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Derivations and Leibniz differences on rings

Bruce Ebanks

Abstract. Let R be a commutative ring and n a positive integer. We show that the compo-
sition of n derivations of order 1 results in a derivation of order n on R. If in addition R
is an integral domain of characteristic 0, then the composition of n nontrivial derivations
of order 1 forms a nontrivial derivation of order n. This is also true for integral domains
of characteristic larger than n!, but not for integral domains of characteristic n!, nor for
commutative rings (even of characteristic 0) which are not integral domains. We prove our
results by the use of Leibniz differences. One corollary is that nontrivial derivations of all
orders exist on R.
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1. Introduction

The research in this paper was motivated by the question of whether nontrivial
derivations of all orders exist on R. The affirmative answer to this question
is a consequence of more general results presented herein. We will prove that
if d1, . . . , dn are nontrivial derivations (of order 1) on a commutative ring R,
then the composite function d1 ◦ · · · ◦ dn is a nontrivial derivation of order n
provided that R is an integral domain of characteristic 0 or of characteristic
greater than n!.

Given a commutative ring S with subring R, a derivation of R into S is a
function d : R → S which satisfies additivity and the product rule (or Leibniz
rule), respectively

d(x + y) = d(x) + d(y) and d(xy) = xd(y) + d(x)y,

for all x, y ∈ R. A mapping B : R×R → S is a bi-derivation if B is a derivation
in each variable when the other variable is fixed. Examples of bi-derivations are
functions such as (x, y) �→ ∑

i φi(x)ψi(y) where each φi and ψi is a derivation.
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We define derivations of other orders inductively as follows.

Definition 1.1. Let S be a commutative ring with subring R. The zero function
is the only derivation of order 0 on R into S. For each n ∈ N, suppose we have
defined derivations of order n − 1. If f : R → S is additive, then f is said to
be a derivation of order n if there exists a function B : R × R → S which is a
derivation of order n − 1 in each variable such that

f(xy) − xf(y) − f(x)y = B(x, y), x, y ∈ R. (1)

We will refer to such a function B as a bi-derivation of order n − 1. We use
Dn(R,S) to denote the set of all derivations of order n on R into S. In case
R = S we define Dn(R) := Dn(R,R).

It is evident that the definition of derivation of order 1 agrees with the
previous definition of derivation.

We say that a derivation d of order 1 is nontrivial if d �= 0, that is if
d ∈ D1(R,S) \ D0(R,S). Similarly, a derivation of order n is nontrivial if it is
not a derivation of order n − 1. So the existence of a nontrivial derivation of
order n on R into S is equivalent to the statement Dn(R,S)\Dn−1(R,S) �= ∅.

Throughout this paper we work only with rings that are commutative.
An integral domain is a nontrivial (R �= {0}) commutative ring such that
x, y ∈ R \ {0} implies xy �= 0.

Our main results are the following. In Proposition 3.1(ii) we prove that if
d1, . . . , dn ∈ D1(R), then d1 ◦ · · · ◦dn ∈ Dn(R). In Theorem 3.6 we show that if
R is an integral domain of characteristic larger than n! (including characteristic
0) and d1, . . . , dn ∈ D1(R) \ D0(R), then d1 ◦ · · · ◦ dn ∈ Dn(R) \ Dn−1(R).

The organization of the paper is as follows. We begin with some notation
and preliminaries in the next section, including the introduction of Leibniz
differences. Section 3 contains the main results mentioned above. Then we
conclude with a short section consisting of two examples demonstrating the
sharpness of our results. Specifically, we provide counterexamples to the con-
clusion of Theorem 3.6 in case R either has characteristic n! or is not an
integral domain.

2. Notation and preliminaries

Using methods developed in the author’s paper [1], it can be shown that our
main results hold for the special case d1 = · · · = dn. That is, if dn denotes the
n-th iterate of a function d : R → R, then dn is a derivation of order n for
any derivation d of order 1; furthermore, dn is nontrivial if d �= 0 and R is an
integral domain of characteristic 0. We do not give separate proofs for these
statements since they will follow from our main results.
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Our primary tool is the Leibniz difference operator, which plays a key role
in these investigations. It seems to be an important tool for the study of
derivations of higher order.

Definition 2.1. Let S be a commutative ring with subring R. For any function
f : R → S and any x ∈ R we define the function Λxf : R → S, called the
Leibniz difference (of order 1) of f with increment x, by

Λxf(y) := f(xy) − xf(y) − f(x)y for all y ∈ R.

