
Aequat. Math. 93 (2019), 1127–1138
c© Springer Nature Switzerland AG 2019
0001-9054/19/061127-12
published online January 3, 2019
https://doi.org/10.1007/s00010-018-0630-z Aequationes Mathematicae

Derivations and Leibniz differences on rings: II

Bruce Ebanks

Abstract. In an earlier paper we discussed the composition of derivations of order 1 on a
commutative ring R, showing that (i) the composition of n derivations of order 1 yields a
derivation of order at most n, and (ii) under additional conditions on R the composition of
n derivations of order exactly 1 forms a derivation of order exactly n. In the present paper
we consider the composition of derivations of any orders on rings. We show that on any
commutative ring R the composition of a derivation of order at most n with a derivation of
order at most m results in a derivation of order at most n + m. If R is an integral domain
of sufficiently large characteristic, then the composition of a derivation of order exactly n
with a derivation of order exactly m results in a derivation of order exactly n + m. As in
the previous paper, the results are proved using Leibniz difference operators.
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niz difference operator.

1. Introduction

This paper is a sequel to [2], in which the composition of derivations of order 1
was investigated on commutative rings. There it was proved that the compo-
sition of n derivations of order 1 results in a derivation of order at most n. If
the ring satisfies some additional conditions, then the composition of n deriva-
tions of order exactly 1 forms a derivation of order exactly n. (See also [5] for
similar results.) Here we consider the more general question of compositions
of derivations of any orders. On commutative rings we show in Proposition 4.1
below that the composition of a derivation of order at most n with a derivation
of order at most m gives a derivation of order at most n + m. We then prove
in Theorem 4.3 that on integral domains of sufficiently large characteristic
(including characteristic 0) the composition of a derivation of order exactly n
with a derivation of order exactly m yields a derivation of order exactly n+m.

The main tool used is the Leibniz difference operator, which plays a fun-
damental role in the theory of derivations (of all orders).
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http://orcid.org/0000-0002-7503-9992
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Given a commutative ring S with subring R, a derivation from R into S is
a function d : R → S which satisfies additivity and the product rule (or Leibniz
rule), respectively

d(x + y) = d(x) + d(y) and d(xy) = xd(y) + d(x)y,

for all x, y ∈ R. A mapping B : R × R → S is a bi-derivation (from R into S)
if B is a derivation in each variable when the other variable is fixed.

We define derivations of other orders inductively as follows.

Definition 1.1. Let R ⊆ S be commutative rings. The zero function is the only
derivation of order 0 from R into S, and there are no derivations of order less
than 0. For each n ∈ N, suppose we have defined derivations of order at most
n − 1. If f : R → S is additive, then f is said to be a derivation of order at
most n from R into S if there exists a function B : R × R → S such that B is
a derivation of order at most n − 1 in each variable and

f(xy) − xf(y) − f(x)y = B(x, y) for all x, y ∈ R. (1)

Such a function B is called a bi-derivation of order at most n− 1 (from R into
S). Let Dn(R,S) denote the set of all derivations of order at most n from R
into S.

It is evident that the definition of derivation of order 1 agrees with the
earlier definition of derivation.

We say that a function d : R → S is a derivation of order exactly 1 if
d ∈ D1(R,S) and d �= 0, that is if d ∈ D1(R,S) \ D0(R,S). Similarly, d is a
derivation of order exactly n if d ∈ Dn(R,S) \Dn−1(R,S). For each n ∈ N, let
D∗

n(R,S) = Dn(R,S) \ Dn−1(R,S) be the set of derivations of order exactly
n. If R = S we abbreviate Dn(R,S) and D∗

n(R,S) by Dn(R) and D∗
n(R),

respectively.
It was shown independently in [2,5] that for any commutative ring R, if

d1, . . . , dn ∈ D1(R), then dn ◦ · · · ◦ d1 ∈ Dn(R). Furthermore, if R is an in-
tegral domain of characteristic larger than n! (including characteristic 0) and
d1, . . . , dn ∈ D∗

1(R), then dn◦· · ·◦d1 ∈ D∗
n(R). Here we generalize those results

by considering compositions of derivations of all orders, not just those of order
1.

