Aequat. Math. 93 (2019), 735–742 © Springer Nature Switzerland AG 2018 0001-9054/19/040735-8 published online October 23, 2018 https://doi.org/10.1007/s00010-018-0609-9

Aequationes Mathematicae

Vertex-edge domination in graphs

Paweł Żyliński

Abstract. We establish that for any connected graph G of order $n \ge 6$, a minimum vertexedge dominating set of G has at most n/3 vertices, thus affirmatively answering the open question posed by Boutrig et al. (Aequ Math 90(2):355–366, 2016).

Mathematics Subject Classification. Primary 05C69; Secondary 05C70.

Keywords. Vertex-edge domination, P₃-packing, corona, extremal graph.

1. Introduction

Let $G = (V_G, E_G)$ be a graph. A vertex $u \in V_G$ is said to *ve-dominate* an edge $xy \in E_G$ if (1) u = x or u = y, that is, u is incident to xy, or (2) ux or uy is an edge in G. A set $D \subseteq V_G$ is a *vertex-edge dominating* set (or simply, a *ve-dominating* set) of G if for every edge $e \in E_G$, there exists a vertex $u \in D$ such that u ve-dominates e. The vertex-edge domination number of G, denoted $\gamma_{ve}(G)$, is the minimum cardinality of a vertex-edge dominating set of G. Herein, our main result is the following theorem.

Theorem 1.1. If G is a connected graph of order $n \ge 6$, then $\gamma_{ve}(G) \le \lfloor \frac{n}{3} \rfloor$.

In other words, we affirmatively answer the question posed by Boutrig et al. [3]. So far, only a partial answer has been known, that is, the aforementioned (tight) upper bound holds for any C_5 -free connected graph [3] (and so for any tree as established also in [14]).

Background. The concept of vertex-edge domination in graphs was introduced by Peters [17], and then investigated by several authors, in particular, lower and upper bounds on the vertex-edge domination number in different graph classes were studied in [3, 14-16, 19], vertex-edge degrees and vertex-edge

Supported by the Grant 2015/17/B/ST6/01887 (National Science Centre, Poland).

domination polynomials of graphs were considered for example in [5, 20, 21], while [3, 6, 15, 16] focused on relations between some ve-domination parameters, and algorithmic aspects were discussed in [15]. Finally, some other variants—total, global, etc.—of ve-domination were studied in [2, 7, 12, 13, 18].

From a practical point of view, the problem contributes to a bunch of applications related to graph searching/guarding problems, see for example [1,9,11]. In particular, the concept of *ve*-domination may be thought of as a variation on the searchlight guarding problem [22] or—when restricted to connected plane graphs with particular embeddings—on the *k*-periscope guarding problem in grids [10]. In addition, *ve*-domination is applicable in chemical graph theory [5,8].

Notation. Let $G = (V_G, E_G)$ be a connected graph of order $|V_G| = n$. The neighborhood of a vertex v in G is denoted by $N_G(v)$, while its degree is denoted by $\deg_G(v)$. For a set $S \subseteq V_G$, the set of all un-ve-dominated edges (by any element of S) in G is denoted by $un_G(S)$. A P_3 -packing of G is a set of vertex-disjoint 3-vertex paths in G, and a maximum P_3 -packing of G is a set of vertex-disjoint 3-vertex paths in G, the set of all vertices in G. Finally, for a maximum P_3 -matching \mathbb{P}_3 of G, the set of all vertices of paths in \mathbb{P}_3 is denoted by $V(\mathbb{P}_3)$, while the set of all degree two vertices (so-called *centers*) of all paths in \mathbb{P}_3 is denoted by $C(\mathbb{P}_3)$. All the other graph theory terminology not presented here can be found for example in [4].

2. Proof of Theorem 1.1

Let \mathbb{P}_3 be a maximum P_3 -matching of a connected simple graph $G = (V_G, E_G)$ of order $n \ge 6$ that minimizes the cardinality of $un_G(C(\mathbb{P}_3))$ over all maximum P_3 -matchings of G. Clearly, we have the following observation.

Observation. If $un_G(C(\mathbb{P}_3)) = \emptyset$ then $\gamma_{ve}(G) \leq |C(\mathbb{P}_3)|$, and hence $\gamma_{ve}(G) \leq \lfloor \frac{n}{3} \rfloor$.

Therefore, all we need is to argue that indeed $un_G(C(\mathbb{P}_3)) = \emptyset$. Our proof is based on a sequence of claims (some of their simple proofs could be omitted, however, we present all of them, repetitively, for the convenience of the reader).

