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Abstract. Let X be a locally compact Abelian group, αj , βj be topological automorphisms
of X. Let ξ1, ξ2 be independent random variables with values in X and distributions μj

with non-vanishing characteristic functions. It is known that if X contains no subgroup
topologically isomorphic to the circle group T, then the independence of the linear forms
L1 = α1ξ1 + α2ξ2 and L2 = β1ξ1 + β2ξ2 implies that μj are Gaussian distributions. We

prove that if X contains no subgroup topologically isomorphic to T
2, then the independence

of L1 and L2 implies that μj are either Gaussian distributions or convolutions of Gaussian
distributions and signed measures supported in a subgroup of X generated by an element of
order 2. The proof is based on solving the Skitovich–Darmois functional equation on some
locally compact Abelian groups.
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1. Introduction

One of the most well-known characterization theorems in mathematical sta-
tistics is the following theorem which characterizes the Gaussian distribution
on the real line.

The Skitovich–Darmois theorem ([19, Ch. 3]). Let ξj , j = 1, 2, . . . , n, n ≥
2, be independent random variables, αj , βj be nonzero real numbers. If the
linear forms L1 = α1ξ1+· · ·+αnξn and L2 = β1ξ1+· · ·+βnξn are independent,
then all ξj are Gaussian.

The Skitovich–Darmois theorem was generalized by S.G. Ghurye and I.
Olkin to the case when instead of random variables random vectors ξj in the
space R

a are considered and coefficients of the linear forms L1 and L2 are
nonsingular matrices. They proved that in this case the independence of L1

and L2 implies that all ξj are also Gaussian ([19, Ch. 3]). The Skitovich–
Darmois theorem was generalized in different directions (see e.g. [4,18,22,24]).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-018-0580-5&domain=pdf
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Especially many publications have been devoted to group analogues of the
Skitovich–Darmois theorem in the case, when independent random variables
take values in a locally compact Abelian group, and coefficients of the forms are
topological automorphisms of the group (see e.g. [7,9,13–15,21,23], and also
[10,11] where one can find additional references). In this paper we continue
this research. It should be noted that the study of group analogues of the
Skitovich–Darmois theorem on a locally compact Abelian group X is based
on the study of solutions of the Skitovich–Darmois functional equation on the
character group of X.

Denote by T the circle group (the one dimensional torus), i.e. T = {z ∈ C :
|z| = 1}. The following theorem was proved in [9].

Theorem A. Let X be a second countable locally compact Abelian group con-
taining no subgroups topologically isomorphic to T. Let αj, βj, j = 1, 2, . . . , n,
n ≥ 2, be topological automorphisms of the group X. Let ξj be independent
random variables with values in X and distributions μj with non-vanishing
characteristic functions. Then the independence of the linear forms L1 =
α1ξ1 + · · · + αnξn and L2 = β1ξ1 + · · · + βnξn implies that all μj are Gaussian
distributions.

As noted for example in [6], if a locally compact Abelian group X contains a
subgroup topologically isomorphic to T, Theorem A fails even for the simplest
linear forms L1 = ξ1 + ξ2 and L2 = ξ1 − ξ2. Thus Theorem A gives a complete
description of locally compact Abelian groups for which the Skitovich–Darmois
theorem holds in its classical formulation under the assumption that the char-
acteristic functions of μj do not vanish. We will formulate now the following
general problem.

Problem 1. Let X be a second countable locally compact Abelian group, αj,
βj, j = 1, 2, . . . , n, n ≥ 2, be topological automorphisms of X. Let ξj be
independent random variables with values in the group X and distributions
μj with non-vanishing characteristic functions. Assume that the linear forms
L1 = α1ξ1 + · · · + αnξn and L2 = β1ξ1 + · · · + βnξn are independent. Describe
the possible distributions μj.

Taking Theorem A into account, it is sufficient to solve Problem 1 for
groups X containing a subgroup topologically isomorphic to T. Problem 1
for arbitrary n ≥ 2 is complicated enough. For n = 2 a partial solution of
Problem 1 for the group X = T

2 was obtained in [23], and a complete solution
for the groups X = R × T and X = Σa × T, where Σa is an a-adic solenoid,
was obtained in [15].

