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1. Introduction and preliminaries

The main subject of this paper is stability of the so-called generalized radical
functional equation (23), which is a natural generalization of the functional
equation

f
(√

x2 + y2
)

= f(x) + f(y),

considered for functions with the set of reals R as the domain (see, e.g., [21]).
For more information on the equations and examples of recent results we refer
to [5,7,12,20].

We present a kind of very general approach to that subject. To this aim we
use some nonstandard ways of measuring a distance in a set. So we start the
paper with several definitions, results and simple observations on that subject.

Various ways of measuring distance are useful in applied sciences (see, e.g.,
[11]). But there is some confusion in the terminology concerning them; in par-
ticular, various generalizations of the notion of metric. For example, according
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to [28], we have the following definition of a quasi-metric space (R+ stands for
the set of nonnegative reals).

Definition 1. Let X be a set with at least 2 elements. Then d : X × X → R+

is called quasi-metric if there is some K ′ ∈ R such that
(a) d(x, y) = 0 if and only if x = y
(b) d(x, y) = d(y, x) for all x, y ∈ X and
(c) d(x, y) ≤ K ′ max (d(x, z), d(z, y)) for all x, y, z ∈ X.

However, in several other papers (see, e.g., [11]), a quasi-metric is a function
d : X×X → R+ satisfying only condition (a) and the usual triangle inequality:

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. (1)

There are few other ambiguities in this area.

Remark 1. Note that we must have K ′ ≥ 1, in Definition 1, in view of the
properties (a) and (c) with x �= y = z.

In this paper we also measure a distance in a nonempty set X using func-
tions d : X × X → R+ satisfying only the following two conditions
(I) if d(x, y) = d(y, x) = 0, then x = y;

(II) d(x, y) ≤ K (d(x, z) + d(z, y)),
for all x, y, z ∈ X and with some K ∈ R+. If K = 1, then such a function
is often called a dislocated quasi-metric (see, e.g., [25,27]), or shortly: dq-
metric. The notion of a dq–metric space is a natural generalization of the
usual definitions of metric, quasimetric, partial metric and metric-like spaces
and plays crucial roles in computer science and cryptography (see, e.g., [2,8,
11,19,25,27]).

We will use that type of terminology and to be short and precise, given an
arbitrary K ∈ R+, by dq-K-metric we understand every function d : X ×X →
R+ fulfilling conditions (I) and (II).

Remark 2. Actually conditions (c) and (II) are closely related as we may see
below.

1. Property (c) implies (II) with K = 2K ′.
2. (II) implies property (c) with K ′ = K.

Remark 3. Clearly, if K ∈ (1,∞), then every function d : R2 → {0} ∪ [1/K, 1]
with d−1({0}) ⊂ {(x, x) : x ∈ R} is a dq-K-metric.

Further, let p ∈ (1,∞) and (Z, d) be a dq-metric space. Then it is easy to
show that dp is a dq-2p−1-metric, where

dp(x, y) := d(x, y)p, x, y ∈ Z.

In fact, for every x, y, z ∈ Z, we have

dp(x, y) ≤ (
d(x, z) + d(z, y)

)p ≤ 2p−1
(
d(x, z)p + d(z, y)p

)

= 2p−1
(
dp(x, z) + dp(z, y)

)
,
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because (a + b)p ≤ 2p−1
(
ap + bp

)
for a, b ∈ [0,∞).

Remark 4. Let a, b ∈ (0,∞), n, k ∈ N (positive integers), and α : R → R+

be such that α−1({0}) = {0}. Then it is easy to check that the function
d : R × R → R+, given by any of the following six simple formulas, is a dq-
metric:

d(x, y) = α(x), x, y ∈ R,

d(x, y) = max {a|x|k, b|y|n}, x, y ∈ R,

d(x, y) = a|x|k + b|y|n, x, y ∈ R,

d(x, y) =
√

a|x|k + b|y|n, x, y ∈ R,

d(x, y) = n
√

max {x − y, 0}, x, y ∈ R,

d(x, y) = max {x − 
y�, 0}, x, y ∈ R,

where 
·� is the floor function, i.e., 
y� := max {n ∈ Z : n ≤ y} (Z stands for
the set of integers).

Next, if n ∈ N, a1, . . . , an ∈ [0,∞) and d1, . . . , dn are dq-metrics in a
nonempty set X, then d and d0 also are dq-metrics in X, where

d(x, y) =
n∑

i=1

aidi(x, y), d0(x, y) = max
i=1,...,n

aidi(x, y), x, y ∈ X.

For some further examples we refer to, e.g., [2,8,19] and the references
therein. However, the next remark provides possible generalizations of the
examples of dq-metrics presented above.

Remark 5. The following very general example of a dq-metric, on a nonempty
set X, covers the first four examples in the previous remark.

Namely, let x0 ∈ X and ϕ,ψ : X → R+, ν : R2
+ → R+ satisfy

ϕ−1({0}) = {x0}, ν−1({0}) ⊂ {(0, x) : x ∈ R+},

max
{
ν(u, 0), ν(0, v)

} ≤ ν(u, v) ≤ ν(u, 0) + ν(0, v), (u, v) ∈ R
2
+.

