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Vertex-edge domination in graphs

Pawe�l Żyliński

Abstract. We establish that for any connected graph G of order n ≥ 6, a minimum vertex-
edge dominating set of G has at most n/3 vertices, thus affirmatively answering the open
question posed by Boutrig et al. (Aequ Math 90(2):355–366, 2016).

Mathematics Subject Classification. Primary 05C69; Secondary 05C70.

Keywords. Vertex-edge domination, P3-packing, corona, extremal graph.

1. Introduction

Let G = (VG, EG) be a graph. A vertex u ∈ VG is said to ve-dominate an edge
xy ∈ EG if (1) u = x or u = y, that is, u is incident to xy, or (2) ux or uy
is an edge in G. A set D ⊆ VG is a vertex-edge dominating set (or simply,
a ve-dominating set) of G if for every edge e ∈ EG, there exists a vertex
u ∈ D such that u ve-dominates e. The vertex-edge domination number of G,
denoted γve(G), is the minimum cardinality of a vertex-edge dominating set
of G. Herein, our main result is the following theorem.

Theorem 1.1. If G is a connected graph of order n ≥ 6, then γve(G) ≤ �n
3 �.

In other words, we affirmatively answer the question posed by Boutrig et
al. [3]. So far, only a partial answer has been known, that is, the aforementioned
(tight) upper bound holds for any C5-free connected graph [3] (and so for any
tree as established also in [14]).
Background. The concept of vertex-edge domination in graphs was intro-
duced by Peters [17], and then investigated by several authors, in particular,
lower and upper bounds on the vertex-edge domination number in different
graph classes were studied in [3,14–16,19], vertex-edge degrees and vertex-edge
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domination polynomials of graphs were considered for example in [5,20,21],
while [3,6,15,16] focused on relations between some ve-domination parameters,
and algorithmic aspects were discussed in [15]. Finally, some other variants—
total, global, etc.—of ve-domination were studied in [2,7,12,13,18].

From a practical point of view, the problem contributes to a bunch of appli-
cations related to graph searching/guarding problems, see for example [1,9,11].
In particular, the concept of ve-domination may be thought of as a variation
on the searchlight guarding problem [22] or—when restricted to connected
plane graphs with particular embeddings—on the k-periscope guarding prob-
lem in grids [10]. In addition, ve-domination is applicable in chemical graph
theory [5,8].
Notation. Let G = (VG, EG) be a connected graph of order |VG| = n.
The neighborhood of a vertex v in G is denoted by NG(v), while its degree is
denoted by degG(v). For a set S ⊆ VG, the set of all un-ve-dominated edges
(by any element of S) in G is denoted by unG(S). A P3-packing of G is a set
of vertex-disjoint 3-vertex paths in G, and a maximum P3-packing of G is
a P3-packing of G covering the maximum number of vertices in G. Finally,
for a maximum P3-matching P3 of G, the set of all vertices of paths in P3 is
denoted by V (P3), while the set of all degree two vertices (so-called centers)
of all paths in P3 is denoted by C(P3). All the other graph theory terminology
not presented here can be found for example in [4].

2. Proof of Theorem 1.1

Let P3 be a maximum P3-matching of a connected simple graph G = (VG, EG)
of order n ≥ 6 that minimizes the cardinality of unG(C(P3)) over all maximum
P3-matchings of G. Clearly, we have the following observation.
Observation. If unG(C(P3)) = ∅ then γve(G) ≤ |C(P3)|, and hence γve(G) ≤
�n

3 �.
Therefore, all we need is to argue that indeed unG(C(P3)) = ∅. Our proof is
based on a sequence of claims (some of their simple proofs could be omitted,
however, we present all of them, repetitively, for the convenience of the reader).

Suppose to the contrary that |unG(C(P3))| > 0 and let xy be an edge
that belongs to unG(C(P3)). For v ∈ {x, y}, let v̄ denote the unique vertex in
{x, y}\{v}.

Claim 2.1. If degG(v) ≥ 2 then NG(v)\{v̄} ⊆ V (P3)\C(P3).

Proof. The fact that NG(v)\{v̄} ⊆ V (P3) follows directly from the maximality
of P3, while the fact that NG(v)\{v̄} ∩ C(P3) = ∅—from the assumption that
xy ∈ unG(C(P3)). �

So let Π = vv̄v1
1v1

2v1
3v

2
1v2

2v2
3 . . . vk1vk

2vk
3 be any of the longest paths in G,

taken over v ∈ {x, y}, such that the 3-vertex path vj
1v

j
2v

j
3 belongs to P3, j =
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1, . . . , k (notice that such a path Π exists as G is connected); let VΠ denote
the vertex set of Π.