Suppose to the contrary that $|un_G(C(\mathbb{P}_3))| > 0$ and let xy be an edge that belongs to $un_G(C(\mathbb{P}_3))$. For $v \in \{x, y\}$, let \bar{v} denote the unique vertex in $\{x, y\} \setminus \{v\}$.

Claim 2.1. If $\deg_G(v) \ge 2$ then $N_G(v) \setminus \{\bar{v}\} \subseteq V(\mathbb{P}_3) \setminus C(\mathbb{P}_3)$.

Proof. The fact that $N_G(v) \setminus \{\bar{v}\} \subseteq V(P_3)$ follows directly from the maximality of \mathbb{P}_3 , while the fact that $N_G(v) \setminus \{\bar{v}\} \cap C(P_3) = \emptyset$ —from the assumption that $xy \in un_G(C(\mathbb{P}_3))$.

So let $\Pi = v\bar{v}v_1^1v_2^1v_3^1v_1^2v_2^2v_3^2\dots v_1^kv_2^kv_3^k$ be any of the longest paths in G, taken over $v \in \{x, y\}$, such that the 3-vertex path $v_1^jv_2^jv_3^j$ belongs to \mathbb{P}_3 , j =

 $1, \ldots, k$ (notice that such a path Π exists as G is connected); let V_{Π} denote the vertex set of Π .

Claim 2.2.
$$N_G(v_3^j) \subseteq V(\mathbb{P}_3) \cup \{x, y\}$$
 for any $j = 1, ..., k$.

Proof. Suppose to the contrary that there exists $z \in N_G(v_3^j) \setminus (V(\mathbb{P}_3) \cup \{x, y\})$ for some $1 \leq j \leq k$. Then

$$\mathbb{P}'_{3} = \left(\mathbb{P}_{3} \setminus \bigcup_{i=1}^{j} \left\{v_{1}^{i} v_{2}^{i} v_{3}^{i}\right\}\right) \cup \left\{v \bar{v} v_{1}^{1}, v_{2}^{1} v_{3}^{1} v_{1}^{2}, v_{2}^{2} v_{3}^{2} v_{1}^{3}, \dots, v_{2}^{j-1} v_{3}^{j-1} v_{1}^{j}, v_{2}^{j} v_{3}^{j} z\right\}$$

is a P_3 -packing of G with $|V(\mathbb{P}'_3)| > |V(\mathbb{P}_3)|$, which contradicts the maximality of \mathbb{P}_3 .

Claim 2.3. $N_G(v_2^j) \subseteq V(\mathbb{P}_3)$ for any $j = 1, \ldots, k$.

Proof. Suppose to the contrary that there exists $z \in N_G(v_2^j) \setminus V(\mathbb{P}_3)$ for some $1 \leq j \leq k$. If $z \in \{x, y\}$, then edge xy is ve-dominated by $v_2^j \in C(\mathbb{P}_3)$, a contradiction with $xy \in un_G(C(\mathbb{P}_3))$. Next, if $z \notin \{x, y\}$, then

$$\mathbb{P}'_{3} = \left(\mathbb{P}_{3} \setminus \bigcup_{i=1}^{j} \left\{v_{1}^{i} v_{2}^{i} v_{3}^{i}\right\}\right) \cup \left\{v \bar{v} v_{1}^{1}, v_{2}^{1} v_{3}^{1} v_{1}^{2}, v_{2}^{2} v_{3}^{2} v_{1}^{3}, \dots, v_{2}^{j-1} v_{3}^{j-1} v_{1}^{j}, z v_{2}^{j} v_{3}^{j}\right\}$$

is a P_3 -packing of G with $|V(\mathbb{P}'_3)| > |V(\mathbb{P}_3)|$, which contradicts the maximality of \mathbb{P}_3 .