Then it is easy to verify that d : X2 → R+, defined by d(x, y) := ν
(
ϕ(x), ψ(y)

)
,

is a dq-metric, because for each t, u, v, w ∈ R+,

ν(u, v) ≤ ν(u, 0) + ν(0, v) ≤ ν(u,w) + ν(t, v).

Next, if d is a dq-metric, then so is dp, dp(x, y) := d(x, y)p, for all 0 < p ≤ 1,
since (a+b)p ≤ ap+bp for a, b ∈ R+. This generalizes the 4th and 5th example.

A generalization of the 6th example is given by d(x, y) := max{ϕ(x) −
ψ(y), 0}, where X is a nonempty set and ϕ,ψ : X → R satisfy the following
two conditions.

1. ϕ is injective and ψ ≤ ϕ.
2. For all x, y the inequality ϕ(x) ≤ ϕ(y) implies ψ(x) ≤ ψ(y).



578 J. Brzdęk et al. AEM

In fact, let d(x, y) = d(y, x) = 0. Then ϕ(x) ≤ ψ(y) and ϕ(y) ≤ ψ(x).
Thus ϕ(x) ≤ ψ(y) ≤ ϕ(y) ≤ ψ(x) ≤ ϕ(x) and therefore ϕ(x) = ϕ(y) implying
x = y.

Further, if ϕ(x) − ψ(y) ≤ 0, then the triangle inequality trivially holds.
So, let ϕ(x) − ψ(y) > 0. First assume that ϕ(x) − ψ(z) ≤ 0. Then ϕ(z) −

ψ(y) > 0, because otherwise ϕ(z) ≤ ψ(y) implying ϕ(x) ≤ ψ(z) ≤ ϕ(z) ≤ ψ(y)
and thus contradicting ϕ(x) > ψ(y). So ϕ(x)−ψ(z) ≤ 0, ϕ(z)−ψ(y) > 0, which
implies that ϕ(x) ≤ ψ(z) ≤ ϕ(z) and

d(x, y) = ϕ(x) − ψ(y) ≤ ϕ(z) − ψ(y) = d(z, y) ≤ d(x, z) + d(z, y).

Finally, let ϕ(x) − ψ(z) > 0. Consider two cases.
Case 2.1) ϕ(z) − ψ(y) ≤ 0. Then ψ(z) ≤ ϕ(z) ≤ ψ(y) and consequently we

have ϕ(x) − ψ(y) ≤ ϕ(x) − ψ(z), whence d(x, y) ≤ d(x, z) ≤ d(x, z) + d(z, y).
Case 2.2) ϕ(z) − ψ(y) > 0. Then d(x, z) + d(z, y) = ϕ(x) − ψ(z) + ϕ(z) −

ψ(y) = ϕ(x) − ψ(y) + (ϕ(z) − ψ(z)) = d(x, y) + (ϕ(z) − ψ(z)) ≥ d(x, y).

Let us mention yet, that a function d : X2 → R+ such that (a), (b) and
(II) are valid, have been called a b-metric (cf., e.g., [13]). That term has been
used for the first time in [9] with K = 2 and next in [10] for any K ≥ 1. In
what follows we say that (X, d,K) is a b-metric space provided d : X2 → R+

is a b-metric with (II) fulfilled.
The following two examples have been provided in [4, Examples 1.1 and

1.2].

Example 1. Let X be a Banach space, p ∈ (0, 1),

�p(X) :=
{

(xn)n∈N ∈ XN :
∞∑

n=1

‖xn‖p < ∞
}

,

and ρ : �p(X)2 → [0,∞) be defined by

ρ(x, y) :=
( ∞∑

n=1

‖xn − yn‖p
)1/p

, x = (xn)n∈N, y = (yn)n∈N ∈ �p(X).

Then (�p(X), ρ, 21/p) is a b-metric space.

Example 2. If p ∈ (0, 1),

Lp[0, 1] :=
{

x : [0, 1] → R :
∫ 1

0

|x(t)|pdt < 1
}

,

and ρ : Lp[0, 1] × Lp[0, 1] → R+ is defined by

ρ(x, y) :=
( ∫ 1

0

|x(t) − y(t)|pdt
)1/p

, x, y ∈ Lp[0, 1],

then (Lp[0, 1], ρ, 21/p) is a b-metric space.

Let us yet recall the following very interesting result.
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Theorem 1. [24, Proposition, p. 4308] Let (Y, d, η) be a b–metric space and

Dd(x, y) = inf
{ n∑

i=1

d ξ(xi, xi+1) : x2, ..., xn ∈ Y, n ∈ N, x1 = x, xn+1 = y
}

for all x, y ∈ Y , where ξ := log 2η 2 and d ξ(x, y) =
(
d(x, y)

)ξ for x, y ∈ Y .
Then Dd is a metric in Y with

1
4
d ξ(x, y) ≤ Dd(x, y) ≤ d ξ(x, y), x, y ∈ Y. (2)

In particular, if d is a metric, then Dd = d.