We call Λx a Leibniz difference operator of order 1 on SR. We also define
Leibniz difference operators of order n on SR by

Λy1,...,yn
:= Λyn

◦ · · · ◦ Λy1 for all y1, . . . , yn ∈ R,

and for any f ∈ SR we say Λy1,...,yn
f is a Leibniz difference of order n of f .

Note that if f is a derivation (of any order), then the function (x, y) �→
Λxf(y) is identical to the function B appearing in (1).

Now we show that the expressions defined above are completely symmetric
functions of all the variables. For each positive integer n we use the notation
Sn to denote the symmetric group of all permutations on the set {1, . . . , n}.

Lemma 2.2. Let S be a commutative ring with subring R, let n ∈ N and let
f : R → S. For any y1, . . . , yn+1 ∈ R and any permutation π ∈ Sn+1 we have

Λy1,...,yn
f(yn+1) = Λπ(y1),...,π(yn)f(π(yn+1)).

Proof. It is clear from the definition that this is true for n = 1. For larger
values of n the statement follows from a calculation of the explicit form of the
left hand side. It is not difficult to show by a simple inductive argument that

Λy1,...,yn
f(yn+1) =f(y1y2 · · · yn+1) −

n+1∑

i=1

yif(y1 · · · ŷi · · · yn+1)

+
∑

1≤i<j≤n+1

yiyjf(y1 · · · ŷi · · · ŷj · · · yn+1)

+ . . . + (−1)n
n+1∑

i=1

y1 · · · ŷi · · · yn+1f(yi),

where we use the hat symbol ̂ over a variable to indicate that that variable
is to be omitted. �

Now suppose f : R → S is an additive function. Then f ∈ Dn(R,S) if and
only if Λxf ∈ Dn−1(R,S) for each x ∈ R. By taking further Leibniz differences
we have the following.
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Proposition 2.3. Let S be a commutative ring with subring R, let f : R → S
be additive, let n ∈ N and j ∈ {1, . . . , n}. Then f ∈ Dn(R,S) if and only if
Λy1,...,yj

f ∈ Dn−j(R,S) for all y1, . . . , yj ∈ R. In particular, f ∈ Dn(R,S) if
and only if all Leibniz differences of f of order n vanish.

From this follows the nesting property

{0} = D0(R,S) ⊆ D1(R,S) ⊆ · · · ⊆ Dn(R,S) ⊆ · · ·
for spaces of derivations on commutative rings. Indeed, if f ∈ Dn(R,S) then
Λy1,...,yn

f = 0 for any y1, . . . , yn ∈ R, so any further Leibniz differences of f
also vanish. Thus f ∈ Dm(R,S) for all m > n.

3. General compositions of derivations

We show now that the composition of n derivations of order 1 forms a deriva-
tion of order n.

Proposition 3.1. Let R be a commutative ring, and let n ∈ N.
(i) If h ∈ Dn(R) and d ∈ D1(R), then

Λx(h ◦ d)(y) = h(x)d(y) + d(x)h(y) + (Λxh)(d(y)) + (Λyh)(d(x)) (2)

for all x, y ∈ R. It follows that h ◦ d ∈ Dn+1(R).
(ii) If d1, . . . , dn ∈ D1(R), then d1 ◦ · · · ◦ dn ∈ Dn(R).

Proof. We prove statement (i) by induction. For n = 1 we assume that h, d ∈
D1(R), then

Λx(h ◦ d)(y) = (h ◦ d)(xy) − x(h ◦ d)(y) − (h ◦ d)(x)y

= h(xd(y) + d(x)y) − xh(d(y)) − h(d(x))y

= h(x)d(y) + xh(d(y)) + h(d(x))y + d(x)h(y)

− xh(d(y)) − h(d(x))y

= h(x)d(y) + d(x)h(y),

for all x, y ∈ R. Since Λxh = Λyh = 0 for h ∈ D1(R), this proves (2) for n = 1.
Furthermore, the right hand side is a bi-derivation of order 1, so h◦d ∈ D2(R).

