 2ψ(|x − y|) for x, y ∈ I = [a, b]. (18)

In fact, for x, y ∈ I and t ∈ [0, 1], (9) gives

f(y + t(x − y)) − f(y) ≤ t(f(x) − f(y)) − t(1 − t)ψ(|x − y|) (19)

and further for t ∈ (0, 1],

f(y + t(x − y)) − f(y)
t

≤ f(x) − f(y) − (1 − t)ψ(|x − y|). (20)
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Hence for x, y ∈ I, x �= y,

lim
t→0+

f(y + t(x − y)) − f(y)
t(x − y)

(x − y)

≤ lim
t→0+

(f(x) − f(y) − (1 − t)ψ(|x − y|)). (21)

Therefore,

f ′(y)(x − y) ≤ f(x) − f(y) − ψ(|x − y|) for x, y ∈ I, x �= y. (22)

For x = y inequality (22) also holds, because ψ(0) ≤ 0 is satisfied by (9).
By replacing the roles of x and y in (22), we get

f ′(x)(y − x) ≤ f(y) − f(x) − ψ(|x − y|) for x, y ∈ I. (23)

By multiplying both sides by −1, we obtain

f ′(x)(x − y) ≥ f(x) − f(y) + ψ(|x − y|) for x, y ∈ I. (24)

Now, subtracting inequalities (24) and(22) by sides yields (18), as claimed.
It holds that

f ′′(y) ≥ 2ϕ(0) for y ∈ I = [a, b]. (25)

To see this, observe that (18) implies

f ′(x) − f ′(y)
x − y

≥ 2
ψ(x − y)
(x − y)2

= 2ϕ(x − y) for x, y ∈ I, x > y, (26)

because ψ(x − y) = (x − y)2ϕ(x − y).
Consequently,

f ′′(y) = lim
x→y+

f ′(x) − f ′(y)
x − y

≥ 2 lim
x→y+

ϕ(x − y) = 2ϕ(0) for y ∈ I, (27)

which gives (25).
In conclusion, we get

b∫

a

f ′′(t)[G1(t) − G2(t)] dt ≥ 2ϕ(0)

b∫

a

[G1(t) − G2(t)] dt = R. (28)

Therefore, by (15), (17) and (28), we deduce that

b∫

a

f(t)[g1(t) − g2(t)] dt ≥ R.

In addition, R ≥ 0 provided that f is ψ-uniformly convex, because G1(t) −
G2(t) ≥ 0 for t ∈ [a, b] by (14), and ψ ≥ 0 implies ϕ ≥ 0.

This completes the proof of (12). �
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Let m ≥ 0 be a nonnegative number. A function f : I = [a, b] → R is said
to be m-strongly convex if it is ψ-uniformly convex for ψ(t) = m

2 t2, i.e.,

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) − t(1 − t)
m

2
(x − y)2

for x, y ∈ I and t ∈ [0, 1]. (29)

Note that m-strongly convex functions with m = 0 are simply convex.

Corollary 1. Under the hypothesis of Theorem 1, let f : [a, b] → R be a
continuously twice differentiable m-uniformly convex function on [a, b] with
m ≥ 0. If conditions (10), (11) are fulfilled, then inequality (12) holds with

R = m
b∫

a

(G1(t) − G2(t)) dt.

Proof. It is enough to use Theorem 1 with ψ(t) = m
2 t2 and ϕ(t) = m

2 for
t ∈ [0, b − a]. �

Let f : [0, b] → R be a differentiable function. The function f is said to be
superquadratic on [0, b] if

f(x) − f(y) ≥ f ′(y)(x − y) + f(|x − y|) for x, y ∈ I = [0, b]. (30)

Corollary 2. Under the hypothesis of Theorem 1, let f : [0, b] → R be a contin-
uously twice differentiable superquadratic function on [0, b]. If conditions (10),

(11) are fulfilled, then inequality (12) holds with R = 2ϕ(0)
b∫
0

(G1(t)−G2(t)) dt,

and ϕ(t) = f(t)
t2 for t ∈ (0, b] and ϕ(0) = lim

t→0+
ϕ(t).

Proof. Proceeding as in the proof of Theorem 1 with a = 0, ψ(t) = f(t) for
t ∈ [0, b], and ϕ(t) = f(t)

t2 for t ∈ (0, b], we can see that the superquadracity of
f on [0, b] leads to the validity of inequality (12).