We believe that the proofs of our main results, especially Proposition 4.2
and Theorem 4.3, are actually simpler than the corresponding proofs given
in [2] for the special case of compositions of derivations of order 1. Also the
condition on the characteristic of R is sharpened.

The organization of the paper is as follows. We begin in the next section
with some preliminaries concerning Leibniz differences and their applicability
to the theory of derivations. Section 3 contains additional preliminaries, no-
tation and definitions. The main results are in Sect. 4, and the final section
contains some examples.
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2. The Leibniz difference operator and derivations

Our fundamental tool in these investigations is the Leibniz difference operator.
In this section we define Leibniz differences of various orders and state some
of their relevant properties. In particular we import some results from [2] and
[3] illustrating their close relationship with derivations.

Definition 2.1. Let R ⊆ S be commutative rings. For any function f : R → S
and any y ∈ R we define the function Λyf : R → S, called the Leibniz difference
(of order 1) of f with increment y, by

Λyf(x) := f(xy) − xf(y) − f(x)y for all x ∈ R.

We call Λy a Leibniz difference operator of order 1 on SR. We also define
Leibniz difference operators of order n on SR by

Λy1,...,yn
:= Λyn

◦ · · · ◦ Λy1 for all y1, . . . , yn ∈ R,

for each n ∈ N. For any f ∈ SR we say Λy1,...,yn
f is a Leibniz difference of

order n of f . For the special case y1 = · · · = yn = y we define

Λn
y := Λy,...,y.

Note that if f is a derivation (of any order), then the function (x, y) �→
Λyf(x) is identical to the bi-derivation B appearing in (1).

It follows from the definition of Leibniz differences that for any f ∈ SR and
any y1, . . . , yn+1 ∈ R we have

Λy1,...,yn
f(yn+1) =f(y1y2 · · · yn+1) −

n+1∑

i=1

yif(y1 · · · ŷi · · · yn+1)

+
∑

1≤i<j≤n+1

yiyjf(y1 · · · ŷi · · · ŷj · · · yn+1)

+ . . . + (−1)n
n+1∑

i=1

y1 · · · ŷi · · · yn+1f(yi), (2)

where we use the hat symbol ̂ over a variable to indicate that that variable is
omitted. Letting |I| = the cardinality of a set I ⊆ N, this can be written more
concisely as

Λy1,...,yn
f(yn+1) =

n∑

j=0

(−1)j
∑

|I|=j

(
∏

i∈I

yi

)
f

⎛

⎝
∏

r∈{1,...,n+1}\I

yr

⎞

⎠ (3)

for all y1, . . . , yn+1 ∈ R, where the second summation is taken over all subsets
I of cardinality j of the index set {1, . . . , n + 1}. In particular, taking yi = y
for 1 ≤ i ≤ n + 1 we have
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Λn
yf(y) =

n∑

j=0

(−1)j

(
n + 1

j

)
yjf(yn+1−j). (4)

Since our rings are commutative, Eqs. (2) and (3) exhibit symmetry with
respect to all variables. Hence we have the following, where Sm for any pos-
itive integer m denotes the symmetric group of all permutations on the set
{1, . . . , m}.

Lemma 2.2. Let R ⊆ S be commutative rings, let n ∈ N and let f : R → S.
For any y1, . . . , yn+1 ∈ R and any permutation π ∈ Sn+1 we have

Λy1,...,yn
f(yn+1) = Λπ(y1),...,π(yn)f(π(yn+1)).

In particular, taking only permutations in Sn+1 that leave yn+1 fixed we get

Λy1,...,yn
f = Λπ(y1),...,π(yn)f for all π ∈ Sn.

The next observation is Proposition 2.3 in [2]. (Its final sentence is also a
restatement of Proposition 4.5 in [1]; see Eq. (3) above.)

Proposition 2.3. Let R ⊆ S be commutative rings, let f : R → S be additive,
let n ∈ N and j ∈ {1, . . . , n}. Then f ∈ Dn(R,S) if and only if Λy1,...,yj

f ∈
Dn−j(R,S) for all y1, . . . , yj ∈ R. In particular, f ∈ Dn(R,S) if and only if
all Leibniz differences of f of order n vanish.