Remark 6. Assume that (X, ‖ · ‖, η) is a real quasi–normed space, i.e., η ≥ 1
is a fixed real number, X is a real (complex, respectively) linear space and
‖ · ‖ : X → R+ satisfy the following three conditions:
(a1) ‖x‖ = 0 if and only if x = 0;
(b1) ‖αx‖ = |α| ‖x‖ for x ∈ X and α ∈ R (α ∈ C, resp.);
(c1) ‖x + y‖ ≤ η

(‖x‖ + ‖y‖) for x, y ∈ X.
Let Y ⊂ X be nonempty and d : Y 2 → R+ be given by: d(x, y) := ‖x − y‖
for x, y ∈ Y . Then it is easily seen that (Y, d, η) is a b–metric space with
d(αx, αy) = |α|d(x, y) for x, y ∈ X and α ∈ R (α ∈ C, resp.). Note yet that
such d is also invariant (i.e., d(x + z, y + z) = d(x, y) for x, y, z ∈ Y ).

In view of Aoki-Rolewicz Theorem (see, e.g., [22, Theorem 1]; cf. also [23]),
each quasi-norm is equivalent to some p-norm. Let us remind here that, if X
is a a real (complex, respectively) linear space and p > 0, then a mapping
‖ · ‖ : X → R+ is a p-norm provided conditions (a1) and (b1) hold and
(c2) ‖x + y‖p ≤ ‖x‖p + ‖y‖p for x, y ∈ X.

Let d be a dq-K-metric in a nonempty set Y . We say that x ∈ Y is a limit
of a sequence (xn)∞

n=1 in Y provided

lim
n→∞ max {d(xn, x), d(x, xn)} = 0;

then we write xn → x or x = limn→∞ xn; in view of (I), it is easy to note that
such a limit must be unique, because

d(x, y) ≤ d(x, xn) + d(xn, y), d(y, x) ≤ d(y, xn) + d(xn, x)

for every y ∈ Y and n ∈ N.
Next, we say that a sequence (xn)∞

n=1 in Y is Cauchy if

lim
N→∞

sup
m,n�N

d(xn, xm) = 0;

d is complete if every Cauchy sequence in Y has a limit in Y .

Remark 7. Usually, in a dq-metric space, the Cauchy sequence can be defined
in a somewhat different way; e.g., in a metric-like space (Y, d), a sequence
(xn)∞

n=1 is said to be Cauchy if the limit limN→∞ supm,n�N d(xn, xm) exists
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and is finite (see [3]). But such definitions are too weak and would exclude from
our considerations the metric and quasi-metric spaces. The same concerns the
notion of completeness.

Also our definition of a limit of a sequence is stronger than the usual (in a
dq-metric space), but this seems to be necessary in the proof of the main result;
moreover, it actually corresponds to our definition of the Cauchy sequence and
makes such limit unique (which is not the case in general) and therefore more
useful.

In the framework of [26] the idea of a quasi-β-normed space has been used.
This paper contains further references on this topic. To obtain an even more
general setting we use the following modification of the concept.

Definition 2. Let X be a vector space over K ∈ {R,C}, K ≥ 1, β ≥ 0. Then
‖ ‖ : X → R is called quasi-β-norm if

1. ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0
2. ‖λx‖ = |λ|β ‖X‖ for all x ∈ X, λ ∈ K.
3. ‖x + y‖ ≤ K (‖x‖ + ‖y‖) for all x, y ∈ X.

If ‖ ‖ : V → R fulfils conditions 1–3, then we say that (X, ‖ ‖ ,K) is a quasi-
β-normed space.

A quasi-β-normed space is called a quasi-β Banach space, if any Cauchy
sequence converges.

Remark 8. 1. For any normed space (X, ‖ ‖) the function ‖ ‖p := ‖ ‖p defines
a quasi-β-norm on X with β = p and K = 2p−1 for p ≥ 1 (cf. Remark 3).

2. Any quasi-β-normed space (X, ‖ ‖ ,K) is also a dq-K-metric space by
defining d(x, y) := ‖x − y‖. Then d is translation invariant, i.e., d(x +
z, y + z) = d(x, y) for all x, y, z. Moreover, d(λx, λy) = |λ|βd(x, y) for all
x, y ∈ X and λ ∈ K.

3. Let (X, d) be a dq-K-metric space (with some K ≥ 1). Then, given any
elements x1, x2, . . . , xn+1 ∈ X with n ∈ N, n > 1, we have the inequality

d(x1, xn+1) ≤
n−1∑
i=1

Kid(xi, xi+1) + Kn−1d(xn, xn+1) (3)

and, as a consequence, the simpler to apply one

d(x1, xn+1) ≤
n∑

i=1

Kid(xi, xi+1) (4)

holds true.
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4. In a quasi-β-normed space X the corresponding generalized triangle in-
equalities ∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤
n−1∑
i=1

Ki ‖xi‖ + Kn−1 ‖xn+1‖ , (5)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

Ki ‖xi‖ (6)

hold true.
All those inequalities can be easily proved by induction.

The topic of Hyers–Ulam stability is a very important branch in the theory
of functional equations. A survey and further references may be found for
example in [6,15].

One of the first and most important results now will axiomatically be
termed as Hyers–Ulam property.