Indeed, property (30) guarantees that inequalities (22) and (24) are met
with ψ = f , which implies (18) and (25) with ψ = f and ϕ(t) = f(t)

t2 for
t ∈ (0, b] and ϕ(0) = lim

t→0+
ϕ(t). Hence (28) is satisfied.

Finally, by compiling (15), (17) and (28) we get
b∫

a

f(t)[g1(t) − g2(t)] dt ≥ R.

This completes the proof of (12) for a superquadratic function f . �
We now discuss sufficient conditions for majorization inequalities (11) and

(13) to be valid.
The following lemma is based on a discrete result due to Marshall et al.

(see [9, Proposition B.1., p. 186]). It is also inspired by Ohlin’s Lemma [13],
see also [14, Lemma 1].
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Lemma 1. Let g1, g2 : [a, b] → R be integrable functions such that
b∫

a

g2(t) dt ≤
b∫

a

g1(t) dt, (31)

and, in addition, there exists c ∈ [a, b] satisfying

g2(t) ≤ g1(t) for t ∈ [a, c), and g1(t) ≤ g2(t) for t ∈ [c, b]. (32)

Then
s∫

a

g2(t) dt ≤
s∫

a

g1(t) dt (33)

for s ∈ [a, b].

Proof. It follows from the first inequality in (32) that (33) holds for s ∈ [a, c).
Assume that s ∈ [c, b]. Due to (31) we can see that

s∫

a

g2(t) dt =

b∫

a

g2(t) dt −
b∫

s

g2(t) dt ≤
b∫

a

g1(t) dt −
b∫

s

g2(t) dt

≤
b∫

a

g1(t) dt −
b∫

s

g1(t) dt =

s∫

a

g1(t) dt,

the last inequality being a consequence of the second inequality in (32).
Summarizing all of this, inequality (33) holds true for all s ∈ [a, b]. �

In the next lemma we utilize interlaced functions g1 and g2 (see (35), (36)).
In consequence we obtain the required inequalities (11) and (13) for the cor-
responding cumulative functions G1 and G2 (see (38)).

Lemma 2. Let g1, g2 : [a, b] → R be integrable functions and G1, G2 : [a, b] → R

be functions defined by (5). Assume that there exists c ∈ [a, b] satisfying
c∫

a

g2(t) dt =

c∫

a

g1(t) dt and

b∫

c

g1(t) dt =

b∫

c

g2(t) dt, (34)

and, in addition, there exist d1 ∈ [a, c) and d2 ∈ [c, b] satisfying (a.e.)

g2(t) ≤ g1(t) for t ∈ [a, d1), and g1(t) ≤ g2(t) for t ∈ [d1, c], (35)
g1(t) ≤ g2(t) for t ∈ [c, d2), and g2(t) ≤ g1(t) for t ∈ [d2, b]. (36)

If
b∫

a

G2(t) dt ≤
b∫

a

G1(t) dt, (37)
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then
s∫

a

G2(t) dt ≤
s∫

a

G1(t) dt for s ∈ [a, b]. (38)

Proof. We consider the restrictions of g1 and g2 to the interval [a, c]. In light
of Lemma 1 applied to the interval [a, c], by using (35) and the first part of
(34), we find that

G2(t) ≤ G1(t) for t ∈ [a, c], (39)

with equality for t = c (see (34)).
Likewise, consider the restrictions of g1 and g2 to the interval [c, b]. Denote

G̃1(t) =

t∫

c

g1(s) ds for t ∈ [c, b], and G̃2(t) =

t∫

c

g2(s) ds for t ∈ [c, b].

Hence

G1(t) = G1(c) + G̃1(t) and G2(t) = G2(c) + G̃2(t) for t ∈ [c, b]. (40)

By making use of Lemma 1, applied to the interval [c, b] via (36) and the
second part of (34), we derive

G̃1(t) ≤ G̃2(t) for t ∈ [c, b], (41)

with equality for t = b (see (34)).
By combining (40) and (41), with G1(c) = G2(c) (see (34)), we obtain

G1(t) ≤ G2(t) for t ∈ [c, b]. (42)

According to Lemma 1 applied to the functions G1 and G2 on the interval
[a, b], properties (39), (42) and (37) imply (38), as desired. �

Remark 1. The conditions (35), (36) say that the pair (g2, g1) crosses two times
(see [14, Definition 1]).