From this follows the nesting property

{0} = D0(R,S) ⊆ D1(R,S) ⊆ · · · ⊆ Dn(R,S) ⊆ · · ·
for spaces of derivations on commutative rings.

The following result further illustrates the close connection between Leibniz
differences and derivations. In view of Eq. (4) above it is simply a restatement
of Theorem 5 in [3] (see also Corollary 2 in [4]) in terms of Leibniz differences.

Proposition 2.4. Let n ∈ N, let R ⊆ S be commutative rings, and suppose
f : R → S is additive. In addition suppose multiplication by (n + 1)! is either
injective in S or surjective in R. Then f ∈ Dn(R,S) if and only if Λn

yf(y) = 0
for all y ∈ R.

3. Further notation, definitions, and observations

We introduce some special notation for the treatment of Leibniz differences.
Suppose we are given a list of elements y1, . . . , yn ∈ R which are to serve
as increments for Leibniz differences. Although the order of the increments is
immaterial in a Leibniz difference operator Λy1,...,yn

because of symmetry, it
is not correct to think of the list of increments as a set. This is because some
of the increments yi may be used more than once, so we need to count them
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with their multiplicities. Thus the list of increments is actually a multiset. For
this reason we use the notation

Y = [y1, . . . , yn] 	 R

to indicate that Y is an unordered list of n increments (some of which may be
repeated) taken from R. For such a list we write yi ∈ Y for 1 ≤ i ≤ n.

Definition 3.1. Suppose n ∈ N, R is a commutative ring, Y = [y1, . . . , yn] 	 R,
f : R → S, and j ∈ {1 . . . , n}.

(a) Let Pj(Y ) denote the collection of unordered sublists of Y with length j.
(b) For any X = [x1, . . . , xj ] ∈ Pj(Y ), define ΛXf := Λx1,...,xj

f . Define
Λ∅f := f .

(c) For any X = [x1, . . . , xj ] ∈ Pj(Y ), let ΛY \Xf denote the Leibniz difference
of f of order n − j with increments from the unordered list Y \ X that
remains after the increments x1, . . . , xj are deleted from the unordered list
Y .

(d) If j ≥ 2 and X = [x1, . . . , xj ] ∈ Pj(Y ), define Λf(X) := Λx1,...,xj−1f(xj).
If X = [x1], define Λf(X) := f(x1).

(e) For any two unordered lists U = [u1, . . . , uj ] and V = [v1, . . . , vk], let
U � V denote the concatenated unordered list

U � V := [u1, . . . , uj , v1, . . . , vk].

(f) For any X ∈ Pj(Y ), write |X| = j to indicate that X is an unordered list
of length j.

The following observation is a simple consequence of Eqs. (2) or (3) when
any increment is 0, together with the fact that f(0) = 0 for any additive
function f .

Lemma 3.2. Let R ⊆ S be commutative rings, let f : R → S be any function
such that f(0) = 0, and let X be an unordered list of elements of R containing
0. Then ΛXf = 0.

In particular, if 0 ∈ X and f is additive then ΛXf = 0.

For a commutative ring R, let char(R) denote the characteristic of R. When
we declare that char(R) > m for some m ∈ N we also include the possibility
that char(R) = 0.

An integral domain is a commutative ring R in which for any x, y ∈ R
the equation xy = 0 implies that x = 0 or y = 0. The characteristic of an
integral domain is either 0 or a prime p. Hence for an integral domain R and
any positive integer m we have that char(R) > m if and only if multiplication
by p is injective in R for every prime p ≤ m. It follows that char(R) > m if
and only multiplication by m! is injective in R.
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4. Compositions of derivations of various orders

Now we show that in the setting of commutative rings, if f ∈ Dj(R,S) and
g ∈ Dk(S, T ) then g ◦ f ∈ Dj+k(R, T ). In other words, the composition of
derivations is additive with respect to their orders. This result generalizes
Proposition 3.1 in [2].

Proposition 4.1. Let m ∈ N with m ≥ 2.
(a) Let R ⊆ S ⊆ T be commutative rings, and let j ∈ N with 1 ≤ j ≤ m − 1.

