Aequat. Math. 93 (2019), 735-742

(© Springer Nature Switzerland AG 2018
0001-9054/19/040735-8

published online October 23, 2018
https://doi.org/10.1007 /s00010-018-0609-9

I Aequationes Mathematicae

@ CrossMark

Vertex-edge domination in graphs

PAWEL ZYLINSKI

Abstract. We establish that for any connected graph G of order n > 6, a minimum vertex-
edge dominating set of G has at most n/3 vertices, thus affirmatively answering the open
question posed by Boutrig et al. (Aequ Math 90(2):355-366, 2016).
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1. Introduction

Let G = (Vg, Eq) be a graph. A vertex u € Vi is said to ve-dominate an edge
2y € Eg if (1) uw = x or u = y, that is, u is incident to zy, or (2) ux or uy
is an edge in G. A set D C Vg is a vertex-edge dominating set (or simply,
a ve-dominating set) of G if for every edge e € Eg, there exists a vertex
u € D such that u ve-dominates e. The vertex-edge domination number of G,
denoted 7,e(G), is the minimum cardinality of a vertex-edge dominating set
of G. Herein, our main result is the following theorem.

Theorem 1.1. If G is a connected graph of order n > 6, then v,.(G) < |5 ].

In other words, we affirmatively answer the question posed by Boutrig et
al. [3]. So far, only a partial answer has been known, that is, the aforementioned
(tight) upper bound holds for any Cs-free connected graph [3] (and so for any
tree as established also in [14]).

Background. The concept of vertex-edge domination in graphs was intro-
duced by Peters [17], and then investigated by several authors, in particular,
lower and upper bounds on the vertex-edge domination number in different
graph classes were studied in [3,14-16,19], vertex-edge degrees and vertex-edge
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domination polynomials of graphs were considered for example in [5,20,21],
while [3,6,15,16] focused on relations between some ve-domination parameters,
and algorithmic aspects were discussed in [15]. Finally, some other variants—
total, global, etc.—of ve-domination were studied in [2,7,12,13,18].

From a practical point of view, the problem contributes to a bunch of appli-

cations related to graph searching/guarding problems, see for example [1,9,11].
In particular, the concept of ve-domination may be thought of as a variation
on the searchlight guarding problem [22] or—when restricted to connected
plane graphs with particular embeddings—on the k-periscope guarding prob-
lem in grids [10]. In addition, ve-domination is applicable in chemical graph
theory [5,8].
Notation. Let G = (Vg,Eg) be a connected graph of order |Vg| = n.
The neighborhood of a vertex v in G is denoted by Ng(v), while its degree is
denoted by degq(v). For a set S C Vi, the set of all un-ve-dominated edges
(by any element of S) in G is denoted by ung(S). A Ps-packing of G is a set
of vertex-disjoint 3-vertex paths in G, and a maximum Ps-packing of G is
a Ps-packing of G covering the maximum number of vertices in G. Finally,
for a maximum Ps-matching P3 of G, the set of all vertices of paths in P3 is
denoted by V(IP3), while the set of all degree two vertices (so-called centers)
of all paths in P5 is denoted by C(P3). All the other graph theory terminology
not presented here can be found for example in [4].

2. Proof of Theorem 1.1

Let P3 be a maximum Ps-matching of a connected simple graph G = (V, Eg)

of order n > 6 that minimizes the cardinality of ung(C(P3)) over all maximum

Ps-matchings of G. Clearly, we have the following observation.

Observation. If ung(C(P3)) = 0 then vue(G) < |C(P3)|, and hence vue(G) <

12].

