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Abstract. Domination game (Brešar et al. in SIAM J Discrete Math 24:979–991, 2010) and
total domination game (Henning et al. in Graphs Comb 31:1453–1462 (2015) are by now well
established games played on graphs by two players, named Dominator and Staller. In this
paper, Z-domination game, L-domination game, and LL-domination game are introduced
as natural companions of the standard domination games. Versions of the Continuation
Principle are proved for the new games. It is proved that in each of these games the outcome
of the game, which is a corresponding graph invariant, differs by at most one depending
whether Dominator or Staller starts the game. The hierarchy of the five domination games
is established. The invariants are also bounded with respect to the (total) domination number
and to the order of a graph. Values of the three new invariants are determined for paths
up to a small constant independent from the length of a path. Several open problems and a
conjecture are listed. The latter asserts that the L-domination game number is not greater
than 6/7 of the order of a graph.
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1. Introduction

Domination game [7] and total domination game [16] have been investigated in
depth by now; see the recent papers [2,3,8,9,13,22,26,28,30,31] on the domi-
nation game, [15,17,18,21] on the total domination game, as well as references
therein.

In [4] the Grundy domination number of a graph G was introduced as the
length of a longest sequence of vertices such that each vertex of the sequence
dominates at least one new vertex. From our point of view, a vertex by vertex
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determination of such a sequence can be considered as the domination game
for a single player (Staller). The Grundy total domination number was later
studied in [5] which can again be considered as a one player total dominaton
game. Moreover, motivated by zero forcing sets, Z-Grundy domination number
and L-Grundy domination number was investigated in [1]. In this paper we
in turn introduce the corresponding Z-domination game, L-domination game,
and for reasons to be clarified later, LL-domination game.

Each of the games, the domination game, the total domination game, and
the Z-, L-, and LL-domination game, is played on an isolate-free graph G.
(Actually, the domination game and the Z-domination game do not require
the graph to be isolate-free, but here we will consider only this more restricted
case. Nevertheless, to be on the safe side we will state this fact in statements of
the results.) All these games can be uniformly described as follows. As usual,
for a vertex v of a graph G, its open and closed neighborhoods are denoted by
N(v) and N [v], respectively. Two players, traditionally named Dominator and
Staller, alternately select a vertex from G. If Dominator is the first player to
select a vertex in a domination game, we speak of a D-game. Otherwise (that
is, if Staller begins the game), we have an S-game. In the ith move, the choice
of a vertex vi is legal if for the vertices v1, . . . , vi−1 chosen so far, the following
hold:

(i) N [vi]\
⋃i−1

j=1 N [vj ] �= ∅, in the domination game;
(ii) N(vi)\

⋃i−1
j=1 N(vj) �= ∅, in the total domination game;

(iii) N(vi)\
⋃i−1

j=1 N [vj ] �= ∅, in the Z-domination game;
(iv) N [vi]\

⋃i−1
j=1 N(vj) �= ∅ and vi �= vj for all j < i, in the L-domination

game; and
(v) N [vi]\

⋃i−1
j=1 N(vj) �= ∅, in the LL-domination game.

Each of the games ends if there are no more legal moves available. Dominator
wishes to finish the game as soon as possible, while Staller wishes to delay the
end. If a D-game is played and both players play optimally, the length of the
game, i.e., the total number of moves played during the game, is, respectively,

(i) the game domination number γg(G);
(ii) the game total domination number γtg(G);
(iii) the game Z-domination number γZg(G);
(iv) the game L-domination number γLg(G); and
(v) the game LL-domination number γLLg(G) of G.

For the S-game the lengths of the above games give analogous graph invariants
γ′
g(G), γ′

tg(G), γ′
Zg(G), γ′

Lg(G), and γ′
LLg(G), respectively.

We proceed as follows. In the next section we prove that the Continuation
Principle holds also for the Z-, L-, and LL-domination game. In addition we
show that for any of these games the corresponding values of the invariants for
the D-game and the S-game differ by at most one. While the proofs of these
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results for the Z- and LL-domination game are standard (in particular, the
difference by at most one follows easily from the corresponding Continuation
Principle), the proofs for the L-domination game are more subtle because of the
extra condition that the vertices played in the game must be pairwise different.
In Sect. 3 we investigate the hierarchy of the five domination games and prove
that γg(G) and γtg(G) are upper bounds for γZg(G) and lower bounds for
γLg(G), which is on the other hand a lower bound for γLLg(G). In Sect. 4 we
bound γZg(G), γLg(G) and γLLg(G) and show that γLLg(G) ≤ n(G)+1, where
n(G) stands for the order of the graph G. We also characterize graphs with
γLLg(G) = n(G) + 1. Then, in Sect. 5, we consider the path Pn on n vertices
and determine the values of γZg(Pn), γLg(Pn) and γLLg(Pn) up to an additive
constant error term. We conclude the paper with several open problems. In
particular, we pose a conjecture that γLg(G) ≤ 6

7n(G) holds for any isolate-free
graph G.

2. Continuation principles and applications

One of the key tools for the domination game is the Continuation Principle
proved in [25]. The corresponding result for the total domination game was
established in [16]. Here we prove that the analogous statements, which express
the monotonicity of the invariants, are true for the other three domination
games.

For the formulation of the theorem, consider a graph G and a subset A of
vertices which are considered to be pre-dominated or pre-totally-dominated.
With G|A we denote such a pre-dominated graph, meaning that when a
game is played on G|A, the vertices from A need not be dominated but
they are allowed to be played (provided they are legal moves). More for-
mally, in a Z- or LL-domination game on G|A the choice of a vertex vi is
legal if for the vertices v1, . . . , vi−1 chosen so far N(vi)\(A ∪ ⋃i−1

j=1 N [vj ]) �= ∅
or N [vi]\(A ∪ ⋃i−1

j=1 N(vj)) �= ∅ holds, respectively. The condition for the L-
domination game on G|A is the same as for the LL-domination game with the
additional requirement that no vertex can be selected twice. We use γZg(G|A),
γLg(G|A), and γLLg(G|A) to denote the number of moves in the Z-, L-, and
LL-domination game respectively, under optimal play in a D-game on G|A.
For an S-game the analogous invariants are denoted γ′

Zg(G|A), γ′
Lg(G|A), and

γ′
LLg(G|A), respectively.

In the following proofs we will use a standard tool called the imagination
strategy that was introduced in the context of the domination game in [7].

Theorem 2.1. (Continuation Principle) If G is a graph without isolated vertices
and B ⊆ A ⊆ V (G), then

(i) γZg(G|A) ≤ γZg(G|B) and γ′
Zg(G|A) ≤ γ′

Zg(G|B);
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(ii) γLLg(G|A) ≤ γLLg(G|B) and γ′
LLg(G|A) ≤ γ′

LLg(G|B); and
(iii) γLg(G|A) ≤ γLg(G|B) and γ′

Lg(G|A) ≤ γ′
Lg(G|B).

Proof. In each proof we consider two games: Game A is the real game played
on G|A, while Game B is a game on G|B imagined by Dominator. Staller
plays optimally in Game A, and Dominator playes optimally in Game B. We
denote by ai and bi the vertex played in the ith move of Game A and Game
B respectively. If Staller plays ai in Game A, Dominator copies it into Game
B, that is, bi = ai (we will prove that it is always legal). Then, Dominator
responds optimally in Game B by playing bi+1. If bi+1 is a legal move in Game
A, Dominator plays the same vertex there i.e., ai+1 = bi+1. In the other case,
ai+1 will be defined to be a legal move in Game A (if there exists such a move).
We will prove that the length �A of Game A is not greater than the length �B
of Game B.