Claim 2.2. NG(vj
3) ⊆ V (P3) ∪ {x, y} for any j = 1, . . . , k.

Proof. Suppose to the contrary that there exists z ∈ NG(vj
3)\(V (P3) ∪ {x, y})

for some 1 ≤ j ≤ k. Then

P
′
3 =

(
P3\

j⋃
i=1

{
vi
1v

i
2v

i
3

})
∪

{
vv̄v1

1 , v1
2v1

3v
2
1 , v2

2v2
3v3

1 , . . . , vj−1
2 vj−1

3 vj
1, v

j
2v

j
3z

}

is a P3-packing of G with |V (P′
3)| > |V (P3)|, which contradicts the maximality

of P3. �

Claim 2.3. NG(vj
2) ⊆ V (P3) for any j = 1, . . . , k.

Proof. Suppose to the contrary that there exists z ∈ NG(vj
2)\V (P3) for some

1 ≤ j ≤ k. If z ∈ {x, y}, then edge xy is ve-dominated by vj
2 ∈ C(P3), a

contradiction with xy ∈ unG(C(P3)). Next, if z /∈ {x, y}, then

P
′
3 =

(
P3\

j⋃
i=1

{
vi
1v

i
2v

i
3

})
∪

{
vv̄v1

1 , v1
2v1

3v
2
1 , v2

2v2
3v3

1 , . . . , vj−1
2 vj−1

3 vj
1, zvj

2v
j
3

}

is a P3-packing of G with |V (P′
3)| > |V (P3)|, which contradicts the maximality

of P3. �

Claim 2.4.
(
NG(vj

3)\{v1
2 , v2

2 , . . . , vj−1
2 }

)
∩ C(P3) = ∅ for any j = 2, . . . , k.

Proof. Suppose that there exists z ∈
(
NG(vj

3)\{v1
2 , . . . , vj−1

2 }
)

∩ C(P3) for

some 2 ≤ j ≤ k. Observe that edge xy is ve-dominated by v1
1 and any

edge incident to vj
3 is ve-dominated by z. Next, it follows from Claims 2.2

and 2.3 that all the other edges that are ve-dominated only by the vertices
v1
2 , v2

2 , . . . , vj2 ∈ C(P3) can be also ve-dominated by the vertices v1
1 , v

2
1 , . . . , vj1.

Therefore

P
′
3 =

(
P3\

j⋃
i=1

{
vi
1v

i
2v

i
3

})
∪

{
v̄v1

1v
1
2 , v1

3v2
1v2

2 , . . . , vj−1
3 vj

1v
j
2

}

is another maximum P3-packing of G and |unG(C(P′
3))| < |unG(C(P3))|, which

contradicts the choice of P3. �

Claim 2.5. NG(vk
3 ) ⊆ VΠ, and moreover, v ∈ NG(vk

3 ) (and hence degG(vk
3 ) ≥

2).

Proof. The fact that NG(vk
3 ) ⊆ VΠ follows immediately from the maximality

of k and Claims 2.2 and 2.4. Next, suppose to the contrary that v /∈ NG(vk
3 ).
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Again, it follows from Claims 2.2 and 2.3 that all the edges that are ve-
dominated only by the vertices v1

2 , v2
2 . . . , vk

2 ∈ C(P3) can be also ve-dominated
by the vertices v1

1 , v
2
1 . . . , vk

1 . Therefore

P
′
3 =

(
P3\

k⋃
i=1

{
vi
1v

i
2v

i
3

})
∪ {

v̄v1
1v1

2 , v1
3v2

1v2
2 , . . . , vk−1

3 vk
1vk

2

}
is a P3-packing of G with V (P′

3) = V (P3) and |unG(C(P′
3))| < |unG(C(P3))|

as v1
1 also ve-dominates xy, which contradicts the choice of P3. �

Claim 2.6. NG(vj
1) ⊆ V (P3) ∪ {x, y} for any j = 1, . . . , k.