T?ilerefore, all we need is to argue that indeed ung(C(P3)) = 0. Our proof is

based on a sequence of claims (some of their simple proofs could be omitted,

however, we present all of them, repetitively, for the convenience of the reader).
Suppose to the contrary that |ung(C(P3))| > 0 and let xzy be an edge

that belongs to ung(C(Ps3)). For v € {z,y}, let ¥ denote the unique vertex in

{z, y}\{v}.
Claim 2.1. If degs(v) > 2 then Ng(v)\{v} C V(P3)\C(P3).
Proof. The fact that Ng(v)\{v} C V(Ps) follows directly from the maximality

of Ps, while the fact that Ng(v)\{v} N C(P;) = f—from the assumption that
zy € ung(C(Ps)). 0

So let TI = voviviviv?viv? ... v¥vkevs be any of the longest paths in G,

taken over v € {z,y}, such that the 3-vertex path v{v%fug belongs to P3, j =
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1,...,k (notice that such a path II exists as G is connected); let Vi1 denote
the vertex set of II.

Claim 2.2. Ng(’ué) CV(P3)U{z,y} foranyj=1,... k.

Proof. Suppose to the contrary that there exists z € Ne(v3)\(V(P3) U {z,y})
for some 1 < j < k. Then

J
r_ Qi 111,02 2 2 3 =1 j—1 j§ j j
Py = (Pg\U{v1v203}> U{vvvl,v2vgvl,v203v1,...,1)2 vy U, UpUz2
i=1

is a P3-packing of G with |V (P%)| > |V (P3)|, which contradicts the maximality
of Ps. 0

Claim 2.3. Ng(v3) CV(Ps) forany j=1,...,k.

Proof. Suppose to the contrary that there exists z € Ng(v%)\V(IP’g) for some

1 <j <k If 2 € {x,y}, then edge zy is ve-dominated by v} € C(P3), a
contradiction with zy € ung(C(P3)). Next, if z ¢ {x,y}, then

J
r_ i, sl 11,22 2 3 J=1, =10 0 dad
Py = (]Pg\ U {v1v203}> U {vvvl,v2vgvl,v2v3v1,...,v2 vy Uy, ZUp03
i=1

is a Ps-packing of G with |V (P%)| > |V (P3)|, which contradicts the maximality
of Pg. O

Claim 2.4. (Ng(yg)\{v%,vg, e vé_l}) NC(Ps) =0 for any j =2,...,k.

Proof. Suppose that there exists z € (Ng<1)§)\{’l)%, e ,v§71}> N C(P3) for

some 2 < j < k. Observe that edge xy is ve-dominated by v{ and any
edge incident to v} is ve-dominated by z. Next, it follows from Claims 2.2
and 2.3 that all the other edges that are ve-dominated only by the vertices

vi,v2 ... v} € C(P3) can be also ve-dominated by the vertices vi,v?, ... v].
Therefore

J
P, = <]P’3\ U {Uiuél}é}) U {Ev%v%,vév%vg, N j}
i=1
is another maximum Ps-packing of G and |ung(C(P%))| < |ung(C(Ps))|, which

contradicts the choice of Ps. O

Claim 2.5. Ng(vk) C Vi, and moreover, v € Ng(v¥) (and hence degg(vh) >
2).

Proof. The fact that Ng(v5) C Vi1 follows immediately from the maximality
of k and Claims 2.2 and 2.4. Next, suppose to the contrary that v & Ng(v%).
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Again, it follows from Claims 2.2 and 2.3 that all the edges that are wve-
dominated only by the vertices v, v2...,v5 € C(P3) can be also ve-dominated

by the vertices v}, v? ..., vF. Therefore

k
= <IP’3\ U {vivév%}) U {ovivg, vioivs, ..., v5 ofol }
i=1

is a P3-packing of G with V(P) = V(P3) and |ung(C(P))| < |ung(C(P3))]
as v} also ve-dominates xy, which contradicts the choice of P3. O

Claim 2.6. Ng(v]) C V(P3) U {z,y} for any j=1,... k.

Proof. Recall that we have assumed that II is any of the longest paths taken
over v € {z, y} Therefore since v € Ng(v%) (by Claim 2.5), the reversed path
ovvkvkvl . vlvlvl is of the same length as IT and so it can also play the role

of IT in Claim 2.2, which results in the desired property. O

Now, the crucial observation is that we must have |Vi7| = 5, that is, k = 1.
Indeed, suppose to the contrary that k > 2.