(i) Consider a real and an imagined Z-domination game as described above.
We prove that

B ∪
k⋃

j=1

N [bj ] ⊆ A ∪
k⋃

j=1

N [aj ] (1)

holds for every k. Since B ⊆ A is assumed, the analogous relation is valid
before the first move (k = 0). For the inductive step, suppose that (1) is
true for k = i − 1. If Staller plays ai in Game A, it is a legal move and
hence N(ai)\(A ∪ ⋃i−1

j=1 N [aj ]) �= ∅. Since (1) holds for k = i − 1, we obtain
N(ai)\(B ∪ ⋃i−1

j=1 N [bj ]) �= ∅, that is, ai is a legal move in Game B. We define
bi = ai and infer that (1) remains valid with k = i. In the other case, the
ith move is taken by Dominator. He picks a vertex bi in Game B. If bi is
a legal move in Game A, he sets ai = bi and (1) remains valid for k = i.
Otherwise, if bi is not legal in Game A, we have N(bi) ⊆ (A ∪ ⋃i−1

j=1 N [aj ])
and distinguish two subcases. If bi /∈ (A ∪ ⋃i−1

j=1 N [aj ]), then ai can be any
vertex from N(bi), and (1) remains valid. If bi ∈ (A ∪ ⋃i−1

j=1 N [aj ]), we have
B ∪ ⋃i

j=1 N [bj ] ⊆ A ∪ ⋃i−1
j=1 N [aj ]. Consequently, ai can be any legal move in

Game A, (1) remains valid for k = i.
This proves that (1) holds after each move. Then, Game A cannot be longer

than Game B, that is, �A ≤ �B . Since Staller played optimally on G|A and
Dominator played optimally on G|B, we may conclude that γZg(G|A) ≤ �A ≤
�B ≤ γZg(G|B). Our proof equally holds for the D-game and the S-game. Thus
γ′
Zg(G|A) ≤ �A ≤ �B ≤ γ′

Zg(G|B) also follows.
(ii) Now, consider a real and an imagined LL-domination game on G|A and

G|B respectively. Here, we prove

B ∪
k⋃

j=1

N(bj) ⊆ A ∪
k⋃

j=1

N(aj) (2)
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for every k. The argumentation is very similar to that of part (i). The as-
sumption B ⊆ A gives the base for the inductive proof. If Staller playes ai

in Game A and (2) holds with k = i − 1, then N [ai]\(B ∪ ⋃i−1
j=1 N(bj)) ⊇

N [ai]\(A∪⋃i−1
j=1 N(aj)) �= ∅. Therefore bi = ai is a legal move in Game B and,

after this choice, (2) is valid for k = i. Now, suppose that Dominator plays
the ith move bi in Game B. If bi is a legal move in Game A, we set ai = bi
and (2) clearly holds with k = i. If bi is not a legal move in the real game,
N [bi] ⊆ A ∪ ⋃i−1

j=1 N(aj). Then, already the set A ∪ ⋃i−1
j=1 N(aj) is a superset

of B ∪ ⋃i
j=1 N(bj) and for any legal move ai, the relation (2) will be valid for

k = i. Since Game A finishes when A ∪ ⋃k
j=1 N(aj) = V (G), the conclusion is

�A ≤ �B and the required inequalities follow as in the proof of (i).
(iii) In an L-domination game, no vertex can be played more than once.

Hence, we define the following sets FA
k and FB

k containing those vertices
which cannot be played after the kth move in the real and in the imagined
L-domination game, respectively:

FA
k = {a1, . . . , ak} ∪

⎧
⎨

⎩
v ∈ V (G) : N [v] ⊆ A ∪

k⋃

j=1

N(aj)

⎫
⎬

⎭
, (3)

FB
k = {b1, . . . , bk} ∪

⎧
⎨

⎩
v ∈ V (G) : N [v] ⊆ B ∪

k⋃

j=1

N(bj)

⎫
⎬

⎭
. (4)

Observe that for any two sets S, S′ of vertices, S′ ⊆ S implies {v ∈ V (G) :
N [v] ⊆ S′} ⊆ {v ∈ V (G) : N [v] ⊆ S}. We will prove that both (2) and

FB
k ⊆ FA

k (5)

hold for every k ≥ 0. Our condition B ⊆ A implies that (2) and (5) are valid
for k = 0. For the inductive proof, assume that both (2) and (5) hold for
k = i−1. If Staller plays ai in Game A, then N [ai]\(A∪⋃i−1

j=1 N(aj)) �= ∅ and,
by (2), N [ai]\(B ∪ ⋃i−1

j=1 N(bj)) �= ∅ also holds. Moreover, by (5), ai /∈ FA
i−1

implies ai /∈ FB
i−1. Then, bi = ai is a legal move in Game B. This definition

ensures that (2) and (5) hold for k = i. In the other case Dominator plays bi as
the ith move in Game B. If bi is also a legal move in Game A, we set ai = bi.
Then both (2) and (5) hold with k = i. Now, assume that bi is not a legal
move in the real game, that is, bi ∈ FA

i−1. Then, at least one of the following
statements is true:

(a) bi = as for some s < i;
(b) N [bi] ⊆ A ∪ ⋃i−1

j=1 N(aj).
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In either case, we have N(bi) ⊆ (A ∪ ⋃i−1
j=1 N(aj)) and hence,

B ∪
i⋃

j=1

N(bj) ⊆ A ∪
i−1⋃

j=1

N(aj).

The latter relation and bi ∈ FA
i−1 also imply FB

i ⊆ FA
i−1. Then, ai can be

chosen as any legal move in Game A, (2) and (5) will be valid with k = i.
We have just proved that (2) can be maintained for the real and imagined

games. This implies, as in the previous parts of the proof, that �A ≤ �B and
the two inequalities stated in (iii) follow. �

Next we prove that for the Z-, L- and LL-domination games, the lengths of
the D-game and S-game cannot differ by more than 1, if the players play op-
timally. The analogous statements for domination and total domination game
were proved in [7,16,25].

Theorem 2.2. If G is a graph without isolated vertices, then
(i) |γZg(G) − γ′

Zg(G)| ≤ 1;
(ii) |γLLg(G) − γ′

LLg(G)| ≤ 1; and
(iii) |γLg(G) − γ′

Lg(G)| ≤ 1.

Proof. For the Z- and LL-domination games, the statements easily follow from
Theorem 2.1 (i) and (ii). First, consider a Z-domination game on G where
Staller starts by playing one of her optimal first moves, say a1. If the game is
not finished yet, from the second move we may interpret it as a D-game on
G|N [a1] and therefore, by Theorem 2.1 (i), we have

γ′
Zg(G) = 1 + γZg(G|N [a1]) ≤ 1 + γZg(G).

Similarly, if Dominator starts the game on G and b1 is one of his optimal first
moves,

γZg(G) = 1 + γ′
Zg(G|N [b1]) ≤ 1 + γ′

Zg(G)

follows. These establish part (i).
The proof is very similar for the LL-domination game, so we omit it. The

main difference is that here G|N(a1) and G|N(b1) are considered instead of
G|N [a1] and G|N [b1].