The main result of the article is a complete solution of Problem 1 for
n = 2 for an arbitrary locally compact Abelian group X, containing a subgroup
topologically isomorphic to T, but not containing a subgroup topologically
isomorphic to T

2. We prove that in this case the distributions μj are not
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only Gaussian, but convolutions of Gaussian distributions and some signed
measures (Theorem 3). The proof is based on the fact that the solution of
Problem 1 for an arbitrary locally compact Abelian group can be reduced
to the case when a group is of the form R

n × T
m, where n ≤ ℵ0, m ≤ ℵ0

(Theorems 1 and 2). As to the case when a locally compact Abelian group X
contains a subgroup topologically isomorphic to T

2, taking into account results
of [23], we can hardly hope for a complete solution of Problem 1.

We will use in the article the standard results of abstract harmonic analysis
(see [17]). Recall some definitions and agree on notation. Let X be a locally
compact Abelian group, Y = X∗ be its character group, (x, y) be the value of
a character y ∈ Y at an element x ∈ X, Aut(X) be the group of topological
automorphisms of X. A Borel subgroup of the group X is called characteristic
if it is invariant with respect to any automorphism δ ∈ Aut(X). Let A be
a closed subgroup of X, and δ be a continuous endomorphism of X. Denote
by δ|A the restriction of δ to A. If H is a subgroup of the group Y , denote
by A(X,H) = {x ∈ X : (x, y) = 1 for all y ∈ H} its annihilator. Let X1

and X2 be locally compact Abelian groups with character groups Y1 and Y2,
respectively. For any continuous homomorphism f : X1 �→ X2 define an adjoint
homomorphism f̃ : Y2 �→ Y1 by the formula (x1, f̃y2) = (fx1, y2) for all
x1 ∈ X1, y2 ∈ Y2. Denote by cX the connected component of zero of the group
X. Denote by Z the group of integers, by Z(2) the subgroup of T consisting of
elements ±1. Denote by T

m, where m ≤ ℵ0, the finite-dimensional or infinite-
dimensional torus. Denote by Z

m∗ the free group of rank m. Denote by I the
identity automorphism of a group. Put Y (2) = {2y : y ∈ Y }.

Denote by R
ℵ0 the space of all sequences of real numbers in the topology

of the projective limit of spaces R
n (in the product topology), and by R

ℵ0∗

the space of all finite sequences of real numbers with the topology of strictly
inductive limit of spaces R

n. We note that the groups R
ℵ0 and R

ℵ0∗ are the
character groups of one another.

Let ψ(y) be a function on Y , and h be an arbitrary element of Y . Denote
by Δh the finite difference operator

Δhψ(y) = ψ(y + h) − ψ(y), y ∈ Y.

Denote by 〈., .〉 the scalar product in the space R
b.

Let M1(X) be the convolution semigroup of probability distributions on X
and μ ∈ M1(X). Denote by

μ̂(y) =
∫

X

(x, y)dμ(x)

the characteristic function (Fourier transform) of μ, and by σ(μ) the support
of μ. For μ ∈ M1(X) define the distribution μ̄ ∈ M1(X) by the formula
μ̄(B) = μ(−B) for any Borel set B. We note that ˆ̄μ(y) = μ̂(y). Denote by Ex

the degenerate distribution concentrated at a point x ∈ X.
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A distribution γ on the group X is called Gaussian in the sense of Parthasa-
rathy ([25, Ch. IV], if its characteristic function is of the form

γ̂(y) = (x, y) exp{−ϕ(y)},

where x ∈ X, and ϕ(y) is a continuous nonnegative function on Y , satisfying
the equation

ϕ(u + v) + ϕ(u − v) = 2[ϕ(u) + ϕ(v)], u, v ∈ Y. (1)

Since we will deal only with Gaussian distributions in the sense of Parthasara-
thy we will call them Gaussian. Denote by Γ(X) the set of Gaussian distribu-
tions on the group X.

2. Reduction of Problem 1 for arbitrary groups to groups of the form
R

n × T
m

It is convenient for us to formulate as a lemma the following statement.

Lemma 1. ([10, §10.1]). Let X be a second countable locally compact Abelian
group, αj , βj ∈ Aut(X). Let ξj , j = 1, 2, . . . , n, n ≥ 2, be independent
random variables with values in X and distributions μj. The linear forms
L1 = α1ξ1 + · · · + αnξn L2 = β1ξ1 + · · · + βnξn are independent if and only
if the characteristic functions μ̂j(y) satisfy the Skitovich–Darmois functional
equation

n∏
j=1

μ̂j(α̃ju + β̃jv) =
n∏

j=1

μ̂j(α̃ju)
n∏

j=1

μ̂j(β̃jv), u, v ∈ Y. (2)

Taking into account that the characteristic function of the distribution μj

is the mathematical expectation μ̂j(y) =E[(ξj , y)], the proof of Lemma 1 is the
same as in the classical case X = R.