Claim 2.4.
$$\left(N_G(v_3^j) \setminus \{v_2^1, v_2^2, \dots, v_2^{j-1}\}\right) \cap C(\mathbb{P}_3) = \emptyset \text{ for any } j = 2, \dots, k.$$

Proof. Suppose that there exists $z \in \left(N_G(v_3^j) \setminus \{v_2^1, \ldots, v_2^{j-1}\}\right) \cap C(\mathbb{P}_3)$ for some $2 \leq j \leq k$. Observe that edge xy is *ve*-dominated by v_1^1 and any edge incident to v_3^j is *ve*-dominated by z. Next, it follows from Claims 2.2 and 2.3 that all the other edges that are *ve*-dominated <u>only</u> by the vertices $v_2^1, v_2^2, \ldots, v_2^j \in C(\mathbb{P}_3)$ can be also *ve*-dominated by the vertices $v_1^1, v_1^2, \ldots, v_1^j$. Therefore

$$\mathbb{P}'_{3} = \left(\mathbb{P}_{3} \setminus \bigcup_{i=1}^{j} \left\{v_{1}^{i} v_{2}^{i} v_{3}^{i}\right\}\right) \cup \left\{\bar{v}v_{1}^{1} v_{2}^{1}, v_{3}^{1} v_{1}^{2} v_{2}^{2}, \dots, v_{3}^{j-1} v_{1}^{j} v_{2}^{j}\right\}$$

is another maximum P_3 -packing of G and $|un_G(C(\mathbb{P}'_3))| < |un_G(C(\mathbb{P}_3))|$, which contradicts the choice of \mathbb{P}_3 .

Claim 2.5. $N_G(v_3^k) \subseteq V_{\Pi}$, and moreover, $v \in N_G(v_3^k)$ (and hence $\deg_G(v_3^k) \ge 2$).

Proof. The fact that $N_G(v_3^k) \subseteq V_{\Pi}$ follows immediately from the maximality of k and Claims 2.2 and 2.4. Next, suppose to the contrary that $v \notin N_G(v_3^k)$.

P. Żyliński

Again, it follows from Claims 2.2 and 2.3 that all the edges that are vedominated only by the vertices $v_2^1, v_2^2 \dots, v_2^k \in C(\mathbb{P}_3)$ can be also ve-dominated by the vertices $v_1^1, v_1^2 \dots, v_1^k$. Therefore

$$\mathbb{P}'_{3} = \left(\mathbb{P}_{3} \setminus \bigcup_{i=1}^{k} \left\{v_{1}^{i} v_{2}^{i} v_{3}^{i}\right\}\right) \cup \left\{\bar{v} v_{1}^{1} v_{2}^{1}, v_{3}^{1} v_{1}^{2} v_{2}^{2}, \dots, v_{3}^{k-1} v_{1}^{k} v_{2}^{k}\right\}$$

is a P_3 -packing of G with $V(\mathbb{P}'_3) = V(\mathbb{P}_3)$ and $|un_G(C(\mathbb{P}'_3))| < |un_G(C(\mathbb{P}_3))|$ as v_1^1 also ve-dominates xy, which contradicts the choice of \mathbb{P}_3 .

Claim 2.6. $N_G(v_1^j) \subseteq V(\mathbb{P}_3) \cup \{x, y\}$ for any $j = 1, \ldots, k$.

Proof. Recall that we have assumed that Π is any of the longest paths taken over $v \in \{x, y\}$. Therefore, since $v \in N_G(v_3^k)$ (by Claim 2.5), the reversed path $\bar{v}vv_3^kv_2^kv_1^k\ldots v_3^1v_2^1v_1^1$ is of the same length as Π and so it can also play the role of Π in Claim 2.2, which results in the desired property. \Box

Now, the crucial observation is that we must have $|V_{\Pi}| = 5$, that is, k = 1. Indeed, suppose to the contrary that $k \geq 2$.

Claim 2.7. If $k \ge 2$ then the set $\{v, \overline{v}, v_1^k, v_2^k, v_3^k\}$ induces a 5-vertex cycle in G.

Proof. Suppose that $\{v, \bar{v}, v_1^k, v_2^k, v_3^k\}$ does not induce a 5-vertex cycle in G (recall that $vv_2^k, \bar{v}v_2^k \notin E_G$ by Claim 2.3). Let $O_G(v_2^k) \subseteq E_G$ be the set of edges that are *ve*-dominated <u>only</u> by $v_2^k \in C(\mathbb{P}_3)$ (and no other vertex in $C(\mathbb{P}_3)$). We consider two cases.

Case 1: $\bar{v}v_1^k \notin E_G$. It follows then from Claims 2.2, 2.3 and 2.6 that v_3^k dominates any edge in $O_G(v_2^k)$, and therefore

$$\mathbb{P}_3' = \left(\mathbb{P}_3 \setminus \left\{v_1^k v_2^k v_3^k\right\}\right) \cup \left\{v_2^k v_3^k v\right\}$$

is another maximum P_3 -packing of G and $|un_G(C(\mathbb{P}'_3))| < |un_G(C(\mathbb{P}_3))|$ as v_3^k also ve-dominates xy, which contradicts the choice of \mathbb{P}_3 .