To prove (iii), we cannot use Theorem 2.1 (iii) directly, but we can use the
imagination strategy. First, assume that Staller starts the L-domination game
on G by playing a1 which is an optimal first move. This will be the real game,
Game A, where Staller plays optimally. The imagined game (i.e., Game B) will
be an L-domination game on G where Dominator starts by playing b1 and he
plays optimally throughout. Hence, the move a1 is not copied into Game B.
On the other hand, for every odd i with i ≥ 3, the move ai will be copied into
Game B by setting bi−1 = ai. Dominator chooses his moves to be optimal in
Game B, and for every positive odd i, his move bi is copied into Game A as
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ai+1 = bi, if it is legal in the real game; otherwise we show that ai+1 can be
any legal move in Game A. Our main goal is to prove that

k−1⋃

j=1

N(bj) ⊆
k⋃

j=1

N(aj) (6)

holds for all k ≥ 1. We also define the set of forbidden vertices FA
k and FB

k

after the kth move, similarly as they were given in (3) and (4), respectively,
that is,

FA
k = {a1, . . . , ak} ∪

⎧
⎨

⎩
v ∈ V (G) : N [v] ⊆

k⋃

j=1

N(aj)

⎫
⎬

⎭
,

FB
k = {b1, . . . , bk} ∪

⎧
⎨

⎩
v ∈ V (G) : N [v] ⊆

k⋃

j=1

N(bj)

⎫
⎬

⎭
.

We are going to prove that
FB
k−1 ⊆ FA

k (7)
holds for every k ≥ 1.

Relations (6) and (7) clearly hold for k = 1, since in this case the left-hand
side sets are empty sets. For the inductive step, we suppose and (6) and (7)
are true for k = i − 1 ≥ 0. If i is odd, ai is chosen optimally by Staller in
Game A. Since it is a legal move, ai /∈ FA

i−1, and the inductive hypothesis on
(7) implies ai /∈ FB

i−2. Hence, bi−1 = ai is a legal move in Game B and we may
conclude that both (6) and (7) remain valid with k = i. If i is even, bi−1 is
chosen optimally by Dominator in Game B. If it is legal in Game A, we set
ai = bi−1 and then, (6) and (7) hold with k = i. If bi−1 is not legal in Game
A, that is, bi−1 ∈ FA

i−1, we have the following possibilities:
(a) bi−1 = as for some s < i; or
(b) N [bi−1] ⊆ ⋃i−1

j=1 N(aj).

In either case, we have N(bi−1) ⊆ ⋃i−1
j=1 N(aj) that, together with (6), implies

i−1⋃

j=1

N(bj) ⊆
i−1⋃

j=1

N(aj).

By this relation, by the inductive hypothesis on (7), and since bi−1 ∈ FA
i−1, we

conclude than FB
i−1 ⊆ FA

i−1. Consequently, choosing an arbitrary legal move ai

in Game A, (6) and (7) remain valid with k = i. Therefore, we can maintain (6)
and (7) during the games while letting Staller and Dominator play optimally
in Game A and B respectively. For the lengths �A and �B of Game A and B,
(6) implies �A − 1 ≤ �B . Finally, we get

γ′
Lg(G) ≤ �A ≤ �B + 1 ≤ γLg(G) + 1.
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To prove γLg(G) ≤ γ′
Lg(G) + 1, we can use an analogous argumentation.

Here the real game, namely Game A, is an L-domination game where Domina-
tor starts with an optimal first move a1 and then, from the second turn, Staller
plays optimally. Game B is the imagined L-domination game in which Domi-
nator plays optimally. Moreover, this is an S-game which begins with copying
here the move a2 from Game A as b1. The moves are defined by the rules used
in the previous proof. More precisely, if i is even, Staller picks an optimal move
ai in Game A, and it can be proved that bi−1 = ai is a legal move in Game B.
If i is an odd number with i ≥ 3, Dominator plays an optimal vertex bi−1 in
Game B and we define ai = bi−1 in Game A, if it is legal; otherwise, we may
define ai to be an arbitrary but legal move in Game A. As it can be proved,
again, (6) and (7) hold for every k ≥ 1. These imply �A ≤ �B +1. Since Staller
plays optimally in Game A and Dominator in Game B, we have

γLg(G) ≤ �A ≤ �B + 1 ≤ γ′
Lg(G) + 1

which completes the proof of the theorem. �

3. Hierarchy of the games

In this section we show that the five domination games fulfill the following
hierarchy.

Theorem 3.1. If G is a graph without isolated vertices, then

γZg(G) ≤ γg(G), γtg(G) ≤ γLg(G) ≤ γLLg(G).

Proof. To prove γZg(G) ≤ γg(G), consider a domination game on G and as-
sume that Dominator plays optimally. Suppose further that in the ith move he
selects a vertex vi such that N [vi]\

⋃i−1
j=1 N [vj ] = {vi}. If he chooses a neigh-

bor u ∈ N(vi) instead of vi,
⋃i−1

j=1 N [vj ] ∪ N [u] ⊇ ⋃i
j=1 N [vj ] holds, and by

the Continuation Principle for the domination game [25] this change does not
lengthen the game. Hence, Dominator can choose a strategy in the domination
game which is optimal and also obeys the rule N(vi)\

⋃i−1
j=1 N [vj ] �= ∅ of the

Z-domination game in each of his turns. Therefore, it means real restriction
only for Staller when Z-domination game is played instead of domination game
on G. Thus, γZg(G) ≤ γg(G).

The remaining inequalities will be proved by using the imagination strategy.
Given an isolate-free graph G, we assume that Dominator and Staller play a
real game on G, while Staller also imagines another game is played on it.
Dominator plays optimally in the real game and Staller plays optimally in the
imagined one. We denote by vi and ui the vertex played in the ith move of the
real and the imagined game respectively, and prove that Staller can guarantee
that the length �′ of the imagined game is not greater than the length � of the
real game.
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We next prove that γZg(G) ≤ γtg(G). Here the real game is a total domi-
nation game on G and the imagined one played by Staller is a Z-domination
game on G. We will prove that

i⋃

j=1

N [uj ] ⊇
i⋃

j=1

N(vj) (8)

holds for every i. Since the Z-domination game ends when
⋃i

j=1 N [uj ] = V (G)
and the total domination game ends when

⋃i
j=1 N(vj) = V (G), the condi-

tion (8) will imply �′ ≤ �.
In the first turn, Dominator plays v1 in the real game and Staller copies

it into the imagined game (u1 = v1). Clearly, (8) is valid for i = 1. Now,
assume that (8) is true for i = k − 1. If k is even, Staller selects a vertex uk

in the Z-domination game. This move is also legal in the real game, because
N(uk)\

⋃k−1
j=1 N [uj ] �= ∅ and (8) together imply that N(uk)\

⋃k−1
j=1 N(vj) �= ∅.

Then, Staller copies her move into the real game (vk = uk) and (8) will be valid
for i = k. In the other case k is odd and Dominator plays a vertex vk in the total
domination game. If uk = vk is a legal move in the imagined game, Staller just
copies the move into the Z-domination game and (8) remains valid for i = k.
If vk is not a legal choice in the Z-domination game, N(vk) ⊆ ⋃k−1

j=1 N [uj ]
and hence, after any legal choice of uk, the relation (8) remains valid. Hence,
�′ ≤ �. Moreover, since Staller played optimally in the imagined Z-domination
game and Dominator played optimally in the total domination game, we have
γZg(G) ≤ �′ ≤ � ≤ γtg.