We need the following K. Stein theorem, which we formulate as a lemma.

Lemma 2. ([16, §19.3]). Let H be a countable Abelian group. Then H is rep-
resented in the form H = N × M , where M is free, and N has no free factor-
groups. The group N is uniquely determined by the group H.

Lemma 2 implies the following statement.

Lemma 3. Let X be a second countable connected locally compact Abelian
group. Then the group X is topologically isomorphic to a group of the form
R

a ×K ×T
m, where a ≥ 0, K is a connected compact Abelian group containing

no subgroup topologically isomorphic to T, m ≤ ℵ0. Furthermore, a and m are
uniquely determined by the group X, and the group K is uniquely determined
by the group X up to topological isomorphism.
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Proof. By the structure theorem for connected locally compact Abelian groups
X = L × F , where L ∼= R

a, a ≥ 0, and F is a second countable connected
compact Abelian group. Furthermore, a and F are uniquely determined by the
group X. Put H = F ∗. Then H is a countable discrete torsion free Abelian
group. By Lemma 2 H is represented in the form H = N×M , where M is a free
Abelian group, N is a torsion free Abelian group without free factor-groups.
Furthermore, the group N is uniquely determined by the group H. This implies
that F = K × G, where K ∼= N∗ is a connected compact group containing no
subgroup topologically isomorphic to T, G ∼= M∗ ∼= T

m, where m ≤ ℵ0. Since
G = A(F,N), the group G is uniquely determined by the group F , and hence
by the group X, too. It follows from this that m is uniquely determined by
the group X, and the subgroup K, which is topologically isomorphic to the
factor-group F/G, is uniquely determined up to topological isomorphism. �

We also need the following standard lemma.

Lemma 4. (see e.g. [8, §2.5]). Let X be a topological Abelian group, B be a Borel
subgroup of X, μ be a distribution on X concentrated on B. Let μ = μ1 ∗ μ2,
where μj are distributions on X. Then the distributions μj can be replaced by
their shifts μ′

j in such a manner that μ = μ′
1 ∗ μ′

2 and μ′
j are concentrated on

B.

Lemma 5. ([9]). Let X be a second countable locally compact Abelian group,
αj , βj ∈ Aut(X). Let ξj, j = 1, 2, . . . , n, n ≥ 2, be independent random vari-
ables with values in X and distributions μj with non-vanishing characteristic
functions. Then the independence of the linear forms L1 = α1ξ1+· · ·+αnξn and
L2 = β1ξ1+ · · ·+βnξn implies that there exist elements xj ∈ X, j = 1, 2, . . . , n
such that all distributions μ′

j of the random variables ξ′
j = ξj +xj are supported

in the subgroup cX .

Taking into account that cX is a characteristic subgroup, it follows from
Lemma 5 that the study of distributions of independent random variables
with non-vanishing characteristic functions which are characterized by the in-
dependence of the linear forms L1 and L2 is reduced to the case when X is a
connected group. Although the structure of connected locally compact Abelian
groups is still complicated (each such group is topologically isomorphic to a
group of the form R

a×F, a ≥ 0, F is a connected compact Abelian group), it is
much simpler than the structure of arbitrary locally compact Abelian groups.

In this section we considerably strengthen Lemma 5. Namely, we prove that
the study of distributions of independent random variables with non-vanishing
characteristic functions which are characterized by the independence of linear
forms L1 and L2 is reduced to the case when the group X is topologically
isomorphic to a group of the form R

n × T
m, where n ≤ ℵ0, m ≤ ℵ0. It should

be noted that if n = ℵ0, then X is not a locally compact group, although its
structure is simple enough.
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Let X be a second countable locally compact Abelian group. By Lemma 3
cX

∼= R
a × K × T

m, where a ≥ 0, K is a connected compact Abelian group
containing no subgroup topologically isomorphic to T, m ≤ ℵ0. Since the group
K is uniquely determined by the group X up to topological isomorphism,
the dimension of the group K is uniquely determined by the group X. First
consider the case when K has a finite dimension.