Suppose f ∈ Dj(R,S) and g ∈ Dm−j(S, T ). Then

Λy(g ◦ f) = g(y)f + f(y)g̃ + Λf(y)g̃ + (Λyg) ◦ f + g ◦ (Λyf) (5)

for all y ∈ R, where g̃ := g|R is the restriction of g to R. Moreover
g ◦ f ∈ Dm(R, T ).

(b) Let R1 ⊆ R2 ⊆ · · · ⊆ Rn+1 be commutative rings, and let n1, . . . , nm ∈ N.
If fi ∈ Dni

(Ri, Ri+1) for 1 ≤ i ≤ m, then fn ◦ · · · ◦ f1 ∈ Dn1+···+nm
(R1,

Rn+1).

Proof. We start by proving Eq. (5). For any x, y ∈ R we have

Λy(g ◦ f)(x) = (g ◦ f)(xy) − x(g ◦ f)(y) − (g ◦ f)(x)y

= [g(xf(y) + yf(x) + Λyf(x))] − xg(f(y)) − yg(f(x))

= [g(xf(y)) − xg(f(y))] + [g(yf(x)) − yg(f(x))] + g(Λyf(x))

= [g(x)f(y) + Λf(y)g(x)] + [g(y)f(x) + Λyg(f(x))] + g(Λyf(x)),

which is (5).
Next we show that g ◦f ∈ Dm(R, T ) by induction on m. For the initial step

m = 2 we have j = 1, so f ∈ D1(R,S) and g ∈ D1(S, T ). By (5) for j = 1 and
m = 2 we have

Λy(g ◦ f) = g(y)f + f(y)g̃,

since in this case Λf(y)g̃ = Λyg = Λyf = 0. Thus we see that Λy(g ◦ f) ∈
D1(R, T ) for all y ∈ R. Therefore g ◦ f ∈ D2(R, T ) and the statement is true
for m = 2.

Now let M ≥ 3 and suppose our statement is true for all 2 ≤ m ≤ M − 1.
We have to prove that it is true for m = M , so suppose that f ∈ Dj(R,S)
and g ∈ DM−j(S, T ), with 1 ≤ j ≤ M − 1. Consider the right hand side of (5)
term by term for a given element y ∈ R.

(i) g(y)f ∈ Dj(R, T ) ⊆ DM−1(R, T ).
(ii) f(y)g̃ ∈ DM−j(R, T ) ⊆ DM−1(R, T ).
(iii) Λf(y)g̃ ∈ DM−j−1(R, T ) ⊆ DM−1(R, T ).
(iv) (Λyg) ◦ f is the composition of Λyg ∈ DM−j−1(S, T ) with f ∈ Dj(R,S).

By the induction hypothesis the composite function belongs to
DM−1(R, T ).
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(v) g ◦ (Λyf) is the composition of g ∈ DM−j(S, T ) with Λyf ∈ Dj−1(R,S).
By the induction hypothesis the composite function belongs to
DM−1(R, T ).

By the linearity of Eq. (5) we conclude that Λy(g ◦f) ∈ DM−1(R, T ), and thus
(g ◦ f) ∈ DM (R, T ). Therefore part (a) is proved.

Part (b) follows from part (a) by a simple inductive argument. �

Our ultimate goal is to show that under certain conditions on the underlying
rings the same type of additivity holds for derivations with respect to exact
orders, that is for the sets D∗

n. The key to reaching that goal is the following
proposition.

Proposition 4.2. Let R ⊆ S ⊆ T be commutative rings, let m ∈ N with m ≥ 2,
and let j ∈ N with 1 ≤ j ≤ m − 1. Suppose f ∈ Dj(R,S) and g ∈ Dm−j(S, T ),
and let Y = [y1, . . . , ym−1] be an unordered list of m−1 increments taken from
R. Then

ΛY (g ◦ f) =
m−1∑

j=1

∑

X∈Pj(Y )

[
Λf(X)ΛY \X g̃ + Λg(X)ΛY \Xf

]
, (6)

where g̃ := g|R is the restriction of g to R.

Proof. The proof is by induction on m. For m = 2 and Y = [y], Eq. (6) states
that

Λy(g ◦ f) = f(y)g̃ + g(y)f

for any f ∈ D1(R,S) and g ∈ D1(S, T ), which agrees with (5) for the case
j = 1,m = 2. Therefore (6) holds for m = 2.