We proceed with the proof of γg(G) ≤ γLg(G). Now, the real game is an L-
domination game and the imagined one is a domination game on G. We prove
that (8) holds for all i. In the first turn, Dominator’s move v1 is copied into
the imagined game and (8) clearly holds for i = 1. Suppose that (8) is valid for
i = k − 1 ≥ 1. Under this assumption, if k is even, every legal (and optimal)
move uk of Staller in the imagined game is legal in the real game as well.
Setting vk = uk, (8) will be valid with i = k. If k is odd, any optimal move vk
of Dominator in the real game is either valid in the imagined game and uk = vk
maintains the relation (8), or N [vk] ⊆ ⋃k−1

j=1 N [uj ] holds. In the latter case,

from our assumption
⋃k−1

j=1 N [uj ] ⊇ ⋃k
j=1 N(vj) follows, that any legal move

uk in the imagined game ensures that (8) is valid for i = k. Thus, the imagined
game finishes no later than the real one and we have γg(G) ≤ �′ ≤ � ≤ γLg(G).

Next we prove γtg(G) ≤ γLg(G). To prove this inequality, the real game is
an L-domination game and the imagined one is a total domination game on
G. As we will see, Staller may ensure that

i⋃

j=1

N(uj) ⊇
i⋃

j=1

N(vj) (9)
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γZg

γtg γg

γLg

γLLg

Figure 1. Relations between the five versions of the game
domination number

holds for every i. Setting u1 = v1, (9) will be valid for i = 1. Then, assume
that (9) is valid for i = k − 1. If k is even, any legal move uk taken in the
total domination game is also legal in the L-domination game, and (9) remains
valid for i = k, if uk is copied into the real game. The situation is similar if k
is odd and vk is a legal move in the imagined game. The only remaining case
is when Dominator chooses a vertex vk in the L-domination game such that
N(vk) ⊆ ⋃k−1

j=1 N(uj). Then, again, any legal move uk in the total domination
game ensures that (9) is valid for i = k. These prove γtg(G) ≤ �′ ≤ � ≤ γLg(G).

It remains to prove that γLg(G) ≤ γLLg(G). Let the real game be the
LL-domination game and let the imagined one be the L-domination game.
Staller plays by applying an optimal strategy in the L-domination game and
meantime, she ensures that (9) is valid after each turn. Assuming that (9)
holds with i = k − 1, any move uk of Staller may be copied into the real game
and (9) remains valid. If k is odd and the move vk of Dominator is not legal
in the L-domination game, we have either

⋃k−1
j=1 N(uj) ⊇ N [vk] or vk = uj

for a j < k. In both cases, our assumption implies
⋃k−1

j=1 N(uj) ⊇ ⋃k
j=1 N(vj).

Therefore, any legal choice of uk maintains relation (9). At the end, we obtain
γLg(G) ≤ �′ ≤ � ≤ γLLg(G). �

Theorem 3.1 together with fact (established in [16]) that γg and γtg are
incomparable, can be briefly presented with the Hasse diagram representing
the partial ordering between γZg, γg, γtg, γLg, and γLLg as shown in Fig. 1.

The five game domination invariants from Theorem 3.1 can be pairwise
different as we have demonstrated with a computer search over the class of
trees. The smallest such trees are presented in Fig. 2.

The top-left tree on 11 vertices in Fig. 2 has the following values:

γZg = 5, γg = 6, γtg = 7, γLg = 8, γLLg = 9.
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Figure 2. Smallest trees with pairwise different values of the
game domination numbers

The remaining trees are the smallest trees (each of them having 14 vertices)
with the same separability property, except that γg and γtg are reversed. More
precisely, for these seven trees we have

γZg = 5, γtg = 6, γg = 7, γLg = 8, γLLg = 9.

Note that all five inequalities in Theorem 3.1 are sharp. For example, for the
five-cycle, γZg(C5) = γg(C5) = γtg(C5) = γLg(C5) = 3 (but γLLg(C5) = 5).
Another example, say Fn, can be obtained from the complete graph Kn by
attaching n leaves to each vertex of Kn. Assume that n ≥ 2. Clearly, γt(Fn) =
n. First consider the Z-domination game and the total domination game on Fn

and assume that Dominator plays a vertex v1 ∈ V (Kn) in the first turn. Then,
in the Z-domination game, we have N(u)\N [v1] = ∅ for every leaf u. Hence, all
the played vertices are from V (Kn) and γZg(Fn) = n. In the total domination
game, if Dominator plays v1 as his first move, Staller may respond by playing a
leaf adjacent to v1. But once at least two non-leaf vertices have been played in
the total domination game, no leaves can be chosen in the later turns. Hence,
Staller can ensure that at least one leaf is played, and Dominator has a strategy
to ensure that at most one leaf is played. This implies γtg(Fn) = n + 1. In the
domination game, L- and LL-domination games, Staller always may play a
leaf while there is at least one non-selected vertex of higher degree. Hence,
γg(Fn) ≥ 2n − 1. On the other hand, 2γt(Fn) − 1 = 2n − 1 ≥ γLLg(Fn) (see
Proposition 4.1 below) implies γg(Fn) = γLg(Fn) = γLLg(Fn) = 2n − 1.
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4. Bounds on γZg , γLg , and γLLg

In this section we bound γZg(G), γLg(G), and γLLg(G). In the main result we
prove that γLLg(G) ≤ n(G)+1 and characterize the equality case. In this way
we round off Theorem 3.1.

To state the results we need to recall some standard terminology. We say
that a vertex of a graph totally dominates its neighbors and dominates itself
and its neighbors. If S is a subset of vertices of a graph G, then S (totally)
dominates G if each vertex of G is (totally) dominated by some vertex from S.
The size of a smallest set that (totally) dominates G is called (total) domination
number of G. These invariants are denoted by γ(G) (resp. γt(G)).

The bounds γ(G) ≤ γg(G) ≤ 2γ(G) − 1 and γt(G) ≤ γtg(G) ≤ 2γt(G) − 1
were proved in [7,16], respectively. For the three domination games introduced
in this paper the following related bounds hold.

Proposition 4.1. If G is a graph without isolated vertices, then
(i) γ(G) ≤ γZg(G) ≤ 2γ(G) − 1;
(ii) γt(G) ≤ γLg(G) ≤ 2γt(G) − 1; and
(iii) γt(G) + 1 ≤ γLLg(G) ≤ 2γt(G) − 1.

Proof. A Z-domination game ends when the set {v1, . . . , vi} of the chosen
vertices becomes a dominating set of G. Indeed, otherwise we have a vertex u

outside of
⋃i

j=1 N [vj ] and the choice of a neighbor of u is a legal move. Hence,
γ(G) ≤ γZg(G). The upper bound follows from Theorem 3.1 and the above
mentioned inequality γg(G) ≤ 2γ(G) − 1. This proves (i).

The L-domination game and the LL-domination game on G ends when
⋃i

j=1 N(vj) = V (G), moreover Dominator may fix a total dominating set D′

and in each move he plays a vertex w ∈ D′ for which N(w)\ ⋃i
j=1 N(vj) �= ∅

(while such a vertex exists). This implies the upper bounds in (ii) and (iii). The
lower bound in (ii) is a direct consequence of Theorem 3.1 and the inequality
γt(G) ≤ γtg(G). Concerning the lower bound in (iii), we note that 2 ≤ γt(G) ≤
γLLg(G) holds for every graph G. Moreover, in the second move of an LL-
domination game Staller may repeat the first move of Dominator. In this way
she can ensure that γLLg(G) ≥ γt(G) + 1. �

In the rest of this section we prove an upper bound on γLLg(G), for which
we need the following two results.