Definition 3. Let (P,+) and (G,+) be groupoids (i.e., P and G are a non-
empty sets and +: P 2 → P,+: G2 → G inner operations). Let furthermore
Φ1,Φ2 : P → [0,∞) and ϕ1, ϕ2 : P 2 → [0,∞) be given functions and d : G ×
G → [0,∞). Then we say that the pair (P,G) has the Hyers–Ulam property
(with respect to (ϕi,Φi)), if for all functions g : P → G such that

d(g(u + v), g(u) + g(v)) ≤ ϕ1(u, v), u, v ∈ P, (7)
d(g(u) + g(v), g(u + v)) ≤ ϕ2(u, v), u, v ∈ P, (8)

there is some function a : P → G such that

a(u + v) = a(u) + a(v), u, v ∈ P,

d(a(u), g(u)) ≤ Φ1(u), u ∈ P,

d(g(u), a(u)) ≤ Φ2(u), u ∈ P.

Remark 9. Let us recall that a groupoid (P,+) is square symmetric provided

2x + 2y = 2(x + y), x, y ∈ P,

where 2x := x + x.
If a groupoid (P,+) is square symmetric, then by induction we can prove

that, for every x, y ∈ P ,

2n(x + y) = 2nx + 2ny, n ∈ N, (9)

where 2n+1x = 2(2nx) for n ∈ N.
We say that a groupoid (P,+) is uniquely divisible by 2 if, for each x ∈ P ,

there is a unique y ∈ P with x = 2y; we write 2−1x := y. We define the notion
2−nx for x ∈ P by

2−(n+1)x = 2−1(2−nx), n ∈ N.
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If a groupoid (P,+) is uniquely divisible by 2 and square symmetric, then
(again by induction), for every x, y ∈ P , we get

2−n(x + y) = 2−nx + 2−ny, n ∈ N. (10)

Clearly every abelian semigroup is square symmetric. Also, if F is a field,
A,B ∈ F, X is a linear space over F, γ ∈ X, and we define +̂ : X2 → X by

x+̂y := Ax + By + γ,

then it is easy to check that (X, +̂) is a square symmetric groupoid (see, e.g.,
[16] for further information).

Note yet that, if (H, +̂) is a square symmetric groupoid, D is a nonempty
set, h : D → H is a bijection and we define a binary operation ∗ : D2 → D
by: a ∗ b := h−1(h(a)+̂h(b)) for a, b ∈ D, then (D, ∗) is a square symmetric
groupoid.

If d is a dq-K-metric in a groupoid (H,+), then we say that a function
g : H2 → H is continuous (with respect to d) provided, for any sequences
(xn)∞

n=1 and (yn)∞
n=1 in H such that xn → x and yn → y with some x, y ∈ H,

we have g(xn, yn) → g(x, y).
The following theorem is an auxiliary result. It is well-known in the metric

spaces and usually attributed to Paşc Găvruţă [17]; however a result by
Gian Luigi Forti [14] is much more general, probably too general to have
realized its consequences and special cases. We present a proof of it for dq-K-
metric spaces (if K = 1, then it corresponds to the results in [18] to certain
extent).

Theorem 2. Let (G,+) and (X,+) be square symmetric groupoids, X be
uniquely divisible by 2, and d be a complete dq-K-metric in X such that

d
(
2−1x, 2−1y

) ≤ ξd(x, y), x, y ∈ X,

with some ξ > 0. Let the operation + in X be continuous (with respect to d)
and ϕi : G × G → [0,∞), i = 1, 2, satisfy

Φi(x) := K2ξ

∞∑
j=0

(Kξ)j
ϕi(2jx, 2jx) < ∞, x ∈ G, i = 1, 2, (11)

lim
j→∞

ξjϕi(2jx, 2jy) = 0, x, y ∈ G, i = 1, 2. (12)

Then the pair (G,X) has the Hyers–Ulam property with respect to (ϕi,Φi).
More exactly speaking, given f : G → X such that

d(f(x + y), f(x) + f(y)) ≤ ϕ1(x, y), x, y ∈ G, (13)

d(f(x) + f(y), f(x + y)) ≤ ϕ2(x, y), x, y ∈ G, (14)
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there is an additive function α : G → X, i.e., α(x + y) = α(x) + α(y) for all
x, y ∈ G, such that

d(α(x), f(x)) ≤ Φ1(x), d(f(x), α(x)) ≤ Φ2(x), x ∈ G. (15)

This is the only additive function α : G → X which, given L ≥ 1, satisfies

d(α(x), f(x)) ≤ L · Φ1(x), d(f(x), α(x)) ≤ L · Φ2(x), x ∈ G.

Moreover, (18) holds.

Proof. Given n ∈ N0 (nonnegative integers) and f as in the theorem let
fn : G → X be defined by

fn(x) := 2−nf(2nx).