Now let M ≥ 2 and suppose (6) is valid for 2 ≤ m ≤ M . We will prove (6)
is valid for m = M + 1. To this end, let Y = [y1, . . . , yM−1] be an unordered
list of M − 1 increments taken from R, let Y ′ = Y � [yM ] be the unordered
list [y1, . . . , yM ], and suppose f ∈ Dj(R,S) and g ∈ DM+1−j(S, T ) for some
j ∈ {1, . . . , M}. Then using (5) from Proposition 4.1 we calculate that

ΛY ′(g ◦ f) = ΛY �[yM ](g ◦ f) = ΛY ◦ ΛyM
(g ◦ f)

= ΛY [g(yM )f + f(yM )g̃ + Λf(yM )g̃ + (ΛyM
g) ◦ f + g ◦ (ΛyM

f)]

= g(yM )ΛY f + f(yM )ΛY g̃ + ΛY �[f(yM )]g̃

+ ΛY [(ΛyM
g) ◦ f + g ◦ (ΛyM

f)]

= g(yM )ΛY f + f(yM )ΛY g̃ + ΛY [(ΛyM
g) ◦ f + g ◦ (ΛyM

f)]. (7)

In the last step we used ΛY �[f(yM )]g̃ = 0 because either f(yM ) = 0 or not.
In the first case we apply Lemma 3.2, and in the second case we combine
two facts: (i) ΛY �[f(yM )]g̃ is a Leibniz difference of g̃ of order M , and (ii)
g ∈ DM+1−j(S, T ) implying g̃ ⊆ DM (R, T ) since j ≥ 1.
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Next observe that (ΛyM
g) ◦ f is the composition of ΛyM

g ∈ DM−j(S, T )
with f ∈ Dj(R,S). In the case j = M we have ΛyM

g = 0 so (ΛyM
g) ◦ f = 0;

otherwise j ≤ M − 1 and we can apply the inductive hypothesis to the term
(ΛyM

g) ◦ f . Also, g ◦ (ΛyM
f) is the composition of g ∈ DM+1−j(S, T ) with

ΛyM
f ∈ Dj−1(R,S). In the case j = 1 we have ΛyM

f = 0 so g ◦ (ΛyM
f) = 0,

and in this case we also have ΛY \Xf = 0 for X ∈ P1(Y ) in the second line
of the calculation below. Otherwise j ≥ 2 and we can apply the inductive
hypothesis to the term g ◦ (ΛyM

f). The result for (7) is that

ΛY ′(g ◦ f) = g(yM )ΛY f + f(yM )ΛY g̃ + ΛY [(ΛyM
g) ◦ f + g ◦ (ΛyM

f)]

= g(yM )ΛY f + f(yM )ΛY g̃ +
M−1∑

j=1

∑

X∈Pj(Y )

[
Λf(X)ΛY \X(ΛyM

g̃)

+ Λ(ΛyM
g)(X)ΛY \Xf

]

+
M−1∑

j=1

∑

X∈Pj(Y )

[
Λ(ΛyM

f)(X)ΛY \X g̃ + Λg(X)ΛY \X(ΛyM
f)

]

= g(yM )ΛY f + f(yM )ΛY g̃ +
M−1∑

j=1

∑

X∈Pj(Y ′),yM /∈X

[
Λf(X)ΛY ′\X g̃

+ Λg(X)ΛY ′\Xf
]

+
M−1∑

j=1

∑

X∈Pj(Y )

[
Λ(ΛyM

g)(X)ΛY \Xf + Λ(ΛyM
f)(X)ΛY \X g̃

]
, (8)

where we have used in the last step that when X ∈ Pj(Y ), the quantities
ΛY \X(ΛyM

g̃) and ΛY \X(ΛyM
f) can be replaced respectively by ΛY ′\X g̃ and

ΛY ′\Xf for X ∈ Pj(Y ′) with yM /∈ X.