Now suppose statement (i) is true for some n ≥ 1, and let h ∈ Dn+1(R)
and d ∈ D1(R). Starting out as before we compute

Λx(h ◦ d)(y) =h(xd(y)) + h(d(x)y) − xh(d(y)) − h(d(x))y

= [h(xd(y)) − xh(d(y)) − h(x)d(y)] + h(x)d(y)

+ [h(d(x)y) − h(d(x))y − d(x)h(y)] + d(x)h(y)

= Λxh(d(y)) + h(x)d(y) + Λyh(d(x)) + d(x)h(y), (3)

which is (2) again for n augmented by 1. Now consider the terms on the
right hand side of (3) as functions of y. For each fixed x in R we see that
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h(x)d ∈ D1(R), d(x)h ∈ Dn+1(R), and y �→ Λyh(d(x)) = Λd(x)h(y) ∈ Dn(R).
The term (Λxh)◦d is the composition of the derivation Λxh of order n with the
derivation d of order 1, hence it is a derivation of order n + 1 by the inductive
hypothesis. Since each Dj(R) is a linear space and D1(R) ⊆ Dn(R) ⊆ Dn+1(R),
we find that Λx(h ◦ d) ∈ Dn+1(R) for each x ∈ R. Thus h ◦ d ∈ Dn+2(R) and
part (i) is proved.

Part (ii) follows directly from part (i) by a simple inductive argument. �

What remains is to answer the question of whether the composition of
nontrivial derivations produces nontrivial derivations of higher orders. In or-
der to answer this question, we need to understand more about the interaction
between Leibniz differences and compositions of derivations. This will be ac-
complished through a series of steps, beginning with the following reduction
formula.

Lemma 3.2. Let R be a commutative ring, let n ∈ N with n ≥ 2, and suppose
d1, . . . , dn+1 ∈ D1(R). Let z, y1, . . . , yn ∈ R and define Y := {y1, . . . , yn}.
Then for each k ∈ {1, . . . , n − 1} we have

Λyk+1,...,yn
[Λy1,...,yk

(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

= Λyk+2,...,yn
dn+1(z)Λy1,...,yk

(d1 ◦ · · · ◦ dn)(yk+1)

+ dn+1(yk+1)ΛY \{yk+1}(d1 ◦ · · · ◦ dn)(z)

+ Λyk+2,...,yn
[Λy1,...,yk+1(d1 ◦ · · · ◦ dn) ◦ dn+1](z). (4)

An empty operator (such as Λyk+2,...,yn
when k = n− 1) is to be interpreted as

the identity operator.

Proof. The proof proceeds by induction on k, and we shall use Proposition
3.1 (i) repeatedly. For k = 1 we take h := Λy1(d1 ◦ · · · ◦ dn), d := dn+1, and
x := y2. Then Eq. (2) yields

Λy2 [Λy1(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

= dn+1(z)Λy1(d1 ◦ · · · ◦ dn)(y2) + dn+1(y2)Λy1(d1 ◦ · · · ◦ dn)(z)

+ Λy1,y2(d1 ◦ · · · ◦ dn) ◦ dn+1(z) + Λz,y1(d1 ◦ · · · ◦ dn)(dn+1(y2)).

If n = 2 then this equation reduces to

Λy2 [Λy1(d1 ◦ d2) ◦ d3](z) = d3(z)Λy1(d1 ◦ d2)(y2) + d3(y2)Λy1(d1 ◦ d2)(z),

since Λu,v(d1 ◦ d2) = 0 for any u, v ∈ R, and this agrees with (4).
If n ≥ 3 then we have

Λy2,...,yn
[Λy1(d1 ◦ · · · ◦ dn) ◦ dn+1](z) = Λy3,...,yn

{Λy2 [Λy1(d1 ◦ · · · ◦ dn) ◦ dn+1]}(z)

= Λy3,...,yn
dn+1(z)Λy1(d1 ◦ · · · ◦ dn)(y2) + dn+1(y2)Λy3,...,yn

Λy1(d1 ◦ · · · ◦ dn)(z)

+ Λy3,...,yn
[Λy1,y2(d1 ◦ · · · ◦ dn) ◦ dn+1)](z)
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+ Λy3,...,yn
Λz,y1(d1 ◦ · · · ◦ dn)(dn+1(y2))