Then f0 = f and

d(fn+1(x), fn(x)) = d(2−(n+1)f(2 · 2nx), 2−(n+1)2f(2nx)) ≤ ξn+1ϕ1(2nx, 2nx),

d(fn(x), fn+1(x)) = d(2−(n+1)2f(2nx), 2−(n+1)f(2 · 2nx)) ≤ ξn+1ϕ2(2nx, 2nx)

by the properties of d and by the property of f for x = y (= 2nx).
Given n ∈ N0 and m ∈ N we get from (4)

d(fn+m(x), fn(x)) ≤
m∑

j=1

Kjd(fn+j(x), fn+j−1(x))

≤
m∑

j=1

Kjξn+jϕ1(2n+j−1x, 2n+j−1x)

≤
m∑

j=1

Kn+jξn+jϕ1(2n+j−1x, 2n+j−1x)

= Kξ

n+m−1∑
l=n

(Kξ)lϕ1(2lx, 2lx)

≤ Kξ
∞∑

l=n

(Kξ)lϕ1(2lx, 2lx). (16)

Analogously we have

d(fn(x), fn+m(x)) ≤ Kξ

∞∑
l=n

(Kξ)lϕ2(2lx, 2lx). (17)

This implies that the sequence (fn(x))n∈N0 is a Cauchy sequence for all
x ∈ G. Accordingly α : G → X,

α(x) := lim
n→∞ fn(x), x ∈ G, (18)
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is well-defined. Using the above estimate for n = 0 and m ∈ N we get

d(α(x), f(x)) ≤ K(d(α(x), fm(x)) + d(fm(x), f(x)))

≤ K(d(α(x), fm(x)) + K2ξ

∞∑
l=0

(Kξ)lϕ1(2lx, 2lx).

Now, taking the limit for m → ∞ shows that

d(α(x), f(x)) ≤ K2ξ

∞∑
l=0

(Kξ)lϕ1(2lx, 2lx) = Φ1(x), x ∈ G.

Similarly we obtain

d(f(x), α(x)) ≤ K2ξ

∞∑
l=0

(Kξ)lϕ2(2lx, 2lx) = Φ2(x), x ∈ G.

We still must show that α is additive. Since G and X are square symmetric
(cf. (9) and (10)),

d(fn(x + y), fn(x) + fn(y)) = d(2−nf(2nx + 2ny), 2−n(f(2nx) + f(2ny)))

≤ ξnϕ1(2nx, 2ny),

d(fn(x) + fn(y), fn(x + y)) ≤ ξnϕ2(2nx, 2ny),

d(α(x + y), α(x) + α(y)) ≤ Kd(α(x + y), fn(x + y))

+ K2d(fn(x + y), fn(x) + fn(y))

+ K2d(fn(x) + fn(y), α(x) + α(y)),

d(α(x) + α(y), α(x + y)) ≤ Kd(α(x) + α(y), fn(x) + fn(y))

+ K2d(fn(x) + fn(y), fn(x + y))

+ K2d(fn(x + y), α(x + y))

which for n → ∞ implies d(α(x+y), α(x)+α(y)) = 0 and d(α(x)+α(y), α(x+
y)) = 0 (because (12) holds and + is continuous), whence α(x + y) = α(x) +
α(y).

If, finally γ is additive with d(γ(x), f(x)) ≤ LΦ1(x) and d(f(x), γ(x)) ≤
LΦ2(x) for all x, we get that

d(γ(x), α(x)) ≤ K(d(γ(x), f(x)) + d(f(x), α(x))) ≤ K(LΦ1(x) + Φ2(x)),
d(α(x), γ(x)) ≤ K(d(α(x), f(x)) + d(f(x), γ(x)))+ ≤ K(Φ1(x) + LΦ2(x)).

Using this for 2nx in place of x and observing that γ(2nx) = 2nγ(x) and
α(2nx) = 2nα(x) we obtain

d(γ(x), α(x)) = d(2−nγ(2nx), 2−nα(2nx)) ≤ ξnd(γ(2nx), α(2nx))

≤ ξnK(LΦ1(2nx) + Φ2(2nx)), (19)

d(α(x), γ(x)) ≤ξnK(Φ1(2nx) + LΦ2(2nx)) (20)
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for x ∈ X and n ∈ N. Finally, in view of (11), we see that (with n ≥ 2)

ξnΦi(2nx) := K2K−nξ

∞∑
j=0

(Kξ)j+n
ϕi(2j+nx, 2j+nx)

= K2−nξ
∞∑

j=n

(Kξ)j
ϕi(2jx, 2jx)

≤ ξ
∞∑

j=n

(Kξ)j
ϕi(2jx, 2jx) → 0 for n → ∞

for x ∈ G and i = 1, 2. Thus, by (19) and (20), d(γ(x), α(x)) = 0 and
d(α(x), γ(x)) = 0 for x ∈ G, whence γ = α. �
Remark 10. Let p ≥ 1 and

d(x, y) =
(
max {x − 
y�, 0})p

, x, y ∈ R.

Then, according to Remarks 3 and 4, d is a dq-2p−1-metric in R. For such d
conditions (13) and (14) take the form

f(x + y) − 
f(x) + f(y)� ≤ ϕ1(x, y)1/p, x, y ∈ G, (21)

f(x) + f(y) − 
f(x + y)� ≤ ϕ2(x, y)1/p, x, y ∈ G. (22)

This shows that using the notion of dq-K-metrics we can deal in a unified way
with stability in some somewhat unusual situations.