Claim 2.7. If k > 2 then the set {v, s, v, v5 vE} induces a 5-vertex cycle in G.

Proof. Suppose that {v,v,v¥,v5 v5} does not induce a 5-vertex cycle in G
(recall that vvs, 90k ¢ Eg by Claim 2.3). Let Og(vh) C Eg be the set of edges
that are ve-dominated only by v5 € C(P3) (and no other vertex in C(P3)). We
consider two cases.

Case 1: ¥ ¢ Eg. It follows then from Claims 2.2,2.3 and 2.6 that v
dominates any edge in Og(v), and therefore

Py = (Ps\ {vfvivh }) U {vhvhv}
is another maximum P3-packing of G and |ung(C(P}))| < |ung(C(P3))| as v
also ve-dominates xy, which contradicts the choice of P3.
Case 2: 90 € Eg. Then vof € Eg or vk € Eg, or vivk € Eq. If wof € Eg
then it follows from Claims 2.2,2.3 and 2.6 that v dominates any edge in
Oc (v%). Therefore

P; = (Ps\ {vl 0205}) U {’U3’U1]}
is another maximum Ps-packing of G and |ung(C(P5))| < |ung(C(Ps))| as v
also ve-dominates xy, which contradicts the choice of P3.
Otherwise, if vof ¢ Eg then we must have tvf € Eg or vk € Eg.
It follows from Claims 2.2, 2.3 and 2.6 that v5 dominates any edge in Og(v¥),
and therefore

= (Ps\ {vfvsvh }) U {vhviv}
is another maximum Ps-packing of G and V(P%) = V(Ps) and |ung(C(P%))] <
lung(C(Ps))|, which is again a contradiction with the choice of Ps. O
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Claim 2.8. If k > 2 then the set {v,v,vi,vd, vi} induces a 5-vertex cycle in G.

Proof. Analogously as in the proof of Claim 2.6, by reversing the path II
and following the arguments in the proof of Claim 2.7, we obtain that
{v,0,v},v},v3} also induces a 5-vertex cycle in G. O

Next, in order to argue k = 1, we consider two cases.

Case 1: vivk ¢ Eg. Observe that in this case, keeplng 1n mind Claim 2.3,
each edge viz € Eg, where z # vi vl (recall that viv,viv ¢ Eg), is ve-
dominated by some v € C(P3), 2 <4 < k — 1. By the same argument, each
edge v5z € Eg, where z # vf v5 (again recall that v5v,v5v ¢ Eg), is ve-
dominated by some v% E C’(lP’g,)7 2 < j < k — 1. Therefore, by exchanging
two paths vivivl and vfv5vd in Py with paths viovl and vhvvd, we obtain
another maximum Ps-packing P4, but with |ung(C(P5))| < |ung(C(Ps))| (by
Claim 2.3) as now 2y is also ve-dominated, which contradicts the choice of 5.

Case 2: vivk E FE¢. Similarly as above, keeping in mind Claim 2.3, observe
that each edge vz € Eg, where z # vl,v:’\f, in particular, edge v2v§, is ve-
dominated by vi € C(P3). Also, keeping Claims 2.2 and 2.7 in mind, each
edge v5z € Eg, where z # v, v, is ve- dominated by some vé e C(Ps3), 1<
j < k — 1. Consequently, exchanging path viv5vs in lP’3 with v5vo results in
another maximum Ps-packing P%, but with |ung(C(P5))| < |ung(C(Ps))| (by
Claim 2.3) as now zy is also ve-dominated, which contradicts the choice of Ps,
and ultimately k& > 1.

We now continue with a sequence of claims for k = 1.

Claim 2.9. The set {v,v,v],v,v3} induces a 5-vertex cycle in G.