Case 2: $\bar{v}v_1^k \in E_G$. Then $vv_1^k \in E_G$ or $\bar{v}v_3^k \in E_G$, or $v_1^kv_3^k \in E_G$. If $vv_1^k \in E_G$ then it follows from Claims 2.2, 2.3 and 2.6 that v dominates any edge in $O_G(v_2^k)$. Therefore

$$\mathbb{P}_3' = \left(\mathbb{P}_3 \setminus \left\{v_1^k v_2^k v_3^k\right\}\right) \cup \left\{v_3^k v \bar{v}\right\}$$

is another maximum P_3 -packing of G and $|un_G(C(\mathbb{P}'_3))| < |un_G(C(\mathbb{P}_3))|$ as v also ve-dominates xy, which contradicts the choice of \mathbb{P}_3 .

Otherwise, if $vv_1^k \notin E_G$ then we must have $\bar{v}v_3^k \in E_G$ or $v_1^k v_3^k \in E_G$. It follows from Claims 2.2, 2.3 and 2.6 that v_3^k dominates any edge in $O_G(v_2^k)$, and therefore

$$\mathbb{P}_3' = \left(\mathbb{P}_3 \setminus \left\{v_1^k v_2^k v_3^k\right\}\right) \cup \left\{v_2^k v_3^k v\right\}$$

is another maximum P_3 -packing of G and $V(\mathbb{P}'_3) = V(\mathbb{P}_3)$ and $|un_G(C(\mathbb{P}'_3))| < |un_G(C(\mathbb{P}_3))|$, which is again a contradiction with the choice of \mathbb{P}_3 . \Box

Claim 2.8. If $k \ge 2$ then the set $\{v, \overline{v}, v_1^1, v_2^1, v_3^1\}$ induces a 5-vertex cycle in G.

Proof. Analogously as in the proof of Claim 2.6, by reversing the path Π and following the arguments in the proof of Claim 2.7, we obtain that $\{v, \bar{v}, v_1^1, v_2^1, v_3^1\}$ also induces a 5-vertex cycle in G.

Next, in order to argue k = 1, we consider two cases.

Case 1: $v_2^1 v_2^k \notin E_G$. Observe that in this case, keeping in mind Claim 2.3, each edge $v_2^1 z \in E_G$, where $z \neq v_1^1, v_3^1$ (recall that $v_2^1 v, v_2^1 \bar{v} \notin E_G$), is vedominated by some $v_2^i \in C(\mathbb{P}_3), 2 \leq i \leq k-1$. By the same argument, each edge $v_2^k z \in E_G$, where $z \neq v_1^k, v_3^k$ (again recall that $v_2^k v, v_2^k \bar{v} \notin E_G$), is vedominated by some $v_2^j \in C(\mathbb{P}_3), 2 \leq j \leq k-1$. Therefore, by exchanging two paths $v_1^1 v_2^1 v_3^1$ and $v_1^k v_2^k v_3^k$ in \mathbb{P}_3 with paths $v_1^1 \bar{v} v_1^k$ and $v_3^k v v_3^1$, we obtain another maximum P_3 -packing \mathbb{P}'_3 , but with $|un_G(C(\mathbb{P}'_3))| < |un_G(C(\mathbb{P}_3))|$ (by Claim 2.3) as now xy is also ve-dominated, which contradicts the choice of \mathbb{P}_3 .

Case 2: $v_2^1 v_2^k \in E_G$. Similarly as above, keeping in mind Claim 2.3, observe that each edge $v_2^1 v_2 \in E_G$, where $z \neq v_1^k, v_3^k$, in particular, edge $v_2^1 v_2^k$, is vedominated by $v_2^1 \in C(\mathbb{P}_3)$. Also, keeping Claims 2.2 and 2.7 in mind, each edge $v_3^k z \in E_G$, where $z \neq v, v_2^k$, is ve-dominated by some $v_2^j \in C(\mathbb{P}_3), 1 \leq j \leq k-1$. Consequently, exchanging path $v_1^k v_2^k v_3^k$ in \mathbb{P}_3 with $v_3^k v \bar{v}$ results in another maximum P_3 -packing \mathbb{P}'_3 , but with $|un_G(C(\mathbb{P}'_3))| < |un_G(C(\mathbb{P}_3))|$ (by Claim 2.3) as now xy is also ve-dominated, which contradicts the choice of \mathbb{P}_3 , and ultimately k > 1.

We now continue with a sequence of claims for k = 1.