Remark 11. If d in Theorem 2 is continuous, then letting m → ∞ in (16) and
(17) (with n = 0), we get the following estimations

d(α(x), f(x)) ≤ 1
K

Φ1(x), d(f(x), α(x)) ≤ 1
K

Φ2(x), x ∈ G,

which are a bit better than (15).
Note that, in general, a dq-K-metric does not need to be continuous with

respect to itself.

A special case of a definition in [7] is the following.

Definition 4. Let S be a non-empty set, (P,+) and (W,+) be groupoids,
π : S → P be surjective and let p : P → S be a selection with respect to
π, i.e., π ◦ p = idP or p(u) ∈ π−1(u) for all u ∈ P . Then f : S → W is called a
solution of a (generalized) radical equation iff

f (p (π(x) + π(y))) = f(x) + f(y), x, y ∈ S. (23)

Corollary 2.2 in that paper implies the following result (under the assump-
tions as in Definition 4).

Theorem 3. Assume that P has a neutral element and that W is a monoid.
Then f : S → W satisfies (23) if and only if there is some additive function
α : P → W such that f = α ◦ π.
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Remark 12. Under the assumptions of Definition 4, define an inner binary
operation +̂ in S by:

x+̂y := p (π(x) + π(y)) , x, y ∈ S.

Then equation (23) can be rewritten in the form

f
(
x+̂y

)
= f(x) + f(y), x, y ∈ S. (24)

Further, note that if the groupoid (P,+) is square symmetric, then so is the
groupoid (S, +̂) and thus we can use Theorem 2 to obtain some stability results
concerning (23), provided (W,+) is square symmetric. An example of such a
more concrete result is given in the next section (Theorem 4).

2. Concrete results

The first investigations on the stability of the radical functional equation was
for the special case of (23), namely equation (40), for f mapping R to some
quasi-β Banach space (see [21]). Replacing 2 by any positive integer n in this
equation we now formulate and prove the following theorem concerning stabil-
ity of equation (23) with π : R → π(R) defined by π(x) = xn and p : π(R) → R

by p(u) := n
√

u.
The next theorem is a simple consequence of Theorem 2 (see Remark 12).

Theorem 4. Let (X, ‖ · ‖,K) be a quasi-β-Banach space, n ∈ N, A,B,C, a, b ∈
R, c ∈ X, α := a + b �= 0 and, in the case of even n, A,B,C be nonnegative.
Assume moreover that τ : R → R is given by:

τ(x) := n
√

(A + B)xn + C, x ∈ R,

and ψ : R × R → [0,∞[ satisfies

Ψ(x) := K

∞∑
j=0

(
K

αβ

)j+1

ψ(τ j(x), τ j(x)) < ∞, (25)

lim
j→∞

ψ(τ j(x), τ j(y))
αβj

= 0, x, y ∈ R. (26)

Then, given F : R → X such that∥∥∥F
(

n
√

Axn + Byn + C
)

− aF (x) − bF (y) − c
∥∥∥ ≤ ψ(x, y), x, y ∈ R,

(27)
there is a unique solution γ : R → X of the functional equation

γ
(

n
√

Axn + Byn + C
)

= aγ(x) + bfγ(y) + c, x, y ∈ R, (28)

such that ‖F (x) − γ(x)‖ ≤ Ψ(x) for all x ∈ R.
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Proof. It is easy to check that the inner binary operations +1 in R and +2 in
X,

x +1 y := n
√

Axn + Byn + C, x, y ∈ R,

u +2 w := au + bw + c, u, w ∈ X,

are square symmetric (see Remarks 9 and 12). Moreover, the groupoid (X,+2)
is uniquely divisible by 2 with

2−1u =
1

a + b
(u − c), u ∈ X.

Note yet that X is a dq-K-metric space with a complete and invariant dq-
K-metric d, d(x, y) := ‖x − y‖. So, we have a special case of Theorem 2 with
(G,+) = (R,+1), (X,+) = (X,+2), ϕ1 = ϕ2 = ψ and ξ = (a + b)−β . �

Remark 13. The result in [21] for n = 2 (but only when A = B = a = b = 1,
c = 0, C = 0, and F (0) = 0) is of similar flavour. It makes use of some
transformation specific to that case.

Remark 14. [1] contains a result for the case n = 3, which seems to be false.
It claims that the condition

∥∥∥f
(

3
√

x3 + y3
)

− f(x) − f(y)
∥∥∥ ≤ ψ(x, y), under

the assumptions Ψ(x) :=
∑∞

j=1 2−jβψ
(
2j/3x, 2j/3x

)
< ∞ and limn→∞ 2−nβ

ψ(2n/3x, 2n/3y) = 0, implies that F defined by

F (x) := lim
n→∞ 2−nf(2n/3x)

is a solution of the corresponding equation, which also satisfies ‖f(x) − F (x)‖ ≤
K2−βΨ(x) for all x.

This result can’t be true in general. If, for example ‖x‖ = |x|p (with X = R

and p > 1), we define f(x) := x3 + x and put ψ(x, y) :=
∣∣∣ 3
√

x3 + y3 − x − y
∣∣∣
p

.
Then the hypotheses are satisfied. Moreover, in view of the formula for F ,
necessarily F (x) = x3, thus f(x) − F (x) = x and ‖f(x) − F (x)‖ = |x|p.