Let us examine the last two summands more closely. Using Definition 3.1
(d) for X = [x1, . . . , xj ] ∈ Pj(Y ) and for all 1 ≤ j ≤ M − 1, we get

Λ(ΛyM
f)(X) = [Λx1,...,xj−1 ◦ (ΛyM

f)](xj) = Λx1,...,xj−1,yM
f(xj)

= Λf(X � [yM ]),

and similarly

Λ(ΛyM
g)(X) = Λg(X � [yM ]).
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Using these simplifications in (8), we find that

ΛY ′(g ◦ f) =g(yM )ΛY f + f(yM )ΛY g̃ +
M−1∑

j=1

∑

X∈Pj(Y ′),yM /∈X

[
Λf(X)ΛY ′\X g̃

+Λg(X)ΛY ′\Xf
]

+
M−1∑

j=1

∑

X∈Pj(Y )

[
Λg(X � [yM ])ΛY \Xf + Λf(X � [yM ])ΛY \X g̃

]

=
M−1∑

j=1

∑

X∈Pj(Y ′),yM /∈X

[
Λf(X)ΛY ′\X g̃ + Λg(X)ΛY ′\Xf

]

+ g(yM )ΛY f + f(yM )ΛY g̃

+
M∑

j=2

∑

X′∈Pj(Y ′),yM∈X′

[
Λg(X ′)ΛY ′\X′f + Λf(X ′)ΛY ′\X′ g̃

]

=
M−1∑

j=1

∑

X∈Pj(Y ′),yM /∈X

[
Λf(X)ΛY ′\X g̃ + Λg(X)ΛY ′\Xf

]

+
M∑

j=1

∑

X′∈Pj(Y ′),yM∈X′

[
Λg(X ′)ΛY ′\X′f + Λf(X ′)ΛY ′\X′ g̃

]

=
M∑

j=1

∑

X∈Pj(Y ′)

[
Λf(X)ΛY ′\X g̃ + Λg(X)ΛY ′\Xf

]
.

In the last line we used the fact that for j = M the only element of PM (Y ′) is
the complete list Y ′ itself, which includes yM .

Therefore (6) holds for m = M + 1 and the proof is finished. �

Now we are ready for the main result. (For the reason why we restrict to
the case R = S here, see Example 5.3 below.)

Theorem 4.3. Let R ⊆ T be integral domains, suppose m, k ∈ N with m ≥ 2 and
1 ≤ k ≤ m−1, and suppose char(R) > m. If f ∈ D∗

k(R) and g ∈ D∗
m−k(R, T ),

then g ◦ f ∈ D∗
m(R, T ).

Proof. For a contradiction, suppose there exist an f ∈ D∗
k(R) and a g ∈

D∗
m−k(R, T ) such that g ◦ f ∈ Dm−1(R, T ). Let Y = [y1, . . . , ym−1] be an

unordered list of m − 1 increments taken from R. Then by Proposition 4.2 we
have (note that g̃ = g since S = R)

0 = ΛY (g ◦ f) =
m−1∑

n=1

∑

X∈Pn(Y )

[
Λf(X)ΛY \Xg + Λg(X)ΛY \Xf

]
.
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Considering the terms Λf(X)ΛY \Xg for X = [x1, . . . , xn] ∈ Pn(Y ), we have

(i) Λf(X) = Λx1,x2,...,xn−1f(xn) = 0 for n − 1 ≥ k, since f ∈ Dk(R); and
(ii) ΛY \Xg = 0 if length |Y |−|X| = m−1−n ≥ m−k, since g ∈ Dm−k(R, T ).

Hence these terms vanish when n ≥ k +1 or n ≤ k − 1, and the only surviving
terms are the ones for n = k. A similar analysis of the terms Λg(X)ΛY \Xf
shows that they all vanish except for the ones with n = m − k. Thus we are
left with

0 =
∑

X∈Pk(Y )

Λf(X)ΛY \Xg +
∑

X∈Pm−k(Y )

Λg(X)ΛY \Xf. (9)

By Proposition 2.4, since f /∈ Dk−1(R), there exists an element p ∈ R such
that a = Λk−1

p f(p) �= 0. Putting yi = p for all 1 ≤ i ≤ m − 1 in (9) we get

0 =
(

m − 1
k

)
aΛm−1−k

p g +
(

m − 1
m − k

)
Λm−1−k

p g(p)Λk−1
p f.