Proposition 4.2. If G is a graph without isolated vertices and Staller plays an
LL-domination game according to an optimal strategy, then Dominator makes
the last move of the game. In particular, γLLg(G) is odd and γ′

LLg(G) is even.
In particular, γLLg(G) �= γ′

LLg(G).

Proof. Suppose u ∈ V (G) is the last move in an LL-domination game on G
with Staller playing optimally. Then there exists v ∈ N [u]\ ∪m

i=1 N(ui) with
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u1, . . . , um being the vertices picked earlier in the game. We infer that v �= u
because otherwise u could be selected again, so the game would not be over
yet. Hence Staller was not the player who has selected u, because she could
play v instead of u and prolong the game for at least one more move. �

One can strengthen Proposition 4.2 using the Continuation Principle.

Proposition 4.3. If G is a graph without isolated vertices and an LL-domination
game is played on G, then there exists an optimal strategy of Staller such that
the last move in every component is made by Dominator.

Proof. Suppose Staller, according to an optimal strategy S, plays the last
move u of a component C during an LL-domination game on a graph G with
previous moves u1, . . . , um. Then there exists v ∈ N [u]\ ∪m

i=1 N(ui). If v = u,
then u is still a legal move, so Staller does not finish the game on C. If v �= u,
then Staller could have played v instead of u. After her move, v would still be a
legal move, while if u is played, no vertex in C is legal. So by Theorem 2.1(ii),
the latter strategy is at least as good as S. �

All is now ready for the main result of this section.

Theorem 4.4. If G is a graph without isolated vertices, then γLLg(G) ≤ n(G)+
1. Moreover, equality holds if and only if all components of G are K2s.

Proof. First we prove the theorem for connected graphs. We start with a simple
claim.

Claim 1. If the minimum degree in G is at least 2, then in any LL-domination
game on G at least one vertex will not be picked at all.

Proof of Claim 1. Suppose on the contrary that all the vertices were picked
during the game. Let v be the last vertex to be picked. Since the minimum
degree in G is at least 2, at the time when v is picked, all the vertices are
totally dominated by the previously selected vertices. Thus v is not a legal
move, which is a contradiction. �

Suppose the vertices picked by the players are u1, . . . , um. Let dm denote
the number of repetitions, i.e., |{j ≤ m : ∃i < j, ui = uj}|. Furthermore, let
bm denote the number of isolated vertices in G[u1, . . . , um].

Claim 2. If Dominator starts the game, then he has a strategy that for any m
we have d2m+1+b2m+1 ≤ 1 and if Staller starts the game, then he can manage
to maintain d2m + b2m = 0.

Proof of Claim 2. We proceed by induction on m. If Staller starts by picking
u1, then Dominator picks a neighbor u2 of u1 and thus d2 = 0, b2 = 0. If
Dominator starts, then he can pick u1 arbitrarily. If Staller picks u2 = u1,
then Dominator picks u3 ∈ N(u1) and obtains d3 = 1, b3 = 0. If Staller
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picks u2 �= u1, then Dominator picks u3 ∈ N(u1) ∪ N(u2)\{u1, u2} (as G is
connected, if no such vertex exists, then there is no legal move for Dominator)
and obtains d3 = 0, b3 ≤ 1.

For the inductive step in the S-game: first of all, as b2m = 0, Staller cannot
pick a previously played vertex. If Staller picks a vertex u2m+1 /∈ ∪2m

j=1N(uj),
then Dominator picks any neighbor u2m+2 of u2m+1. If u2m+1 ∈ ∪2m

j=1N(uj),
then Dominator picks any legal vertex u2m ∈ ∪2m+1

j=1 N(uj). Note that as G
is connected, if no legal vertex exists, then the game is over. In both cases,
Dominator maintained d2m+2 = b2m+2 = 0.

For the inductive step in the D-game: first of all, Staller can pick a pre-
viously played vertex only if b2m+1 = 1 and thus d2m+1 = 0 and Staller
can only repeat the isolated vertex of G[u1, . . . , u2m+1]. So if u2m+2 is a re-
peated vertex, then Dominator can pick any neighbor u2m+3 of u2m+2 obtain-
ing d2m+3 = 1, b2m+3 = 0. If b2m+1 = 0, then Dominator proceeds as in the
Staller-start-game. �

Clearly, Claim 2 proves γLLg(G) ≤ n+1 and γ′
LLg(G) ≤ n for any connected

graph G on n vertices. Also, Claim 1 yields γLLg(G) ≤ n for any connected
graph G with minimum degree at least two. Suppose G contains a vertex v of
degree one. Then Dominator modifies his strategy as follows: he first picks a
neighbor u1 of v. Then depending on Staller’s move u2, he responds as follows:

• If u2 = u1, then he picks u3 ∈ N(u1)\{v} (note that u3 exists if G is
not K2). This ensures that v cannot be picked during the game. At this
point, we have d3 = 1, b3 = 0 and Dominator is able to follow his strategy
above to guarantee γLLg(G) ≤ n.

• If u2 ∈ N(u1), then d2 = b2 = 0 and the above strategy of Dominator
guarantees γLLg(G) ≤ n.

• Finally, if u2 /∈ N(u1), then Dominator picks u3 ∈ N(u1)\{v} to ensure
that v cannot be picked during the game. At this point, we have d3 =
0, b3 = 1 and Dominator is able to follow his strategy above to guarantee
γLLg(G) ≤ n.

This concludes the proof if G is connected.
For the general case let G be an isolate-free graph on n vertices with at least

one component C1 consisting of at least 3 edges. We can assume that Staller
follows a strategy as in Proposition 4.3, so in each component, Dominator
makes the last move. Then Dominator starts by picking a vertex u1 ∈ C1

according his strategy above for C1. By the assumption on Staller’s strategy,
Dominator can always play a vertex from the component of Staller’s last move
and therefore partition the game into games on the components in such a way
that all components’ games are Staller-start-games apart from the one on C1.
So γLLg(G) ≤ γLLg(C1) +

∑k
i=2 γ′

LLg(Ci) ≤ n, where C2, . . . , Ck are the other
components of G. �
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Combining Theorem 4.4 and Proposition 4.1(iii) with Theorem 3.1 we have:

Corollary 4.5. If G is a graph without isolated vertices, then

γZg(G) ≤ γg(G), γtg(G) ≤ γLg(G) ≤ γLLg(G) ≤ min{2γt(G) − 1, n(G) + 1}.

5. The games played on paths

In this section we examine the values of the five games on one of the simplest
graphs, the path graphs. The result for the domination game was first proved
in the unpublished manuscript [24], an alternative proof appeared several years
later in [27]. It reads as follows:

Theorem 5.1. [24,27] If n ≥ 1, then

γg(Pn) =

{⌈
n
2

⌉ − 1; n ≡ 3 (mod 4),
⌈
n
2

⌉
; otherwise.

Dorbec and Henning [12] obtained the corresponding result for the total
domination game.