Observe ψ(x, x) =
∣∣2 − 3

√
2
∣∣p |x|p and β = p. Hence

Ψ(x) =
K

2β

∞∑
j=1

ψ(2j/3x, 2j/3x)
2βj

=
K

2p

∣∣∣2 − 3
√

2
∣∣∣
p

|x|p
∞∑

j=1

(2j/3)p

2pj

= K
∣∣∣1 − 2−2/3

∣∣∣
p

2−2p/3 1
1 − 2−2p/3

|x|p .

The result cited would imply that |x|p = ‖F (x) − f(x)‖ ≤ Ψ(x) which here
would result in

1 ≤ K
∣∣∣1 − 2−2/3

∣∣∣
p

2−2p/3 1
1 − 2−2p/3

.
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Note that the K corresponding to that quasi-β norm has to be ≥ 2p−1 which
for p = 2 results in K ≥ 2. But for p = 2 and K = 2

K
∣∣∣1 − 2−2/3

∣∣∣
p

2−2p/3 1
1 − 2−2p/3

≤ 0.19

contradicting the fact that it should be ≥ 1.

3. Stability of the radical functional equation, abstract version

The assumption that the groupoids (under consideration) are square symmet-
ric is very important in Theorem 2 and consequently also in Theorem 4. Below
we provide a quite abstract theorem showing that, also without that assump-
tion, some stability issues of the radical functional equation (23) can be reduced
to the stability problems of the corresponding equation of homomorphism.

Let us start with the following definition.

Definition 5. Let d be a dq-K-metric in a groupoid (G,+). We say that d is
subinvariant, provided

d(x, y) ≤ d(x + z, y + z), x, y, z ∈ G. (29)

Remark 15. Clearly, every invariant dq-K-metric is subinvariant. The converse
is not true in general. For instance, let G = [0,∞), a, b be positive reals and
d be given by: d(x, y) = ax2 + by2 for x, y ∈ G. Then d is a subinvariant
dq-metric in G, which is not invariant.

In what follows we assume that S is a nonempty set, (P,+) and (G,+) are
groupoids, d : G × G → [0,∞) is a dq-K-metric on G, with a constant K ≥ 1,
π : S → P is surjective, and p : P → S is a selection with respect to π.

Now, we are in a position to present that abstract stability result concerning
the radical functional equation (23).

Theorem 5. Let ψ1, ψ2 : S2 → [0,∞) and Φ1,Φ2 : P → [0,∞). Assume that
(P,G) has the Hyers–Ulam property with respect to ϕi and Φi, where

ϕi(u, v) := ψi(p(u), p(v)), u, v ∈ P.

Suppose that one of the following two conditions is valid.
(i) d is subinvariant.
(ii) Groupoid P has a neutral element 0 and

τ1(y) := sup
z∈G

d(z + y, z) < ∞, τ2(y) := sup
z∈G

d(z, z + y) < ∞, y ∈ G.

Then, for any f : S → G satisfying

d (f (p(π(x) + π(y)) , f(x) + f(y)) ≤ ψ1(x, y), x, y ∈ S, (30)
d (f(x) + f(y), f (p(π(x) + π(y))) ≤ ψ2(x, y), x, y ∈ S, (31)
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there is a solution F : S → G of the radical equation (23) such that

d(F (x), f(x)) ≤ K
(
Φ1(π(x)) + χ1(x)

)
, x ∈ S, (32)

d(f(x), F (x)) ≤ K
(
Φ2(π(x)) + χ2(x)

)
, x ∈ S, (33)

where, in the case of (i),

χ1(z) = inf
y0∈S

K
[
ψ1

(
p(π(z)), y0

)
+ ψ2(z, y0)

]
,

χ2(z) = inf
y0∈S

K
[
ψ1(z, y0) + ψ2

(
p(π(z)), y0

)]
,

and, in the case of (ii),

χj(z) = inf
x0∈π−1({0})

K [ψj(z, x0) + τj(f(x0))] , j = 1, 2.

Proof. Let f : S → G satisfy (30) and (31) and define g : P → G by g := f ◦ p.
Then

d(g(u + v), g(u) + g(v)) ≤ ψ1(p(u), p(v)) = ϕ1(u, v), u, v ∈ P, (34)
d(g(u) + g(v), g(u + v)) ≤ ψ2(p(u), p(v)) = ϕ2(u, v), u, v ∈ P. (35)

This may be seen in the following way: For u, v ∈ P let x := p(u), y := p(v).
Clearly π(x) = u, π(y) = v, since π ◦ p = idP . Thus

g(u + v) = f(p(u + v)) = f(p(π(p(u)) + π(p(v))) = f(p(π(x) + π(y))),

g(u) = f(p(u)) = f(x), g(v) = f(p(v)) = f(y).