Remark 2. In Lemma 2, conditions (34), (35), (36) and (37) ensure that

g2 ≺u g1 on [a, c], g1 ≺u g2 on [c, b], and G2 ≺u
w G1 on [a, b].

Theorem 2. Let I = [a, b] be an interval and ψ : [0, b − a] → R be a function.
Let f : [a, b] → R be a continuously twice differentiable generalized ψ-uniformly
convex function on [a, b]. Denote ϕ(t) = ψ(t)

t2 for t ∈ (0, b − a] and ϕ(0) =
lim

t→0+
ϕ(t).

Let g1, g2 : [a, b] → R be integrable functions and G1, G2,G1,G2 : [a, b] → R

be functions defined by (5), (6). Assume that there exist c ∈ [a, b], d1 ∈ [a, c)
and d2 ∈ [c, b] satisfying conditions (34), (35), (36) and (37).

If

f ′(b)[G1(b) − G2(b)] ≤ 0, (43)
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then

R +

b∫

a

f(t)g2(t) dt ≤
b∫

a

f(t)g1(t) dt, (44)

where R = 2ϕ(0)
b∫

a

(G1(t) − G2(t)) dt. In particular, R ≥ 0 whenever f is a

ψ-uniformly convex function on [a, b].

Proof. In light of (34) one has G1(b) = G2(b), so f(b)[G1(b) − G2(b)] = 0.
Therefore (10) reduces to (43).

Simultaneously, conditions (34), (35), (36) and (37) of Lemma 2 ensure
that (38) is satisfied. Therefore (11) is fulfilled. Now, it is sufficient to apply
Theorem 1 to get (44). �

2.1. Uniform distributions

In order to illustrate the above results, we now show how to use Theorem 2 to
extend the sufficiency part of Theorem A [5] to uniformly convex functions.

Let I = [a, b] be an interval, ψ : [0, b − a] → R be a function, ϕ(t) = ψ(t)
t2

for t ∈ (0, b−a] and ϕ(0) = lim
t→0+

ϕ(t). Take f : [a, b] → R to be a continuously

twice differentiable generalized ψ-uniformly convex function on [a, b].
Assume that x1, x2, y1, y2 ∈ [a, b] such that (x2, y2) ≺ (x1, y1) and a ≤ x1 ≤

x2 < a+b
2 < y2 ≤ y1 ≤ b, with c = a+b

2 = x1+y1
2 = x2+y2

2 . Set

g1(t)=
{ 1

y1−x1
for t ∈ [x1, y1],

0 otherwise,
and g2(t) =

{ 1
y2−x2

for t ∈ [x2, y2],
0 otherwise.

By putting d1 = x2 and d2 = y2, we see that conditions (35), (36) are
satisfied. Furthermore, (34) holds in the form

c∫

a

g2(t) dt =

c∫

a

g1(t) dt =
1
2

=

b∫

c

g1(t) dt =

b∫

c

g2(t) dt.

In this way, we have G1(b) = G2(b). We also find by a straightforward calcu-
lation that

G1(b) =

b∫

a

G1(t) dt =
1
2
(b − a) and G2(b) =

b∫

a

G2(t) dt =
1
2
(b − a).

So, we infer that (37) is valid.
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Since G1(b) = G2(b), condition (43) is satisfied trivially. Taking Theorem 2
into consideration, we obtain (44) with the above g1 and g2, as follows:

R +
1

y2 − x2

y2∫

x2

f(t) dt ≤ 1
y1 − x1

y1∫

x1

f(t) dt, (45)

where R = 2ϕ(0)
b∫

a

(G1(t) − G2(t)) dt (see (46)).

By direct computations, we find that

G1(t)=

⎧
⎨

⎩

0 for t ∈ [a, x1)
t−x1

y1−x1
for t ∈ [x1, y1]

1 for t ∈ (y1, b]
and G2(t)=

⎧
⎨

⎩

0 for t ∈ [a, x2)
t−x2

y2−x2
for t ∈ [x2, y2]

1 for t ∈ (y2, b]
.