Multiplying by k!(m − k)!, this becomes

0 = (m − 1)![(m − k)aΛm−1−k
p g + kΛm−1−k

p g(p)Λk−1
p f ]. (10)

Evaluating this equation at p we have

0 = (m − 1)![(m − k)aΛm−1−k
p g(p) + kΛm−1−k

p g(p)Λk−1
p f(p)]

= m!aΛm−1−k
p g(p).

Since char(R) > m (thus char(T ) > m), as noted above multiplication by m!
is injective in T . Since a �= 0, this implies Λm−1−k

p g(p) = 0. Inserting this into
(10) we get

0 = (m − 1)!(m − k)aΛm−1−k
p g.

But multiplication by (m−1)!(m−k) is also injective in T because 1 ≤ k < m,
hence we arrive at the conclusion Λm−1−k

p g = 0, which contradicts the fact that
g ∈ D∗

m−k(R).
This completes the proof of the theorem. �

The theorem just proved contains the following corollary, which improves
Theorem 3.6 in [2] and also includes Theorem 1.2 in [5].

Corollary 4.4. Let R be an integral domain, suppose n ∈ N with n ≥ 2, and
suppose char(R) > n. If d1, . . . , dn ∈ D∗

1(R), then dn ◦ · · · ◦ d1 ∈ D∗
n(R).

Proof. In Theorem 4.3 take k = 1, f = d1 and successively m = 2, . . . , n with
g = dm ◦ · · · ◦ d2 at each step. �

Another simple inductive argument leads to the following extension of The-
orem 4.3.
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Corollary 4.5. Let R be an integral domain, suppose m ∈ N with m ≥ 2, let
n1, . . . , nm ∈ N, and suppose char(R) > (n1 + · · · + nm). If fi ∈ D∗

ni
(R) for

each 1 ≤ i ≤ m, then fm ◦ · · · ◦ f1 ∈ D∗
n1+···+nm

(R).

5. Examples

We close the paper with three examples illustrating the need for our assump-
tions in Theorem 4.3. The first shows the necessity of char(R) > m, even if R
is an integral domain.

Example 5.1. Let p be a prime number. Then the polynomial ring R = Zp[x] is
an integral domain with characteristic p. Let d : R → R be the derivative func-
tion defined by d(f) := f ′ for f ∈ R, and define higher derivatives d2, d3, . . .
by iteration. Then for 1 ≤ j ≤ p − 1 we have dj ∈ D∗

j (R). On the other hand
for any polynomial f ∈ R, say f(x) =

∑
j ajx

j with finitely many nonzero
aj ∈ Zp, we have

dp(f) = dp

⎛

⎝
∑

j

ajx
j

⎞

⎠ =
∑

j≥p

p!ajx
j−p = 0,

so dp = 0.

The second example shows the necessity of R being an integral domain,
even if char(R) = 0.

Example 5.2. Let R be the quotient ring Z[x, y]/(xy), where (xy) is the ideal
generated by xy. Let m ∈ N with m ≥ 2, and suppose j ∈ {1 . . . , m − 1}.
Define d1, d2 : R → R by

d1(p) :=
∂jp

∂xj
, d2(p) :=

∂m−jp

∂ym−j
.

It is easy to see that d1 ∈ D∗
j (R) and d2 ∈ D∗

m−j(R), yet d2 ◦ d1 = 0.

Finally, one might ask why we restrict to the case R = S in Theorem 4.3
rather than working on a “tower” of integral domains R ⊆ S ⊆ T . The next
example shows that the corresponding statement on such a tower is not true
if S �= R, not even for fields of characteristic 0.

Example 5.3. Let R = Q(x) be the field of rational functions in x with coef-
ficients from Q, and let S = Q(x, y) be the field (extension of R) of rational
functions in two variables x, y. Define D1 : R → S and D2 : S → S by

D1(f) := f ′ and D2(g) :=
∂g

∂y
,

for all rational functions f = f(x) ∈ Q(x) and g = g(x, y) ∈ Q(x, y). Clearly
D1 ∈ D∗

1(R,S) and D2 ∈ D∗
1(S, S). Nevertheless D2 ◦ D1 = 0.
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