Theorem 5.2. [12] If n ≥ 2, then

γtg(Pn) =

{⌊
2n
3

⌋
; n ≡ 5 (mod 6),

⌈
2n
3

⌉
; otherwise.

Hence γg(Pn) roughly equals n/2, while γtg(Pn) is roughly 2n/3. In the
following we will prove similar results for the other three games, where we
will consider only approximate values since obtaining the exact ones could
double the length of proofs with tedious case analysis. The asymptotics of the
parameters for all of the five games is presented in Fig. 3.

γZg(Pn) ≈ n
2

γtg(Pn) ≈ 2n
3

γg(Pn) ≈ n
2

γLg(Pn) ≈ 2n
3

γLLg(Pn) ≈ 4n
5

Figure 3. The five domination games played on the path
graphs
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For the rest of the section we assume that V (Pn) = {0, 1, . . . , n−1}, where
the vertices appear in the natural order, that is, i and j are connected by an
edge if and only if |i − j| = 1.

Theorem 5.3. For every positive integer n there exists a constant cn such that
γZg(Pn) = n

2 + cn holds with |cn| ≤ 2.

Proof. The upper bound is obtained by Theorems 3.1 and 5.1, i.e., γZg(Pn) ≤
γg(Pn) ≤ n

2 + 1
2 .

To obtain a lower bound we will consider a strategy for Staller. Suppose
the ith move is Staller’s move and let vertex k be the smallest vertex not
in

⋃i−1
j=1 N [vj ]. Then the vertex k − 1 is a legal move with |⋃i

j=1 N [vj ]| −
|⋃i−1

j=1 N [vj ]| = 1, unless k = 0. In the latter case, vertex 1 is a legal move
only needed at most once at Staller’s first move. On the other hand, at each
move Dominator can dominate at most three new vertices. Hence, besides
possibly the first move, Staller has a strategy to achieve that in every two
moves at most four new vertices are dominated. This implies a lower bound
γZg(Pn) ≥ 2 + n−6

2 − 1 = n
2 − 2. �

Theorem 5.4. For every positive integer n there exists a constant cn such that
γLg(Pn) = 2n

3 + cn holds with |cn| ≤ 1.

Proof. The lower bound is obtained by Theorems 3.1 and 5.2, i.e., γLg(Pn) ≥
γtg(Pn) ≥ 2n

3 − 1.
To obtain an upper bound we will provide a strategy for Dominator. For

every i we define three values:
• Let pi = |⋃i

j=1 N(vj)|.
• Consider graphs G1 and G2 whose vertices are {0, 2, . . . , 2�n

2 
} and
{1, 3, . . . , 2�n

2 �−1} and are both isomorphic to paths with the increasing
order of vertices. Let G1

i and G2
i denote the induced subgraphs of G1 and

G2 on the vertices in
⋃i

j=1 N(vj). Then let di be the total number of con-
nected components in G1

i and G2
i . The empty graph has one connected

component.
• Let fi denote the number of vertices v after the ith move such that v

was not chosen before and is not in
⋃i

j=1 N(vj) but N(v) is a subset of
⋃i

j=1 N(vj).
The strategy of Dominator is the following: say that after the ith move

vertex k is the smallest vertex not in
⋃i

j=1 N(vj). Then Dominator chooses
vi+1 to be k + 1 and thus totally dominates k and maybe also k + 2. We claim
that with such a move it holds Δ := (pi+1 − di+1 − fi+1) − (pi − di − fi) ≥ 2.
Notice that di+1−di ≤ 0 by the choice of the move, unless i+1 = 3, v3 = 1 and
v2 is an odd ineger picked by Staller. First assume that pi+1 − pi = 2. Observe
that fi+1 − fi could be positive only because of the vertices k − 1 or k + 3, if
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they were not chosen before, but after this move their open neighborhoods are
totally dominated. But k is the smallest vertex not totally dominated, thus
k − 1 cannot increase fi. But if the open neighborhood of k + 3 is totally
dominated after the (i+1)st move, then k +4 was totally dominated after the
ith move, implying that di+1−di = −1. Thus in this case Δ = 2. If fi+1−fi is
not positive, then clearly Δ ≥ 2. Now assume that pi+1 − pi = 1. This implies
that k + 3 was chosen before and that di+1 − di = −1. Hence k + 3 cannot
increase fi, while k − 1 cannot do it by the same reasoning as before. Thus in
this case Δ ≥ 2.

In the final part of the proof we show that on the Staller’s move Δ ≥ 1. First
case is if Staller plays a move when it does not increase pi. Then di remains
the same, while fi decreases by one giving Δ = 1. If Staller plays a move when
pi+1 − pi = 1, it is easy to see that then either di+1 − di = fi+1 − fi = 0 or
di+1 − di = −1 and fi+1 − fi ≤ 1 giving Δ ≥ 1. Finally if pi+1 − pi = 2, then
only one connected component can be created, but in this case fi+1 − fi = 0.
On the other hand, fi+1 − fi = 2 implies di+1 −di = −1, thus also in this case
Δ ≥ 1.

We have proved that with this strategy of Dominator for every i we have
(pi+2 − di+2 − fi+2) − (pi − di − fi) ≥ 3 unless i + 2 is 3 or 4 and even then
(pi+2 − di+2 − fi+2) − (pi − di − fi) ≥ 2. Hence pm − dm − fm + 2 ≥ 3m

2 − 1,
where m is the final length of the game. But pm = n, dm = 2, and fm = 0,
thus m ≤ 2n

3 + 1. �

In the proof of the following theorem we will consider also predominated
graphs. If G is a graph and v a vertex of G, then we say that v is predominated
for the LL-domination game if the move vi, for which N [vi]\

⋃i−1
j=1 N(vj) = {v},

is forbidden.

Theorem 5.5. It holds γLLg(Pn) = 4n
5 + cn for some small bounded constants

cn.

Proof. As above let pi = |⋃i
j=1 N(vj)|. First we present a strategy for Staller

showing a lower bound for γLLg(Pn). The strategy is the following: if Staller can
play a move for which pi does not increase, then this move is played. Otherwise,
if vertex k is the smallest vertex not totally dominated, then Staller chooses
k−1 (or k+1 if k = 0 and thus i = 2). We prove that if i ≥ 4 and the ith move
is played by Staller, the pi+3 − pi−1 ≤ 5, i.e., the value of pi increases by at
most 5 within four consecutive moves. Notice that by the choice of the Staller’s
moves, each Staller’s move can increase pi by at most 1. Also, by the definition
of the game, pi can increase by at most 2 on Dominator’s turn. Hence we must
prove that in four moves it cannot happen that Dominator increases pi twice
by 2 and Staller twice by 1.

Assume that Staller played vi with pi − pi−1 = 1 and Dominator picked
vi+1 = k with pi+1 − pi = 2. Note that this implies k − vi ≥ 3 and vj �=
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k, k − 2, k + 2 for all j < i. We claim that Staller can at the (i + 2)nd move
repeat the vertex k. Assume that this is not the case, i.e., vertex k is already
totally dominated, i.e., for some j < i we have vj = k − 1 or k + 1. But
then could have selected k − 1 or k + 1 for the ith move without increasing
pi, contrary to the assumption. Thus vertex k is not totally dominated at the
(i + 2)nd move. Thus if m is the total number of moves during the play, then
n ≤ pm ≤ 7 + 5

4 (m − 4) showing γLLg(Pn) ≥ 4n
5 − 2.