Claim 2.9. The set $\{v, \overline{v}, v_1^1, v_2^1, v_3^1\}$ induces a 5-vertex cycle in G.

Proof. The arguments are similar to those in the proof of Claim 2.7, see Case 2. Namely, suppose to the contrary that vv_1^1 or $\bar{v}v_3^1$, or $v_1^1v_3^1$ belongs to E_G (recall $v_2^1v, v_2^1\bar{v} \notin E_G$). If $vv_1^1 \in E_G$, then exchange $v_1^1v_2^1v_3^1$ in \mathbb{P}_3 with $v_3^1v\bar{v}$, otherwise, exchange path $v_1^1v_2^1v_3^1$ in \mathbb{P}_3 with $v_2^1v_3^1v$. It follows from Claims 2.2, 2.3 and 2.6 that the resulting 3-vertex path set \mathbb{P}'_3 is another maximum P_3 -packing \mathbb{P}'_3 with $|un_G(C(\mathbb{P}'_3))| < |un_G(C(\mathbb{P}_3))|$ as now xy is also ve-dominated, which contradicts the choice of \mathbb{P}_3 .

Claim 2.10. $\deg_G(v_1^1) = \deg_G(v_2^1) = \deg_G(v_3^1) = 2.$

FIGURE 1. The only possible left case; 3-vertex paths in \mathbb{P}_3 are marked with bold lines

Proof. The equality $\deg_G(v_1^1) = \deg_G(v_3^1) = 2$ follows from Claims 2.2, 2.6 and 2.9. Suppose now that $\deg_G(v_2^1) \ge 3$. Let $z \in N_G(v_2^1) \setminus \{v_1^1, v_3^1\}$ (recall that $v_2^1 v, v_2^1 \bar{v} \notin E_G$). If $z \in C(\mathbb{P}_3)$ then, considering Claim 2.3, exchanging path $v_1^1 v_2^1 v_3^1$ in \mathbb{P}_3 with $v_3^1 v \bar{v}$ results in another maximum P_3 -packing with $|un_G(C(\mathbb{P}_3))| < |un_G(C(\mathbb{P}_3))|$ as xy is also ve-dominated, which contradicts the choice of \mathbb{P}_3 .

Otherwise, if $z \notin C(\mathbb{P}_3)$, then exchange path $v_1^1 v_2^1 v_3^1$ in \mathbb{P}_3 with $v_2^1 v_3^1 v$. It follows from Claim 2.3, the choice of xy, and $\deg_G(v_1^1) = 2$ that all the other edges that have been *ve*-dominated by elements in $C(\mathbb{P}_3)$ remain *ve*-dominated by elements in $C(\mathbb{P}'_3)$. Therefore, the resulting P_3 -packing \mathbb{P}'_3 is a maximum P_3 -packing, with $|un_G(C(\mathbb{P}'_3))| \leq |un_G(C(\mathbb{P}_3))|$: the edge xy is now *ve*dominated, but edge $\bar{v}v_1^1$ is not. Moreover, it follows from the choice of \mathbb{P}_3 that $|un_G(C(\mathbb{P}'_3))| = |un_G(C(\mathbb{P}_3))|$ must hold. Now, for the un-*ve*-dominated edge $\bar{v}v_1^1 \in un_G(C(\mathbb{P}'_3))$, by repeating all the aforementioned arguments applied to edge xy, we obtain that $\deg_G(v_2^1) = 2$ (see the discussion above when discussing the equality k = 1), which is a contradiction.

Concluding, we are driven to the case where the only possibility for G is to consist of a number of (at least two as $n \geq 6$) 5-vertex cycles, all of them, pairwisely, sharing only the edge xy (see Fig. 1 for an illustration). But then, by replacing two 3-vertex paths in \mathbb{P}_3 with two vertex-disjoint 3-vertex paths with centers at x and y, respectively, we obtain another maximum P_3 -packing \mathbb{P}'_3 with $un_G(C(\mathbb{P}'_3)) = \emptyset$, and therefore, we must also have $un_G(\mathbb{P}_3) = \emptyset$, a final contradiction.

3. γ_{ve} -extremal graphs

The P_2 -corona of a graph $G = (V_G, E_G)$ is the graph of order $3|V_G|$ obtained from G by attaching a distinct path P_2 to each vertex $v \in V_G$ by adding an edge between v and a leaf of its corresponding path P_2 , while the corona $G \circ H$ of G and another graph H is the graph formed from one copy of G and $|V_G|$ copies of H, where the *i*-th vertex of G is adjacent to every vertex in the *i*-th copy of H.