Hence we derive

G1(u) =

⎧
⎪⎨

⎪⎩

0 for u ∈ [a, x1)
(u−x1)2

2(y1−x1)
for u ∈ [x1, y1]

u − x1+y1
2 for u ∈ (y1, b]

and G2(u) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for u ∈ [a, x2)
(u−x2)2

2(y2−x2)
for u ∈ [x2, y2]

u − x2+y2
2 for u ∈ (y2, b]

.

Therefore we have

G1(u) − G2(u) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for u ∈ [a, x1)
(u−x1)

2

2(y1−x1)
for u ∈ [x1, x2)

(u−x1)
2

2(y1−x1)
− (u−x2)

2

2(y2−x2)
for u ∈ [x2, y2]

(u−x1)
2

2(y1−x1)
− u + x2+y2

2 for u ∈ [y2, y1]
0 for u ∈ (y1, b]

.

Because x1 + y1 = x2 + y2, a bit of algebra gives

b∫

a

(G1(u) − G2(u)) du =
1
6

[(y1 − y2)(x1 + y1) − (x2 − x1)(x1 + x2)] .

So, we deduce from (45) that

1
3
ϕ(0) [(y1 − y2)(x1 + y1) − (x2 − x1)(x1 + x2)] +

1
y2 − x2

y2∫

x2

f(t) dt

≤ 1
y1 − x1

y1∫

x1

f(t) dt. (46)

In particular, for an m-strongly convex function f we obtain the inequality
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1
6
m [(y1 − y2)(x1 + y1) − (x2 − x1)(x1 + x2)] +

1
y2 − x2

y2∫

x2

f(t) dt

≤ 1
y1 − x1

y1∫

x1

f(t) dt.

Also, for a superquadratic function f inequality (46) holds valid with ϕ(0) =
lim

t→0+

f(t)
t2 . If, moreover, f is positive, then f must be convex, and in this case

(46) refines the original inequality of Theorem A due to [5].

3. Applications for symmetric functions

We are interested in simplifying the assumptions of the results in the previous
section. To this end we employ symmetric functions.

A function g : [a, b] → R is said to symmetric about c = a+b
2 if

g(c − u) = g(c + u) for u ∈ [0, b−a
2 ]. (47)

Lemma 3. Let g : [a, b] → R be an integrable symmetric function about c =
a+b
2 , and G : [a, b] → R be the cumulative function of g defined by (2).

Then
(i) G is rotational symmetric around the point (c,G(c)), i.e.,

G(c) − G(c − u) = G(c + u) − G(c) for u ∈
[
0,

b − a

2

]
, (48)

(ii) the following equality holds:
b∫

a

G(t) dt = (b − a)G(c). (49)

Proof. (i) Fix any u ∈ [0, b−a
2 ]. It is not hard to check that

G(c − u) =

c−u∫

a

g(t) dt =

c∫

a

g(t) dt +

c−u∫

c

g(t) dt = G(c) −
u∫

0

g(c − v) dv,

G(c + u) =

c+u∫

a

g(t) dt =

c∫

a

g(t) dt +

c+u∫

c

g(t) dt = G(c) +

u∫

0

g(c + v) dv.

Therefore, by (47), we derive

G(c) − G(c − u) =

u∫

0

g(c − v) dv =

u∫

0

g(c + v) dv = G(c + u) − G(c),
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which proves (48).
(ii) It follows that

c∫

a

G(t) dt =

c∫

a

G(c) dt −
⎛

⎝
c∫

a

(G(c) − G(t)) dt

⎞

⎠

=

c∫

a

G(c) dt − P1 = (c − a)G(c) − P1, (50)

and
b∫

c

G(t) dt =

b∫

c

G(c) dt +

⎛

⎝
b∫

c

(G(t) − G(c)) dt

⎞

⎠

=

b∫

c

G(c) dt + P2 = (b − c)G(c) + P2, (51)

where

P1 =

c∫

a

(G(c) − G(t)) dt =

b−c∫

0

(G(c) − G(c − v)) dv

and

P2 =

b∫

c

(G(t) − G(c)) dt =

b−c∫

0

(G(c + v) − G(c)) dv.

In view of (48) we find that P1 = P2. Hence, by (50) and (51),
b∫

a

G(t) dt=

c∫

a

G(t) dt+

b∫

c

G(t) dt=(c−a+b−c)G(c)−P1+P2=(b − a)G(c).