Proof. Recall that we have assumed that Π is any of the longest paths taken
over v ∈ {x, y}. Therefore, since v ∈ NG(vk

3 ) (by Claim 2.5), the reversed path
v̄vvk3vk

2vk
1 . . . v1

3v1
2v1

1 is of the same length as Π and so it can also play the role
of Π in Claim 2.2, which results in the desired property. �

Now, the crucial observation is that we must have |VΠ| = 5, that is, k = 1.
Indeed, suppose to the contrary that k ≥ 2.

Claim 2.7. If k ≥ 2 then the set {v, v̄, vk1 , vk
2 , vk

3} induces a 5-vertex cycle in G.

Proof. Suppose that {v, v̄, vk1 , vk
2 , vk

3} does not induce a 5-vertex cycle in G
(recall that vvk

2 , v̄vk
2 /∈ EG by Claim 2.3). Let OG(vk

2 ) ⊆ EG be the set of edges
that are ve-dominated only by vk

2 ∈ C(P3) (and no other vertex in C(P3)). We
consider two cases.

Case 1: v̄vk
1 /∈ EG. It follows then from Claims 2.2, 2.3 and 2.6 that vk

3

dominates any edge in OG(vk
2 ), and therefore

P
′
3 =

(
P3\

{
vk
1vk

2vk
3

}) ∪ {
vk
2vk

3v
}

is another maximum P3-packing of G and |unG(C(P′
3))| < |unG(C(P3))| as vk

3

also ve-dominates xy, which contradicts the choice of P3.
Case 2: v̄vk

1 ∈ EG. Then vvk
1 ∈ EG or v̄vk

3 ∈ EG, or vk
1vk

3 ∈ EG. If vvk
1 ∈ EG

then it follows from Claims 2.2, 2.3 and 2.6 that v dominates any edge in
OG(vk

2 ). Therefore

P
′
3 =

(
P3\

{
vk
1vk

2vk
3

}) ∪ {
vk
3vv̄

}
is another maximum P3-packing of G and |unG(C(P′

3))| < |unG(C(P3))| as v
also ve-dominates xy, which contradicts the choice of P3.

Otherwise, if vvk
1 /∈ EG then we must have v̄vk

3 ∈ EG or vk
1vk

3 ∈ EG.
It follows from Claims 2.2, 2.3 and 2.6 that vk

3 dominates any edge in OG(vk
2 ),

and therefore

P
′
3 =

(
P3\

{
vk
1vk

2vk
3

}) ∪ {
vk
2vk

3v
}

is another maximum P3-packing of G and V (P′
3) = V (P3) and |unG(C(P′

3))| <
|unG(C(P3))|, which is again a contradiction with the choice of P3. �
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Claim 2.8. If k ≥ 2 then the set {v, v̄, v1
1 , v1

2 , v1
3} induces a 5-vertex cycle in G.

Proof. Analogously as in the proof of Claim 2.6, by reversing the path Π
and following the arguments in the proof of Claim 2.7, we obtain that
{v, v̄, v1

1 , v1
2 , v1

3} also induces a 5-vertex cycle in G. �
Next, in order to argue k = 1, we consider two cases.
Case 1: v1

2vk
2 /∈ EG. Observe that in this case, keeping in mind Claim 2.3,

each edge v1
2z ∈ EG, where z �= v1

1 , v1
3 (recall that v1

2v, v1
2 v̄ /∈ EG), is ve-

dominated by some vi
2 ∈ C(P3), 2 ≤ i ≤ k − 1. By the same argument, each

edge vk
2z ∈ EG, where z �= vk

1 , vk
3 (again recall that vk

2v, vk
2 v̄ /∈ EG), is ve-

dominated by some vj
2 ∈ C(P3), 2 ≤ j ≤ k − 1. Therefore, by exchanging

two paths v1
1v1

2v1
3 and vk

1vk
2vk

3 in P3 with paths v1
1 v̄vk

1 and vk
3vv1

3 , we obtain
another maximum P3-packing P

′
3, but with |unG(C(P′

3))| < |unG(C(P3))| (by
Claim 2.3) as now xy is also ve-dominated, which contradicts the choice of P3.

Case 2: v1
2vk

2 ∈ EG. Similarly as above, keeping in mind Claim 2.3, observe
that each edge vk

2z ∈ EG, where z �= vk
1 , vk

3 , in particular, edge v1
2vk

2 , is ve-
dominated by v1

2 ∈ C(P3). Also, keeping Claims 2.2 and 2.7 in mind, each
edge vk

3z ∈ EG, where z �= v, vk2 , is ve-dominated by some vj
2 ∈ C(P3), 1 ≤

j ≤ k − 1. Consequently, exchanging path vk
1vk

2vk
3 in P3 with vk

3vv̄ results in
another maximum P3-packing P

′
3, but with |unG(C(P′

3))| < |unG(C(P3))| (by
Claim 2.3) as now xy is also ve-dominated, which contradicts the choice of P3,
and ultimately k > 1.