= dn+1(y2)Λy1,y3,...,yn
(d1 ◦ · · · ◦ dn)(z) + Λy3,...,yn

[Λy1,y2(d1 ◦ · · · ◦ dn) ◦ dn+1)](z),

since d1 ◦ · · · ◦ dn ∈ Dn(R) is annihilated by the operator Λz,y1,y3,...,yn
of order

n, and dn+1 is annihilated by the operator Λy3,...,yn
of order at least 1. This

again agrees with (4), which is now established for k = 1.
Now suppose (4) is valid for some k ∈ {1, . . . , n − 2}, and consider the

expression Λyk+2,...,yn
[Λy1,...,yk+1(d1 ◦ · · · ◦ dn) ◦ dn+1]. Notice that this can be

considered only if n ≥ 3. We apply Proposition 3.1 (i) with h := Λy1,...,yk+1(d1◦
· · · ◦ dn), d := dn+1, and x := yk+2, obtaining

Λyk+2,...,yn
[Λy1,...,yk+1(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

= Λyk+3,...,yn
{Λyk+2 [Λy1,...,yk+1(d1 ◦ · · · ◦ dn) ◦ dn+1]}(z)

= Λyk+3,...,yn
dn+1(z)Λy1,...,yk+1(d1 ◦ · · · ◦ dn)(yk+2)

+ dn+1(yk+2)ΛY \{yk+2}(d1 ◦ · · · ◦ dn)(z)

+ Λyk+3,...,yn
[Λy1,...,yk+2(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

+ Λ{z}∪Y \{yk+2}(d1 ◦ · · · ◦ dn)(dn+1(yk+2))

= Λyk+3,...,yn
dn+1(z)Λy1,...,yk+1(d1 ◦ · · · ◦ dn)(yk+2)

+ dn+1(yk+2)ΛY \{yk+2}(d1 ◦ · · · ◦ dn)(z)

+ Λyk+3,...,yn
[Λy1,...,yk+2(d1 ◦ · · · ◦ dn) ◦ dn+1](z),

since d1 ◦ · · · ◦ dn ∈ Dn(R) is annihilated by the Leibniz difference operator
Λ{z}∪Y \{yk+2} of order n. This is exactly Eq. (4) for k increased to k + 1 and
that completes the proof. �

The next result describes what happens when we apply Lemma 3.2 succes-
sively for k = 1 through k = n − 1.

Lemma 3.3. Let R be a commutative ring, let n ∈ N with n ≥ 2, and let
d1, . . . , dn+1 ∈ D1(R). Suppose z, y1, . . . , yn ∈ R and let Y = {y1, . . . , yn}.
Then we have

Λy2,...,yn [Λy1(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

=
n∑

i=2

dn+1(yi)ΛY \{yi}(d1 ◦ · · · ◦ dn)(z) + dn+1(z)ΛY \{yn}(d1 ◦ · · · ◦ dn)(yn).

(5)

Proof. We start by proving (5). As observed above, for n = 2 Eq. (4) with
k = 1 gives

Λy2 [Λy1(d1 ◦ d2) ◦ d3](z) = d3(z)Λy1(d1 ◦ d2)(y2) + d3(y2)Λy1(d1 ◦ d2)(z),
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confirming (5). Now suppose n ≥ 3. Then successive applications of Lemma
3.2 for k = 1, 2, . . . , n − 1 yield

Λy2,...,yn
[Λy1(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

= Λy3,...,yn
dn+1(z)Λy1(d1 ◦ · · · ◦ dn)(y2) + dn+1(y2)ΛY \{y2}(d1 ◦ · · · ◦ dn)(z)

+ Λy3,...,yn
[Λy1,y2(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

= dn+1(y2)ΛY \{y2}(d1 ◦ · · · ◦ dn)(z) + Λy4,...,yn
dn+1(z)Λy1,y2(d1 ◦ · · · ◦ dn)(y3)

+ dn+1(y3)ΛY \{y3}(d1 ◦ · · · ◦ dn)(z) + Λy4,...,yn
[Λy1,...,y3(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

= . . .

=

n−1∑

i=2

dn+1(yi)ΛY \{yi}(d1 ◦ · · · ◦ dn)(z) + Λyn
[Λy1,...,yn−1(d1 ◦ · · · ◦ dn) ◦ dn+1](z)

=

n−1∑

i=2

dn+1(yi)ΛY \{yi}(d1 ◦ · · · ◦ dn)(z) + dn+1(z)ΛY \{yn}(d1 ◦ · · · ◦ dn)(yn)

+ dn+1(yn)ΛY \{yn}(d1 ◦ · · · ◦ dn)(z) + Λy1,...,yn
(d1 ◦ · · · ◦ dn) ◦ dn+1(z).

Since the last term vanishes, this proves the statement. �

The following result provides another key to answering our main question
about nontrivial derivations.