Theorem 1. Let X be a second countable locally compact Abelian group such
that its connected component of zero cX

∼= R
a × K × T

m, where a ≥ 0, K
be a connected compact Abelian group containing no subgroup topologically
isomorphic to T, m ≤ ℵ0. Assume that K has a finite dimension l. Let αj , βj ∈
Aut(X). Let ξj, j = 1, 2, . . . , n, n ≥ 2, be independent random variables with
values in X and distributions μj with non-vanishing characteristic functions.
Assume that the linear forms L1 = α1ξ1+· · ·+αnξn and L2 = β1ξ1+· · ·+βnξn

are independent. Then there exist a continuous monomorphism p : G �→ X,
where G = R

b ×T
m, b = a+ l, and elements xj ∈ X, j = 1, 2, . . . , n, such that

all distributions μj ∗Exj
are concentrated on the subgroup p(G). Furthermore,

p(G) is a characteristic subgroup.

Proof. It follows from Lemma 5 that we can assume from the beginning that X
is a connected group, i.e. X = cX . Then Y ∼= R

a×D×Z
m∗, where D = K∗ is a

countable discrete torsion free Abelian group containing no free factor-groups.
To avoid introducing additional notation we assume that X = R

a × K × T
m

and Y = R
a × D × Z

m∗. Since the group K has dimension l, the rank of the
group D is also l. Put G = R

b ×T
m, b = a + l. Then H = G∗ ∼= R

b ×Z
m∗. We

also assume that H = R
b × Z

m∗. Denote by (s, d, k), s ∈ R
a, d ∈ D, k ∈ Z

m∗,
elements of the group Y , and by (w, k), w ∈ R

b, k ∈ Z
m∗, elements of the group

H. Construct a natural embedding of the group Y to the group H (see e.g.
[8, §5.6]). Choose in D a maximal independent system of elements d1, . . . , dl.
Then for every d ∈ D there exist integers q �= 0, q1, . . . , ql, such that

qd = q1d1 + · · · + qldl. (3)

The independence of the set {d1, . . . , dl} implies that the rational numbers
{qj/q} are uniquely determined by d. Define the mapping f0 : Ra × D �→ R

b

by the formula f0(s, d) = (s, q1/q, . . . , ql/q), s ∈ R
a, d ∈ D. Since D is a

torsion free group, f0 is a continuous monomorphism of the group R
a × D to

R
b. Extend f0 from R

a × D to the continuous monomorphism f : Y �→ H
putting

fy=f(s, d, k) = (s, q1/q, . . . , ql/q, k), y=(s, d, k), s ∈ R
a, d ∈ D, k ∈ Z

m∗.
(4)

Since the group K has no subgroups topologically isomorphic to T, we have
f0(Ra × D) = R

b ([5]). Then obviously f(Y ) = H. Set p = f̃ . Since f(Y ) = H,
it follows from the properties of adjoint homomorphisms that p : G �→ X is a
continuous monomorphism.



Vol. 92 (2018) On the Skitovich–Darmois theorem for some groups 1135

Note now that the inequality

|ψ(u) − ψ(v)|2 ≤ 2(1 − Re ψ(u − v)), u, v ∈ Y, (5)

holds true for any positive definite function ψ(y) on an arbitrary Abelian group
Y .

By Lemma 1 the characteristic functions μ̂j(y) satisfy the Skitovich–Darmois
functional Eq. (2). Consider the distributions νj = μj ∗ μ̄j , j = 1, 2, . . . , n.
Then ν̂j(y) = |μ̂j(y)|2 > 0. Obviously, the characteristic functions ν̂j(y) also
satisfy the Skitovich–Darmois functional Eq. (2).

Since R
a is a connected component of zero of the group Y , it follows that

R
a is a characteristic subgroup of the group Y . For this reason K × T

m =
A(X,Ra) is a characteristic subgroup of the group X. It follows from Lemma 2
that D is a characteristic subgroup of the group D × Z

m∗. This implies that
T
m = A(K × T

m,D) is a characteristic subgroup of the group K × T
m, and

hence, Tm is a characteristic subgroup of the group X. It follows from this
that R

a × D = A(Y,Tm) is a characteristic subgroup of the group Y , and we
can consider the restriction of the Skitovich–Darmois functional Eq. (2) for the
characteristic functions ν̂j(y) to this subgroup. Since R

a ×D ∼= (Ra ×K)∗, and
the group R

a × K has no subgroups topologically isomorphic to T, it follows
from Lemma 1 and Theorem A that these restrictions are the characteristic
functions of some Gaussian distributions on the group R

a × K. Taking into
account that ν̂j(y) > 0, we have the representations

ν̂j(y) = exp{−ϕj(y)}, y ∈ R
a × D, j = 1, 2, . . . , n, (6)

where ϕj(y) are continuous nonnegative functions on R
a×D satisfying Eq. (1).