Proof. The arguments are similar to those in the proof of Claim 2.7, see Case 2.
Namely, suppose to the contrary that vv] or 1711;7 or vivi belongs to Eg (recall
viv, 030 ¢ Eg). If vvl € Eg, then exchange vivivd in P3 with vivd, otherwise,
exchange path vivivl in P3 with vjviv. It follows from Claims 2.2, 2.3 and 2.6
that the resulting 3-vertex path set P% is another maximum Ps-packing Pf
with |ung(C(P%))| < |ung(C(P3))| as now zy is also ve-dominated, which
contradicts the choice of Ps. O

Claim 2.10. deg.(vi) = degq(vl) = degy(vi) = 2.
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FIGURE 1. The only possible left case; 3-vertex paths in Pg
are marked with bold lines

Proof. The equality degg(vi) = degs(vi) = 2 follows from Claims 2.2, 2.6
and 2.9. Suppose now that degs(vi) > 3. Let z € Ng(vd)\{vi,vi} (recall
that vijv,viv ¢ Eg). If 2 € C(P3) then, considering Claim 2.3, exchanging
path vivivl in P3 with vivo results in another maximum P3-packing with
lung(C(P5))| < |ung(C(Ps))| as xy is also ve-dominated, which contradicts
the choice of P3.

Otherwise, if 2z ¢ C(P3), then exchange path v{vivl in P3 with vivie. It
follows from Claim 2.3, the choice of zy, and deg(vi) = 2 that all the other
edges that have been ve-dominated by elements in C(IP3) remain ve-dominated
by elements in C(P5). Therefore, the resulting Ps-packing P is a maxi-
mum Ps-packing, with [ung(C(P5))| < |ung(C(P3))|: the edge zy is now ve-
dominated, but edge vv{ is not. Moreover, it follows from the choice of P3 that
lung(C(P5))| = |ung(C(P3))| must hold. Now, for the un-ve-dominated edge
v} € ung(C(P4)), by repeating all the aforementioned arguments applied to
edge zy, we obtain that degy(vd) = 2 (see the discussion above when dis-
cussing the equality k& = 1), which is a contradiction. O

Concluding, we are driven to the case where the only possibility for G is
to comnsist of a number of (at least two as n > 6) 5-vertex cycles, all of them,
pairwisely, sharing only the edge xy (see Fig. 1 for an illustration). But then,
by replacing two 3-vertex paths in P3 with two vertex-disjoint 3-vertex paths
with centers at x and y, respectively, we obtain another maximum Ps-packing
P; with ung(C(P%)) = 0, and therefore, we must also have ung(P3) = 0, a
final contradiction.

3. ~ye-extremal graphs

The Ps-corona of a graph G = (Vg, E¢) is the graph of order 3|Vy| obtained
from G by attaching a distinct path P, to each vertex v € Vi by adding an
edge between v and a leaf of its corresponding path P», while the corona Go H
of G and another graph H is the graph formed from one copy of G and |V
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copies of H, where the i-th vertex of GG is adjacent to every vertex in the i-th
copy of H.

A graph G of order n is called 7y, -extremal if v,.(G) = [n/3]. The complete
characterization of all ve-extremal trees was given in [3,14]: a tree T iS 7yye-
extremal if and only if 7" is a Py-corona of some tree. As regards arbitrary
graphs, one can easily observe that if G is a Py-corona or G = H o P for some
graph H, then G is 7y,e-extremal-—however, to the best of our knowledge, the
complete characterization of all v,.-extremal graphs remains an open problem.

Acknowledgements

I would like to show my gratitude to Jerzy Topp for sharing his pearls of
wisdom during several hours of our inspiring discussions.