Proposition 3.4. Let R be a commutative ring, let m ∈ N with m ≥ 2, and
suppose d1, . . . , dm ∈ D1(R). Then

Λy1,...,ym−1(d1 ◦ · · · ◦ dm)(ym) =
∑

π∈Sm

dπ(1)(y1) · · · dπ(m)(ym), (6)

for all y1, . . . , ym ∈ R.

Proof. The proof goes by induction on m. For m = 2 the statement is

Λy1(d1 ◦ d2)(y2) = d1(y1)d2(y2) + d2(y1)d1(y2)

for all y1, y2 ∈ R, which is just the case n = 1 of Proposition 3.1 (i).
Now suppose Eq. (6) holds for some m ≥ 2, and let Y = {y1, . . . , ym}. By

Proposition 3.1 (i) with h := d1 ◦ · · · ◦ dm, d := dm+1, and x := y1, we know
that

Λy1(d1 ◦ · · · ◦ dm ◦ dm+1)(z)

= dm+1(z)(d1 ◦ · · · ◦ dm)(y1) + dm+1(y1)(d1 ◦ · · · ◦ dm)(z)

+ Λy1(d1 ◦ · · · ◦ dm) ◦ dm+1(z) + Λz(d1 ◦ · · · ◦ dm)(dm+1(y1)).

Using this formula and Eq. (5) with n replaced by m, together with the
inductive hypothesis, we calculate that

Λy1,...,ym (d1 ◦ · · · ◦ dm+1)(z) = Λy2,...,ym [Λy1 (d1 ◦ · · · ◦ dm ◦ dm+1)](z)

= Λy2,...,ym{dm+1(·)(d1 ◦ · · · ◦ dm)(y1) + dm+1(y1)(d1 ◦ · · · ◦ dm)(·)
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+ Λy1 (d1 ◦ · · · ◦ dm) ◦ dm+1(·)
+ Λ(·)(d1 ◦ · · · ◦ dm)(dm+1(y1))]}(z)

= Λy2,...,ymdm+1(z)(d1 ◦ · · · ◦ dm)(y1) + dm+1(y1)Λy2,...,ym (d1 ◦ · · · ◦ dm)(z)

+ Λy2,...,ym [Λy1 (d1 ◦ · · · ◦ dm) ◦ dm+1](z) + Λz,y2,...,ym (d1 ◦ · · · ◦ dm)(dm+1(y1))

= dm+1(y1)Λy2,...,ym (d1 ◦ · · · ◦ dm)(z) +

m∑

i=2

dm+1(yi)ΛY \{yi}(d1 ◦ · · · ◦ dm)(z)

+ dm+1(z)ΛY \{ym}(d1 ◦ · · · ◦ dm)(ym)

=
m∑

i=1

dm+1(yi)
∑

π∈Sm

dπ(1)(y1) · · · ̂dπ(i)(yi) · · · dπ(m)(ym)dπ(i)(z)

+ dm+1(z)
∑

π∈Sm

dπ(1)(y1) · · · dπ(m)(ym),

where in the fourth step we utilized

Λy2,...,ym
dm+1 = Λz,y2,...,ym

(d1 ◦ · · · ◦ dm) = 0.

Evaluating at z = ym+1 we get

Λy1,...,ym
(d1 ◦ · · · ◦ dm+1)(ym+1) =

∑

π∈Sm+1

dπ(1)(y1) · · · dπ(m+1)(ym+1),

which is Eq. (6) with m augmented by 1. This completes the proof. �

Here we single out one useful benefit of the preceding result: It shows that
the function di �→ Λy1,...,ym−1(d1 ◦ · · · ◦ dm) is linear for each i ∈ {1, . . . , n}.
Additivity is obvious, but it is not necessarily true that (d1 ◦ · · · ◦ dj−1 ◦ kdj ◦
dj+1 ◦ · · · ◦ dm) = k(d1 ◦ · · · ◦ dm) for a given element k ∈ R. Nevertheless it is
true that

Λy1,...,ym−1 (d1 ◦ · · · ◦ dj−1 ◦ kdj ◦ dj+1 ◦ · · · ◦ dm)(ym) = k
∑

π∈Sm

dπ(1)(y1) · · · dπ(m)(ym)

= kΛy1,...,ym−1 (d1 ◦ · · · ◦ dm)(ym) (7)

for any k ∈ R and any j ∈ {1, . . . , m}. We will use this linearity in the proof
of Theorem 3.6 below.