Thus we see that (49) holds valid.
�

Theorem 3. (Symmetric functions.) Let I = [a, b] be an interval and ψ : [0, b−
a] → R be a function. Let f : [a, b] → R be a continuously twice differentiable
generalized ψ-uniformly convex function on [a, b]. Denote ϕ(t) = ψ(t)

t2 for t ∈
(0, b − a] and ϕ(0) = lim

t→0+
ϕ(t).

Let g1, g2 : [a, b] → R be integrable symmetric functions about c = a+b
2 , and

G1, G2 : [a, b] → R be the cumulative functions of g1 and g2 defined by (5),
respectively, and G1,G2 : [a, b] → R be the cumulative functions of G1 and G2

defined by (6), respectively.
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Assume that

G2(c) = G1(c) (52)

and, in addition, there exists d2 ∈ [c, b] satisfying (a.e.)

g1(t) ≤ g2(t) for t ∈ [c, d2), and g2(t) ≤ g1(t) for t ∈ [d2, b]. (53)

Then

R +

b∫

a

f(t)g2(t) dt ≤
b∫

a

f(t)g1(t) dt, (54)

where R = 2ϕ(0)
b∫

a

(G1(t) − G2(t)) dt.

Proof. Because of (52), we have G1(b) = 2G1(c) = 2G2(c) = G2(b). For sym-
metric functions conditions (34), (35), (36) are reduced to (52) and (53). To
see (37), we apply G2(c) = G1(c) via Lemma 3, part (ii), and we derive

G2(b) =

b∫

a

G2(t) dt = (b − a)G2(c) = (b − a)G1(c) =

b∫

a

G1(t) dt = G1(b)

(see (6)). Moreover, condition (43) is fulfilled, too. We appeal now to Theorem 2
to get the desired result. �

A result for symmetric probability density functions is given as follows.

Corollary 3. (Symmetric p.d.f.) Under the assumptions of Theorem 3 with
deleted condition (52), let g1, g2 : [a, b] → R be probability density functions
symmetric about c = a+b

2 .
Then inequality (54) holds.

Proof. For symmetric p.d. functions g1 and g2, condition (52) holds, because

G1(c) =

c∫

a

g1(t) dt =
1
2

=

c∫

a

g2(t) dt = G2(c).

So, the result is true according to Theorem 3. �

3.1. Levin–Stečkin type inequalities for uniformly convex functions

We now demonstrate the use of Theorem 3 to derive a Levin–Stečkin type
inequality with uniformly convex f .

Let I = [a, b] be an interval and ψ : [0, b−a] → R be a function. We denote
ϕ(t) = ψ(t)

t2 for t ∈ (0, b − a] with ϕ(0) = lim
t→0+

ϕ(t).
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Let f : I → R be a continuously twice differentiable generalized ψ-
uniformly convex function on I. Let p : [a, b] → R be a non-negative integrable
weight on I. Suppose that p is symmetric about c = a+b

2 .
We also introduce

C =
1

b − a

b∫

a

p(t) dt for t ∈ [a, b]. (55)

In the case when there exists d2 ∈ [c, b] satisfying (a.e.)

C ≤ p(t) for t ∈ [c, d2), and p(t) ≤ C for t ∈ [d2, b], (56)

we set

g1(t) = C and g2(t) = p(t) for t ∈ [a, b]. (57)

Thus (53) is fulfilled.
By referring to the symmetry of p about c = a+b

2 we can write b−c = 1
2 (b−a)

and
c∫

a

p(t) dt =

b∫

c

p(t) dt =
1
2

b∫

a

p(t) dt.

From this, by (55) and (57),

g1(t) = C =
1

b − c

b∫

c

p(t) dt =
1

b − c

b∫

c

g2(t) dt for t ∈ [a, b],

which easily leads to (52) as follows
b∫

c

g1(t) dt = C(b − c) =

b∫

c

g2(t) dt.

To sum up, inequality (54) in Theorem 3 quarantees that

R +

b∫

a

f(t)p(t) dt ≤ 1
b − a

b∫

a

f(t) dt

b∫

a

p(t) dt, (58)

which is a Levin–Stečkin type inequality for a generalized ψ-uniformly convex

function f (cf. [10]). Here R = 2ϕ(0)
b∫

a

(G1(t) − G2(t)) dt (see below).