A graph G of order n is called γ_{ve} -extremal if $\gamma_{ve}(G) = \lfloor n/3 \rfloor$. The complete characterization of all ve-extremal trees was given in [3,14]: a tree T is γ_{ve} extremal if and only if T is a P_2 -corona of some tree. As regards arbitrary graphs, one can easily observe that if G is a P_2 -corona or $G = H \circ P_2$ for some graph H, then G is γ_{ve} -extremal—however, to the best of our knowledge, the complete characterization of all γ_{ve} -extremal graphs remains an open problem.

Acknowledgements

I would like to show my gratitude to Jerzy Topp for sharing his pearls of wisdom during several hours of our inspiring discussions.

References

- Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. AMS, Providence (2011)
- [2] Boutrig, R., Chellali, M.: Total vertex-edge domination. Int. J. Comput. Math. 95(9), 1820–1828 (2018)
- [3] Boutrig, R., Chellali, M., Haynes, T.W., Hedetniemi, S.T.: Vertex-edge domination in graphs. Aequ. Math. 90(2), 355–366 (2016)
- [4] Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 6th edn. CRC Press, Boca Raton (2016)
- [5] Chellali, M., Haynes, T.W., Hedetniemi, S.T., Lewis, T.M.: On ve-degrees and evdegrees in graphs. Discrete Math. 340(2), 31–38 (2017)
- [6] Chen, X.-G., Yin, K., Gao, T.: A note on independent vertex-edge domination in graphs. Discrete Optim. 25, 1–5 (2017)
- [7] Chitra, S., Sattanathan, R.: Global vertex-edge domination sets in graph. Int. Math. Forum 7(5–8), 233–240 (2012)
- [8] Ediz, S.: Predicting some physicochemical properties of octane isomers: a topological approach using ev-degree and ve-degree Zagreb indices. Int. J. Syst. Sci. Appl. Math. 2(5), 87–92 (2017)
- Fedor, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)
- [10] Gewali, L.P., Ntafos, S.: Covering grids and orthogonal polygons with periscope guards. Comput. Geom. Theory Appl. 2(6), 309–334 (1993)
- [11] Klostermeyer, W., Mynhardt, C.M.: Protecting a graph with mobile guards. Appl. Anal. Discrete Math. 10, 1–29 (2016)
- [12] Krishnakumari, B., Chellali, M., Venkatakrishnan, Y.B.: Double vertex-edge domination. Discrete Math. Algorithms Appl. 9(4), 1750045 (2017)
- [13] Krishnakumari, B., Venkatakrishnan, Y.B.: The outer-connected vertex edge domination number of a tree. Commun. Korean Math. Soc. 33(1), 361–369 (2018)
- [14] Krishnakumari, B., Venkatakrishnan, Y.B., Krzywkowski, M.: Bounds on the vertexedge domination number of a tree. C. R. l'Acad. Sci. Ser. I 352(5), 363–366 (2014)
- [15] Lewis, J.R.: Vertex-Edge and Edge-Vertex Domination in Graphs. Ph.D. Thesis, Clemson University, Clemson (2007)

- [17] Peters, K.W.: Theoretical and Algorithmic Results on Domination and Connectivity. Ph.D. Thesis, Clemson University, Clemson (1986)
- [18] Siva Rama Raju, S.V., Nagaraja Rao, I.H.: Complementary nil vertex edge dominating sets. Proyecc. J. Math. 34(1), 1–13 (2015)
- [19] Thakkar, D.K., Jamvecha, N.P.: About ve-domination in graphs. Ann. Pure Appl. Math. 14(2), 245–250 (2017)
- [20] Vijayan, A., Nagarajan, T.: Vertex-edge domination polynomial of graphs. Int. J. Math. Arch. 5(2), 281–292 (2014)
- [21] Vijayan, A., Nagarajan, T.: Vertex-edge dominating sets and vertex-edge domination polynomials of wheels. IOSR J. Math. 10(5), 14–21 (2014)
- [22] Yen, W.C.K., Tang, C.Y.: An optimal algorithm for solving the searchlight guarding problem on weighted interval graphs. Inf. Sci. 100(1-4), 1-25 (1997)

Paweł Żyliński Institute of Informatics, Faculty of Mathematics, Physics, and Informatics University of Gdańsk Wita Stwosza 57 80-308 Gdańsk Poland e-mail: zylinski@inf.ug.edu.pl

Received: June 4, 2018