Before proving our main theorem, we prove the following special result.
Now additional conditions must be imposed on the ring R. We use the notation
char(R) for the characteristic of R.

Proposition 3.5. Let m ∈ N and let R be an integral domain with char(R) >
m! or char(R) = 0. If d ∈ D1(R) \ D0(R) and k1, . . . , km ∈ R \ {0}, then
(k1d) ◦ (k2d) ◦ · · · ◦ (kmd) ∈ Dm(R) \ Dm−1(R).

Proof. The case m = 1 is obviously true. For m ≥ 2 the proof is by contradic-
tion. Suppose (k1d)◦(k2d)◦· · ·◦(kmd) ∈ Dm−1(R). Then all Leibniz differences
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of (k1d) ◦ (k2d) ◦ · · · ◦ (kmd) of order m − 1 vanish. Hence by Proposition 3.4
we have

0 =
∑

π∈Sm

kπ(1)d(y1) · · · kπ(m)d(ym),

for all y1, . . . , ym ∈ R. In particular, for y1 = · · · = ym = x we get

0 = m!k1 · · · km[d(x)]m, x ∈ R,

which is impossible according to our hypotheses. �

We are now ready to state and prove our main theorem. The case char(R) =
0 of the following result has been obtained recently by G. Kiss and
M. Laczkovich [2] using different methods.

Theorem 3.6. Let m ∈ N and let R be an integral domain with char(R) > m!
or char(R) = 0. If d1, . . . , dm ∈ D1(R) \ D0(R), then d1 ◦ · · · ◦ dm ∈ Dm(R) \
Dm−1(R).

Proof. The proof is by induction on m. The statement is trivially true for m =
1. Now suppose it is true for some m ≥ 1 and let d1, . . . , dm+1 ∈ D1(R)\D0(R),
where R is an integral domain with char(R) > (m + 1)! or char(R) = 0.

For a contradiction, suppose d1 ◦ · · · ◦ dm+1 ∈ Dm(R). Then any Leibniz
difference of order m of d1 ◦ · · · ◦ dm+1 vanishes, so by Proposition 3.4 we have
for all y1, . . . , ym+1 ∈ R that

0 =
∑

π∈Sm+1

d1(yπ(1)) · · · dm+1(yπ(m+1))

=
m+1∑

k=1

dk(ym+1)
∑

π∈Sm+1,π(k)=m+1

d1(yπ(1)) · · · ̂dk(yπ(k)) · · · dm+1(yπ(m+1))

=
m+1∑

k=1

dk(ym+1)Λy1,...,ym−1(d1 ◦ · · · ◦ d̂k ◦ · · · ◦ dm+1)(ym). (8)

If we assume that {d1, . . . , dm+1} is linearly independent, then in the preceding
equation the coefficient of dk(ym+1) for each 1 ≤ k ≤ m + 1 must be 0. In
particular for k = m + 1 we would get

Λy1,...,ym−1(d1 ◦ · · · ◦ dm)(ym) = 0

for all y1, . . . , ym ∈ R. This would entail d1◦· · ·◦dm ∈ Dm−1(R), contradicting
the induction hypothesis.

Therefore {d1, . . . , dm+1} must be linearly dependent. Relabeling if neces-
sary, we can write

dm+1 =
m∑

j=1

cjdj
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for some constants c1, . . . , cm ∈ R with cm �= 0. Using this in (8) we find that

0 = dm+1(ym+1)Λy1,...,ym−1(d1 ◦ · · · ◦ dm)(ym)

+
m∑

k=1

dk(ym+1)Λy1,...,ym−1(d1 ◦ · · · ◦ d̂k ◦ · · · ◦ dm+1)(ym)

=
m∑

j=1

cjdj(ym+1)Λy1,...,ym−1(d1 ◦ · · · ◦ dm)(ym)

+
m∑

k=1

dk(ym+1)Λy1,...,ym−1

⎛

⎝d1 ◦ · · · ◦ d̂k ◦ · · · ◦ dm ◦
⎛

⎝
m∑

j=1

cjdj

⎞

⎠

⎞

⎠ (ym).

(9)

If m = 1 this equation states that

0 = c1d1(y2)d1(y1) + d1(y2)c1d1(y1) = 2c1d1(y1)d1(y2),

which is impossible by our hypotheses. Thus we have verified the inductive
step if m = 1.