References

[1] Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. AMS,
Providence (2011)

[2] Boutrig, R., Chellali, M.: Total vertex-edge domination. Int. J. Comput. Math. 95(9),
1820-1828 (2018)

[3] Boutrig, R., Chellali, M., Haynes, T.W., Hedetniemi, S.T.: Vertex-edge domination in
graphs. Aequ. Math. 90(2), 355-366 (2016)

[4] Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 6th edn. CRC Press, Boca
Raton (2016)

[5] Chellali, M., Haynes, T.W., Hedetniemi, S.T., Lewis, T.M.: On ve-degrees and ev-
degrees in graphs. Discrete Math. 340(2), 31-38 (2017)

[6] Chen, X.-G., Yin, K., Gao, T.: A note on independent vertex-edge domination in graphs.
Discrete Optim. 25, 1-5 (2017)

[7] Chitra, S., Sattanathan, R.: Global vertex-edge domination sets in graph. Int. Math.
Forum 7(5-8), 233-240 (2012)

[8] Ediz, S.: Predicting some physicochemical properties of octane isomers: a topological
approach using ev-degree and wve-degree Zagreb indices. Int. J. Syst. Sci. Appl. Math.
2(5), 87-92 (2017)

[9] Fedor, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching.
Theor. Comput. Sci. 399(3), 236-245 (2008)

[10] Gewali, L.P., Ntafos, S.: Covering grids and orthogonal polygons with periscope guards.
Comput. Geom. Theory Appl. 2(6), 309-334 (1993)

[11] Klostermeyer, W., Mynhardt, C.M.: Protecting a graph with mobile guards. Appl. Anal.
Discrete Math. 10, 1-29 (2016)

[12] Krishnakumari, B., Chellali, M., Venkatakrishnan, Y.B.: Double vertex-edge domina-
tion. Discrete Math. Algorithms Appl. 9(4), 1750045 (2017)

[13] Krishnakumari, B., Venkatakrishnan, Y.B.: The outer-connected vertex edge domina-
tion number of a tree. Commun. Korean Math. Soc. 33(1), 361-369 (2018)

[14] Krishnakumari, B., Venkatakrishnan, Y.B., Krzywkowski, M.: Bounds on the vertex-
edge domination number of a tree. C. R. I’Acad. Sci. Ser. I 352(5), 363-366 (2014)

[15] Lewis, J.R.: Vertex-Edge and Edge-Vertex Domination in Graphs. Ph.D. Thesis, Clem-
son University, Clemson (2007)



742 P. ZYLINSKI AEM

[16] Lewis, J.R., Hedetniemi, S.T., Haynes, T.W., Fricke, G.H.: Vertex-edge domination.
Util. Math. 81, 193-213 (2010)

[17] Peters, K.W.: Theoretical and Algorithmic Results on Domination and Connectivity.
Ph.D. Thesis, Clemson University, Clemson (1986)

[18] Siva Rama Raju, S.V., Nagaraja Rao, [.H.: Complementary nil vertex edge dominating
sets. Proyecc. J. Math. 34(1), 1-13 (2015)

[19] Thakkar, D.K., Jamvecha, N.P.: About ve-domination in graphs. Ann. Pure Appl. Math.
14(2), 245-250 (2017)

[20] Vijayan, A., Nagarajan, T.: Vertex-edge domination polynomial of graphs. Int. J. Math.
Arch. 5(2), 281-292 (2014)

[21] Vijayan, A., Nagarajan, T.: Vertex-edge dominating sets and vertex-edge domination
polynomials of wheels. IOSR J. Math. 10(5), 14-21 (2014)

[22] Yen, W.C.K., Tang, C.Y.: An optimal algorithm for solving the searchlight guarding
problem on weighted interval graphs. Inf. Sci. 100(1-4), 1-25 (1997)

Pawel Zyliniski

Institute of Informatics, Faculty of Mathematics, Physics, and Informatics
University of Gdarisk

Wita Stwosza 57

80-308 Gdansk

Poland

e-mail: zylinski@inf.ug.edu.pl

Received: June 4, 2018



	Vertex-edge domination in graphs
	Abstract
	1. Introduction
	2. Proof of Theorem 1.1
	3. γve-extremal graphs
	Acknowledgements
	References