Additionally, we have

G1(s) =

s∫

a

g1(u) du =

s∫

a

C du = C(s − a) for s ∈ [a, b].
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Hence

G1(t) =

t∫

a

G1(s) ds =

t∫

a

C(s − a) ds = C
(t − a)2

2
for t ∈ [a, b].

So, we infer that

R = 2ϕ(0)

b∫

a

(
C

(t − a)2

2
− G2(t)

)
dt = 2ϕ(0)

⎛

⎝C
(b − a)3

6
−

b∫

a

G2(t) dt

⎞

⎠ .

On the other hand, in the case when there exists d2 ∈ [c, b] satisfying (a.e.)

p(t) ≤ C for t ∈ [c, d2), and C ≤ p(t) for t ∈ [d2, b], (59)

we put

g1(t) = p(t) and g2(t) = C for t ∈ [a, b]. (60)

For this reason (53) is satisfied.
As previously, by the symmetry of p about c = a+b

2 , and thanks to (55)
and (60) we can write

g2(t) = C =
1

b − c

b∫

c

p(t) dt =
1

b − c

b∫

c

g1(t) dt for t ∈ [a, b].

This forces (52), because
b∫

c

g2(t) dt = C(b − c) =

b∫

c

g1(t) dt.

Finally, we deduce from inequality (54) in Theorem 3 that

R +
1

b − a

b∫

a

f(t) dt

b∫

a

p(t) dt ≤
b∫

a

f(t)p(t) dt, (61)

with R = 2ϕ(0)
b∫

a

(G1(t) − G2(t)) dt (see below). This is a Levin–Stečkin type

inequality for a generalized ψ-uniformly convex function f (cf. [10]).
Furthermore,

G2(s) =

s∫

a

g2(u) du =

s∫

a

C du = C(s − a) for s ∈ [a, b],

and

G2(t) =

t∫

a

G2(s) ds =

t∫

a

C(s − a) ds = C
(t − a)2

2
for t ∈ [a, b].
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Therefore, we conclude that

R = 2ϕ(0)

b∫

a

(
G1(t) − C

(t − a)2

2

)
dt = 2ϕ(0)

⎛

⎝
b∫

a

G1(t) dt − C
(b − a)3

6

⎞

⎠ .

3.2. Simpson distributions

Recall that Theorem A corresponds to uniform distribution on an interval [a, b].
We shall establish a similar result corresponding to the Simpson (triangle)
distribution on an interval [a, b].

As usual, f : [a, b] → R is a continuously twice differentiable generalized
ψ-uniformly convex function, where ψ : [0, b − a] → R is a function. Also,
ϕ(t) = ψ(t)

t2 for t ∈ (0, b − a] with ϕ(0) = lim
t→0+

ϕ(t).

We put c = a+b
2 and take x1, x2, y1, y2 ∈ [a, b] with (x2, y2) ≺ (x1, y1) and

a ≤ x1 < x2 < c < y2 < y1 ≤ b.
We define g1 and g2 to be probability density functions of Simpson distribu-

tions on [a, b] with triangles based on intervals [x1, y1] and [x2, y2], respectively.
That is,

g1(t) =

⎧
⎪⎨

⎪⎩

4(t−x1)
(y1−x1)2

for t ∈ [x1, c],
4(y1−t)
(y1−x1)2

for |t ∈ [c, y1],
0 for t ∈ [a, x1] ∪ [y1, b],

and g2(t) =

⎧
⎪⎨

⎪⎩

4(t−x2)
(y2−x2)2

for t ∈ [x2, c],
4(y2−t)
(y2−x2)2

for t ∈ [c, y2],
0 for t ∈ [a, x2] ∪ [y2, b].

By setting d2 = ξy2−y1
ξ−1 with ξ =

(
y1−x1
y2−x2

)2

, we see that condition (53) is
satisfied. Taking Corollary 3 into account, we can rewrite (54) as

R +
4

(y2 − x2)2

⎛

⎝
c∫

x2

f(t)(t − x2) dt +

y2∫

c

f(t)(y2 − t) dt

⎞

⎠

≤ 4
(y1 − x1)2

⎛

⎝
c∫

x1

f(t)(t − x1) dt +

y1∫

c

f(t)(y1 − t) dt

⎞

⎠ ,

where R = 2ϕ(0)
b∫

a

(G1(t) − G2(t)) dt.
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