To prove the upper bound we will consider a Staller start LL-domination
game on two predominated graphs. Let P 1

n be the predominated graph Pn

with vertices 0 and n− 1 predominated. Similarly let P 2
n be the predominated

graph Pn with vertices 0, 2, 4, and n − 1 predominated. We will prove that:

γ′
LLg(P

1
n) ≤ θ(P 1

n) :=

⎧
⎪⎨

⎪⎩

4
⌊n

5

⌋
; n ≡ 0, 1, 2 (mod 5),

4
⌈n

5

⌉
+ 2; n ≡ 3, 4 (mod 5),

(10)

and that

γ′
LLg(P

2
n) ≤ θ(P 2

n) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4
⌊n

5

⌋
− 2; n ≡ 0, 1 (mod 5),

4
⌊n

5

⌋
; n ≡ 2, 3 (mod 5),

4
⌊
n
5

⌋
+ 2; n ≡ 4 (mod 5).

(11)

We prove the above statements by induction on n for n ≥ 3 in the case of
P 1
n , and for n ≥ 5 in the case of P 2

n . We have calculated the exact numbers of
γ′
LLg(P

1
n) and γ′

LLg(P
2
n) up to n = 24 and the above values are exact.

Consider P 1
n with n reasonably big (say n > 24), and assume that the

inductive assumption holds for P 1
m, P 2

m, with m < n. We consider various first
moves of Staller.

• Staller chooses v1 = 1 or v1 = 2: then Dominator can choose v2 = 2
in the first case and v1 = 1 in the second. The game on the obtained
predominated graph with predominated vertices 0, 1, 2, 3, and n − 1 is
equivalent to the game on P 1

n−3. It holds γ′
LLg(P

1
n) ≤ γ′

LLg(P
1
n−3) + 2

which is at most θ(P 1
n) in all the cases of n (mod 5).

• Staller chooses v1 = n − 2 or v1 = n − 3: symmetric as above.
• Staller chooses v1 = 0: then Dominator can choose v2 = 4. The game

on the obtained predominated graph with predominated vertices 0, 1, 3,
5, and n − 1 is equivalent to the game on P 2

n−1. It holds γ′
LLg(P

1
n) ≤

γ′
LLg(P

2
n−1) + 2 which is exactly θ(P 1

n) in all the cases of n (mod 5).
• Staller chooses v1 = n − 1: symmetric as above.
• Staller chooses 2 < v1 < n − 3: If Dominator chooses either v2 = v1 − 1

or v2 = v1 + 1, then the obtained predominated graph has predominated
vertices either 0, v1−2, v1−1, v1, v1+1, n−1 or 0, v1−1, v1, v1+1, v1+2, n−
1. In particular, Dominator can consider the same strategy as playing
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on two disjoint graphs: P 1
v1

and P 1
n−(v1+2) in the first case, or P 1

v1−1 or
P 1
n−(v1+1) in the second. We have:

γ′
LLg(P

1
n) ≤ min

{
θ(P 1

v1
) + θ(P 1

n−(v1+2)) + 2, θ(P 1
v1−1) + θ(P 1

n−(v1+1)) + 2
}

≤ θ(P 1
n).

In fact the last inequality holds since θ(P 1
n) < θ(P 1

v1
) + θ(P 1

n−(v1+2)) + 2
only if v1 = 0 (mod 5) and n− (v1 + 2) = 0 (mod 5) as it can be checked
by an easy examination. In that case the second entry of the minimum
is smaller.

Now consider P 2
n with n reasonably big (say n > 24) and again assume that

the inductive assumption holds for P 1
m, P 2

m, with m < n. Similarly as above
we consider various first moves of Staller:

• Staller chooses v1 = 1 or v1 = 3: then Dominator can select v2 = 2. The
game on the obtained predominated graph with predominated vertices 0,
1, 2, 3, 4 and n−1 is equivalent to the game on P 1

n−4. It holds γ′
LLg(P

2
n) ≤

γ′
LLg(P

1
n−4) + 2 which is exactly θ(P 1

n) in all the cases of n (mod 5).
• Staller chooses v1 = 0, v1 = 2, or v1 = 4: then Dominator can choose

v2 = 4 in the first two cases, and v1 = 2 in the third. The game on
the obtained predominated graph with predominated vertices 0, 1, 2, 3,
4, 5 and n − 1 is equivalent to the game on P 1

n−5. It holds γ′
LLg(P

2
n) ≤

γ′
LLg(P

1
n−5) + 2 which is at most θ(P 1

n) in all the cases of n (mod 5).
• Staller chooses v1 = n − 2 or v1 = n − 3: then Dominator can choose

v2 = n − 3 in the first case, and v2 = n − 2 in the second. The game on
the obtained predominated graph with predominated vertices 0, 2, 4, n −
4, n − 3, n − 2 and n − 1 is equivalent to the game on P 2

n−3. It holds
γ′
LLg(P

2
n) ≤ γ′

LLg(P
2
n−3) + 2, which is at most θ(P 2

n) in all the cases of
n (mod 5).

• Staller chooses v1 = n − 1: then Dominator can choose v2 = 2. The
game on the obtained predominated graph with predominated vertices
0, 1, 2, 3, 4, n − 2 and n − 1 is equivalent to the game on P 1

n−5. It holds
γ′
LLg(P

2
n) ≤ γ′

LLg(P
1
n−5) + 2, which is at most θ(P 2

n) in all the cases of
n (mod 5).

• Staller chooses 4 < v1 < n − 3: Then if Dominator chooses either v2 =
v1+1 or v2 = v1−1, the obtained predominated graph has predominated
vertices either 0, 2, 4, v1 − 1, v1, v1 + 1, v1 + 2, n − 1, or 0, 2, 4, v1 − 2, v1 −
1, v1, v1 + 1, n − 1 (if v1 is 5 then consider only the first case, and notice
that in cases v1 is 5, 6 or 7 some vertices are written twice). Dominator
can consider the same strategy as playing on two disjoint graphs: P 2

v1

and P 1
n−(v1+2) in the first case or P 2

v1−1 or Pn−(v1+1)1 in the second. We
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have:

γ′
LLg(P

2
n) ≤ min{θ(P 2

v1
) + θ(P 1

n−(v1+2)) + 2, θ(P 2
v1−1) + θ(P 1

n−(v1+1)) + 2}
≤ θ(P 2

n).

In fact, the last inequality holds since θ(P 2
n) < θ(P 2

v1
) + θ(P 1

n−(v1+2)) + 2
only if v1 = 4 (mod 5) and n− (v1 + 2) = 0 (mod 5) as it can be checked
by an easy examination. In that case the second entry of the minimum
is smaller.

This proves the assertion for P 1
n and P 2

n .
Now we prove that γLLg(Pn) ≤ 4n

5 + c2n by defining a strategy for Domina-
tor. Let v1, . . . , vi be a sequence of moves. If v1, . . . , vi is also a legal sequence
on P 1

n , then Dominator selects the same vertex as he would if the game was
played on P 1

n . If the game is finished after i moves on P 1
n , then Dominator can

play an arbitrary move. If vi is an illegal move on P 1
n , then Dominator can

play an arbitrary move. If v1, . . . , vi has some illegal moves (besides the last
one) for the game on P 1

n , say vj , then Dominator proceeds as if the sequence
v1, . . . , vi is in fact v1, . . . , vj−1, vj+2, . . . , vi. Since only two vertices in P 1

n are
predominated, the above procedure ensures that there are at most four moves
more needed than on P 1

n . �

6. Problems, conjectures, and related extremal examples

We first demonstrate that the hierarchy of Theorem 3.1 collapses for some
graphs. For this sake recall that the Cartesian product G�H of graphs G and
H has the vertex set V (G) × V (H), vertices (g, h) and (g′, h′) being adjacent
if either gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H).