Then (30) with p(x) = u, p(y) = v implies (34). Analogously we obtain (35).
Since, by assumption, (P,G) has the Hyers–Ulam property with respect to

ϕi and Φi, there is some additive function α : P → G such that d(α(u), g(u)) ≤
Φ1(u) and d(g(u), α(u)) ≤ Φ2(u) for all u ∈ P . In terms of f this means that

d(α(π(x)), f(p(π(x)))) ≤ Φ1(π(x)), x ∈ S, (36)
d(f(p(π(x))), α(π(x))) ≤ Φ2(π(x)), x ∈ S. (37)

Let F := α ◦ π. Then, by (36) and (37),

d(F (x), f(x)) = d(α(π(x)), f(x))

≤ K
[
d
(
α(π(x)), f(p(π(x)))

)
+ d

(
f(p(π(x))), f(x)

)]

≤ K
(
Φ1(π(x)) + β1(x)

)
, x ∈ S, (38)

d(f(x), F (x)) = d(f(x), α(π(x)))

≤ K
[
d
(
f(x), f(p(π(x))

)
+ d

(
f(p(π(x))), α(π(x))

)]

≤ K
(
Φ2(π(x)) + β2(x)

)
, x ∈ S, (39)

where

β1(x) = d
(
f(p(π(x))), f(x)

)
, β2(x) = d

(
f(x), f(p(π(x)))

)
, x ∈ S.
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Note that, in the case of (i), by (29), we have

d(f(z), f(w)) ≤ d(f(z) + f(y0), f(w) + f(y0))

≤ K[d(f(z) + f(y0), f(p(π(z) + π(y0))))

+ d(f(p(π(w) + π(y0))), f(w) + f(y0))]

≤ K
[
ψ1(z, y0) + ψ2(w, y0)

]
.

for every z, w, y0 ∈ S with π(z) = π(w). Clearly, this shows that

β1(z) ≤ inf
y0∈S

K
[
ψ1

(
p(π(z)), y0

)
+ ψ2(z, y0)

]
= χ1(z),

β2(z) ≤ inf
y0∈S

K
[
ψ1(z, y0) + ψ2

(
p(π(z)), y0

)]
= χ2(z)

for every z ∈ S. This and (38) and (39) yield (32) and (33).
Now, assume that P has a neutral element 0. Let x0 ∈ S satisfy π(x0) = 0.

Then

d (f (p(π(x))) , f(x) + f(x0)) = d (f (p(π(x) + π(x0))) , f(x) + f(x0))

≤ ψ1(x, x0), x ∈ S,

d (f(x) + f(x0), f (p(π(x)))) ≤ψ2(x, x0), x ∈ S.

Hence we obtain the following estimate for the distance between f(x) and
f(p(π(x))):

d(f(p(π(x))), f(x)) ≤ K
[
d(f(p(π(x)), f(x) + f(x0)) + d(f(x) + f(x0), f(x))

]

≤ K
[
ψ1(x, x0) + τ1(f(x0))

]
, x ∈ S,

d(f(x), f(p(π(x)))) ≤ K
[
d(f(x), f(x) + f(x0)) + d(f(x) + f(x0), f(p(π(x)))

]

≤ K
[
τ2(f(x0)) + ψ2(x, x0)

]
, x ∈ S.

This and (38) and (39) imply (32) and (33) also when (ii) holds. �

Remark 16. If (ii) holds, G has a neutral element 0 and d is invariant, then
τ1(y) = d(y, 0) and τ2(y) = d(0, y) for each y ∈ G and consequently χi, i = 1, 2,
have the form

χ1(z) = inf
x0∈π−1({0})

K [d(f(x0), 0) + ψ1(z, x0)] ,

χ2(z) = inf
x0∈π−1({0})

K [d(0, f(x0)) + ϕ2(z, x0)]

for z ∈ S, which are a bit different than those obtained in the case of (i) and
depend on f . In some of such situations we can derive from the assumptions
an estimation of the values of d(f(x0), 0) and d(0, f(x0)), independent of the
form of f . This is the case for instance for the equation

f
(√

x2 + y2
)

= f(x) + f(y) (40)
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in the class of functions f : R → R. Then conditions (30) and (31) take the
forms

d
(
f

(√
x2 + y2

)
, f(x) + f(y)

)
≤ ψ1(x, y),

d
(
f(x) + f(y), f

(√
x2 + y2

))
≤ ψ2(x, y),

which with x = y = x0 = 0 yield

d(0, f(0)) = d(f(0), 2f(0)) ≤ ψ1(0, 0),
d(f(0), 0) = d(2f(0), f(0)) ≤ ψ2(0, 0).
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Faculty of Applied Mathematics
AGH University of Science and Technology
Mickiewicza 30
30-059 Kraków
Poland
e-mail: brzdek@agh.edu.pl



Vol. 94 (2020) Investigations on the Hyers–Ulam stability 593

El-sayed El-hady
Mathematics Department, College of Science
Jouf University
P.O. Box 2014 Sakaka
Saudi Arabia
e-mail: elsayed elhady@ci.suez.edu.eg

and

Basic Science Department, Faculty of Computers and Informatics
Suez Canal University
Ismailia 41522
Egypt

Jens Schwaiger
Institute of Mathematics and Scientific Computing
University of Graz
Graz
Austria
e-mail: jens.schwaiger@uni-graz.at

Received: March 31, 2019

Revised: July 3, 2019


	Investigations on the Hyers–Ulam stability of generalized radical functional equations
	Abstract
	1. Introduction and preliminaries
	2. Concrete results
	3. Stability of the radical functional equation, abstract version
	Acknowledgements
	References