We now continue with a sequence of claims for k = 1.

Claim 2.9. The set {v, v̄, v1
1 , v1

2 , v1
3} induces a 5-vertex cycle in G.

Proof. The arguments are similar to those in the proof of Claim 2.7, see Case 2.
Namely, suppose to the contrary that vv1

1 or v̄v1
3 , or v1

1v1
3 belongs to EG (recall

v1
2v, v1

2 v̄ /∈ EG). If vv1
1 ∈ EG, then exchange v1

1v1
2v1

3 in P3 with v1
3vv̄, otherwise,

exchange path v1
1v1

2v
1
3 in P3 with v1

2v1
3v. It follows from Claims 2.2, 2.3 and 2.6

that the resulting 3-vertex path set P
′
3 is another maximum P3-packing P

′
3

with |unG(C(P′
3))| < |unG(C(P3))| as now xy is also ve-dominated, which

contradicts the choice of P3. �
Claim 2.10. degG(v1

1) = degG(v1
2) = degG(v1

3) = 2.
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x y

Figure 1. The only possible left case; 3-vertex paths in P3

are marked with bold lines

Proof. The equality degG(v1
1) = degG(v1

3) = 2 follows from Claims 2.2, 2.6
and 2.9. Suppose now that degG(v1

2) ≥ 3. Let z ∈ NG(v1
2)\{v1

1 , v1
3} (recall

that v1
2v, v1

2 v̄ /∈ EG). If z ∈ C(P3) then, considering Claim 2.3, exchanging
path v1

1v1
2v1

3 in P3 with v1
3vv̄ results in another maximum P3-packing with

|unG(C(P′
3))| < |unG(C(P3))| as xy is also ve-dominated, which contradicts

the choice of P3.
Otherwise, if z /∈ C(P3), then exchange path v1

1v
1
2v1

3 in P3 with v1
2v1

3v. It
follows from Claim 2.3, the choice of xy, and degG(v1

1) = 2 that all the other
edges that have been ve-dominated by elements in C(P3) remain ve-dominated
by elements in C(P′

3). Therefore, the resulting P3-packing P
′
3 is a maxi-

mum P3-packing, with |unG(C(P′
3))| ≤ |unG(C(P3))|: the edge xy is now ve-

dominated, but edge v̄v1
1 is not. Moreover, it follows from the choice of P3 that

|unG(C(P′
3))| = |unG(C(P3))| must hold. Now, for the un-ve-dominated edge

v̄v1
1 ∈ unG(C(P′

3)), by repeating all the aforementioned arguments applied to
edge xy, we obtain that degG(v1

2) = 2 (see the discussion above when dis-
cussing the equality k = 1), which is a contradiction. �

Concluding, we are driven to the case where the only possibility for G is
to consist of a number of (at least two as n ≥ 6) 5-vertex cycles, all of them,
pairwisely, sharing only the edge xy (see Fig. 1 for an illustration). But then,
by replacing two 3-vertex paths in P3 with two vertex-disjoint 3-vertex paths
with centers at x and y, respectively, we obtain another maximum P3-packing
P

′
3 with unG(C(P′

3)) = ∅, and therefore, we must also have unG(P3) = ∅, a
final contradiction.

3. γve-extremal graphs

The P2-corona of a graph G = (VG, EG) is the graph of order 3|VG| obtained
from G by attaching a distinct path P2 to each vertex v ∈ VG by adding an
edge between v and a leaf of its corresponding path P2, while the corona G◦H
of G and another graph H is the graph formed from one copy of G and |VG|
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copies of H, where the i-th vertex of G is adjacent to every vertex in the i-th
copy of H.

A graph G of order n is called γve-extremal if γve(G) = �n/3�. The complete
characterization of all ve-extremal trees was given in [3,14]: a tree T is γve-
extremal if and only if T is a P2-corona of some tree. As regards arbitrary
graphs, one can easily observe that if G is a P2-corona or G = H ◦P2 for some
graph H, then G is γve-extremal—however, to the best of our knowledge, the
complete characterization of all γve-extremal graphs remains an open problem.
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