Now suppose that m ≥ 2 and {d1, . . . , dm} is linearly independent. Then in
Eq. (9) the coefficient of dj(ym+1) for each 1 ≤ j ≤ m must be 0. In particular
for j = m we have

0 = cmΛy1,...,ym−1(d1 ◦ · · · ◦ dm)(ym)

+ Λy1,...,ym−1

⎛

⎝d1 ◦ · · · ◦ dm−1 ◦
⎛

⎝
m∑

j=1

cjdj

⎞

⎠

⎞

⎠ (ym)

= Λy1,...,ym−1

⎛

⎝d1 ◦ · · · ◦ dm−1 ◦
⎛

⎝2cmdm +
m−1∑

j=1

cjdj

⎞

⎠

⎞

⎠ (ym),

where we have used the linearity property (7). From this we see that

d1 ◦ · · · ◦ dm−1 ◦
⎛

⎝2cmdm +
m−1∑

j=1

cjdj

⎞

⎠ ∈ Dm−1(R).

By the inductive hypothesis, this can be true only if

2cmdm +
m−1∑

j=1

cjdj = 0,

and since 2cm �= 0 this contradicts the hypothesis that {d1, . . . , dm} is linearly
independent.
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Therefore {d1, . . . , dm} must be linearly dependent. Again re-labeling if
needed, we have

dm =
m−1∑

j=1

bjdj

for some constants b1, . . . , bm−1 ∈ R with bm−1 �= 0. In case m = 2 it follows
that both d2 and d3 are constant multiples of d1, say

d2 = k2d1 and d3 = k3d1,

with k2k3 �= 0 since d2 and d3 are nontrivial. By Proposition 3.5 this is impos-
sible.

If m > 2 we continue the reduction process until we arrive at

d2 = k2d1, d3 = k3d1, . . . , dm = kmd1,

with k2 · · · km �= 0. Applying Proposition 3.5 we again have a contradiction,
and this completes the proof. �

We recall (see [3], Chapter XIV, section 2, Theorem 2) that there exist
nontrivial derivations (of order 1) of R. In fact the same is true for any tran-
scendental extension field of Q (see [3], Chapter XIV, section 2, Theorem 1).
Let δ ∈ D1(R) \ D0(R). Then by Theorem 3.6 the iterate δn is a nontrivial
derivation of R of order n. Thus we have proved the following.

Corollary 3.7. There exist nontrivial derivations of R of every order. The same
is true if we replace R by any field extension of Q which contains at least one
element transcendental over Q.

4. Examples

We close the paper with two examples illustrating the sharpness of the results
in Theorem 3.6. The first shows the necessity of assuming that the character-
istic of R exceeds n! in order to guarantee that the n-th iterate of a nonzero
derivation is a nontrivial derivation of order n.

Example 4.1. Let R = Zn![x] be the polynomial ring with coefficients in Zn!.
Here the derivative function d : R → R defined by d(p) := p′ is a nontrivial
derivation of order 1. Yet it is easy to verify that the n-th iterate (= n-th
derivative) dn is identically zero. Indeed, for any polynomial p ∈ R we have

dn(p) = dn

⎛

⎝
∑

j

ajx
j

⎞

⎠ =
∑

j≥n

j(j − 1) · · · (j − n + 1)ajx
j−n =

∑

j≥n

n!
(j

n

)
ajx

j−n = 0.
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The second example shows the necessity of R being an integral domain.
The following R has characteristic 0, but it has nontrivial divisors of 0: x �= 0
and y �= 0 yet xy = 0. A different example has been given in the paper [2] by
Kiss and Laczkovich.

Example 4.2. Let R be the quotient ring Z[x, y]/(xy), where (xy) is the ideal
generated by xy. (Multiplication of elements in R is done as usual for polyno-
mials except that any term which is a multiple of xy is deleted.)

We define d1, d2 : R → R by d1(p) := ∂p
∂x , respectively d2(p) := ∂p

∂y . It is
easy to see that d1 and d2 are nontrivial derivations, yet d1 ◦ d2 = 0.
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Bruce Ebanks
Department of Mathematics
University of Louisville
Louisville KY40292
USA
e-mail: ebanks1950@gmail.com

Received: March 28, 2018

Revised: July 16, 2018

http://arxiv.org/abs/1803.01025

	Derivations and Leibniz differences on rings
	Abstract
	1. Introduction
	2. Notation and preliminaries
	3. General compositions of derivations
	4. Examples
	References