Proposition 6.1. If G is a connected graph with n(G) ≥ 2 and k ≥ 2n(G),
then

γZg(G�K1,k) = γLLg(G�K1,k) = 2n(G) − 1.

Proof. Set H = G�K1,k. Note that γ(H) = γt(H) = n(G). Combining The-
orem 3.1 and Proposition 4.1(iii) we get

γZg(H) ≤ γLLg(H) ≤ 2γt(H) − 1 = 2n(G) − 1.

Hence it remains to prove that γZg(H) ≥ 2n(G) − 1. The strategy of Staller
is the following. Note that after the ith move of Dominator, i < n(G), he
dominates at most i subgraphs of H induced by the set Vu = {(u, h) : h ∈
V (K1,k)}, where u ∈ V (G). These subgraphs are isomorphic to K1,k and
are called fibers. Staller in each move follows Dominator in one of the fibers
induced by Vu in which Dominator has already played and for which there
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exists a neighbor v of u in G such that Dominator did not yet play ver-
tices from Vv. Clearly, Staller can select a vertex from Vu which has a neigh-
bor in Vv that has not been dominated in the previous moves. (Here we use
the fact that k ≥ 2n(G).) Therefore the move of Staller is legal in the Z-
domination game and hence the Z-domination game will last at least 2n(G)−1
moves. �

In view of Proposition 6.1 we pose:

Problem 6.2. Characterize graphs G without isolated vertices for which γZg(G)
= γLLg(G) holds.

Moreover we also pose:

Conjecture 6.3. If T is a tree with n(T ) ≥ 2, then γZg(G) < γLLg(G) holds.

We have verified by computer that Conjecture 6.3 holds true for all trees on
up to and including 18 vertices.

Recall from the end of Sect. 3 that γZg(C5) = γLg(C5) which implies
that the other two sandwiched game domination parameters are also equal
to γZg(C5). This leads to:

Problem 6.4. Characterize graphs G without isolated vertices for which γZg(G)
= γLg(G) holds.

Related to the examples presented in Sect. 3 we also pose:

Problem 6.5. Is it true that γLLg(G) ≤ 2γZg(G) + 1 holds for an arbitrary
graph G without isolated vertices?

Note that from Proposition 4.1 we easily get that γLLg(G) ≤ 4γZg(G) − 1.
Note also that if the answer to Problem 6.5 is affirmative, then the bound is
best possible as demonstrated by any graph that contains a universal vertex.

With respect to Sect. 4 it would be interesting to systematically consider
sharpness of the proved bounds and to characterize the graphs attaining the
bounds.

If G is an isolate-free graph such that not all of its components are K2,
then by Theorem 4.4 we have γLLg(G) ≤ n(G). So it would be interesting
to characterize the graphs that attain the equality. Instead, we propose the
following special case which still seems very demanding.

Problem 6.6. Characterize the trees T with γLLg(T ) = n(T ).

The 3/5-conjecture for the domination game [25] and the 3/4-conjecture for
the total domination game [17] are among the main sources of interest for the
games, cf. [6,8–11,14,19,20,23,29], respectively. An analogous question can be
posed for the L-domination game hence we pose:

Conjecture 6.7. If G is a graph without isolated vertices, then γLg(G) ≤ 6
7n(G).
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The conjecture has been verified by computer for all trees up to 18 vertices.
It turned out that among them there are only two trees that attain the equality.
These two trees belong to an infinite family of graphs G for which γLg(G) =
6
7n(G) holds which is defined as follows. Let Y = S(K1,3), that is, Y is the
graph obtained from K1,3 by subdividing each of its edges exactly once. If G is
an arbitrary graph, then let GY be the graph obtained from G by identifying
each vertex of G with the central vertex of a private copy of Y . In particular,
the two trees that were found by computer among the trees up to 18 vertices
are KY

1 and KY
2 .

Proposition 6.8. If G is a graph, then γLg(GY ) = 6
7n(GY ).

Proof. Let G be an arbitrary graph with the vertex set V (G) = {u1, . . . , uk}.
To obtain GY , we attach a copy Y i of Y to every ui. The vertices of Y i are
denoted by vi

1, . . . , v
i
7 such that vi

1 = ui is the central vertex, vi
2, vi

3, vi
4 are the

support vertices, and vi
5, vi

6, vi
7 are the leaves in Y i. Clearly, |V (GY )| = 7k.

First, we prove that γLg(GY ) ≤ 6k and γ′
Lg(G

Y ) ≤ 6k. Consider the fol-
lowing strategy of Dominator.

• If it is a D-game, Dominator plays his first move in an arbitrary Y i.
• Whenever Staller plays a vertex in a Y i, Dominator replies with a move

in the same Y i, if there is such a legal move. Otherwise, Dominator may
play in any Y j where a legal move can be made.

• Inside any Y i, Dominator first plays the central vertex vi
1 (if it has not

been played by Staller earlier). Dominator’s second move is a support
vertex whose leaf neighbor has not been played yet. The third move may
be any vertex.

By the first two rules, Dominator plays at least two of the first four moves in
each Y i. Hence, he can achieve that the central vertex and a support vertex are
played before the adjacent leaf would be selected. These ensure that at least
one leaf of Y i will not be played in the game. As a consequence, γLg(GY ) ≤ 6k
and γ′

Lg(G
Y ) ≤ 6k.

To prove the other direction, we first note that every support vertex of GY

must be played in the L-domination game. Hence, if Staller ensures that either
all the three leaves or two leaves and the central vertex are played from every
Y i, then at most one vertex remains unplayed from each copy and therefore,
the length of the game is at least 6n. Consider the following strategy of Staller:

• If it is an S-game, Staller plays her first move in an arbitrary Y i.
• Whenever Dominator plays a vertex in a Y i, Staller replies in the same

Y i, if it is possible. Otherwise, she may choose any Y j where the game
is not finished yet.

• Inside any Y i, Staller plays leaves while it is possible. Otherwise, she can
choose any legal move from Y i.
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The first two rules ensure that Staller plays at least two of the first four moves
in each Y i. Since playing an (unplayed) leaf is not legal only if its support
vertex and also the central vertex have been played earlier, the third rule
ensures that at least three of the four vertices from vi

1, vi
5, vi

6 and vi
7 are

played in the L-domination game. Since, as already noted, each of the vi
2, vi

3,
and vi

4 must be played, this proves that γLg(GY ) ≥ 6k and γ′
Lg(G

Y ) ≥ 6k and
finishes the proof of the proposition. �
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[23] James, T., Klavžar, S., Vijayakumar, A.: The domination game on split graphs. Bull.

Aust. Math. Soc. 99, 327–337 (2019)
[24] Kinnersley, W.B., West, D.B., Zamani, R.: Game domination for grid-like graphs, man-

uscript (2012)
[25] Kinnersley, W.B., West, D.B., Zamani, R.: Extremal problems for game domination

number. SIAM J. Discrete Math. 27, 2090–2107 (2013)
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