As has been proved in [8, §5.6], it follows from the properties of the functions
ϕj(y) that there exist symmetric positive semidefinite (b×b)-matrices Qj , such
that

ϕj(y) = 〈Qjf0y, f0y〉, y ∈ R
a × D, j = 1, 2, . . . , n. (7)

Assume that (w, k) ∈ f(Y ), i.e. (w, k) = f(y), y ∈ Y . Consider on the subgroup
f(Y ) the functions hj(w, k) = ν̂j(f−1(w, k)), j = 1, 2, . . . , n. Since f(y) =
f0(y) for y ∈ R

a × D, it follows from (6) and (7) that

hj(w, 0) = exp{−〈Qjw,w〉}, (w, 0) ∈ f(Ra × D), j = 1, 2, . . . , n. (8)

Taking (5) into account it follows from (8) that the positive definite func-
tions hj(w, k) are uniformly continuous on the subgroup f(Y ) in the topology
induced on f(Y ) by the standard topology of H. Since f(Y ) = H, the func-
tions hj(w, k) can be extended by continuity to some continuous functions
h̄j(w, k), w ∈ R

b, k ∈ Z
m∗, on the group H. Obviously, h̄j(w, k) are also posi-

tive definite functions. By the Bochner theorem there exist distributions λj on
G such that λ̂j(w, k) = h̄j(w, k), w ∈ R

b, k ∈ Z
m∗. Since λ̂j(f(y)) = ν̂j(y) for

all y ∈ Y , νj = p(λj). Hence, the distributions νj are concentrated on p(G). It
is obvious that p(G) is a Borel subgroup. By Lemma 4 this implies that there
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exist elements xj ∈ X, j = 1, 2, . . . , n, such that all distributions μj ∗ Exj
are

concentrated on p(G).
It remains to prove that p(G) is a characteristic subgroup. Let δ ∈ Aut(X).

Put Aδ = f δ̃f−1. Then Aδ is an algebraic automorphism of the subgroup f(Y ).
The automorphism δ̃ is determined by its restriction on the subgroup R

a and its
values on the maximal independent system elements of the subgroup D×Z

m∗.
For this reason the automorphism δ̃ determines in a natural way a matrix A(δ).
It is easily seen that if fy = (s, q1/q, . . . , ql/q, k), y = (s, d, k), s ∈ R

a, d ∈
D, k ∈ Z

m∗, then Aδfy = A(δ)fy, where the expression in the right-hand
side of this equality is the product of the matrix A(δ) and the vector fy. It is
clear that the automorphism Aδ can be uniquely extended to the topological
automorphism of the group H. Denote by Āδ this extended automorphism.
We have δ̃y = f−1Aδfy, Aδfy = Āδfy, y ∈ Y . Let g ∈ G, y ∈ Y . Then
(δpg, y) = (pg, δ̃y) = (pg, f−1Aδfy) = (g,Aδfy) = (g, Āδfy) = (p˜̄Aδg, y). It
follows from this that δpg = p˜̄Aδg. Hence p(G) is a characteristic subgroup. �

Remark 1. We keep the notation used in the proof of Theorem 1. Let X =
R

a × K × T
m. Denote by L the arcwise connected component of zero of the

group X. We verify that p(G) = L. By the Dixmier theorem L is a union
of all one-parametric subgroups of the group X ([1, §8.19]). Let p1 : R �→ X
be a continuous homomorphism. Put f1 = p̃1. Taking into account Dixmier’s
theorem the required statement will be proved if we check that p1t ∈ p(G) for
all t ∈ R. To this end it suffices to show that there exists an element gt ∈ G
such that (y, p1t) = (y, pgt) for all y ∈ Y . Let {ej}a

j=1 be a natural basis in
R

a, and {bj} be a natural basis in Z
m∗. Taking (3) into account, we obtain

f1y = f1(s, d, k) =
a∑

j=1

sjf1ej +
l∑

j=1

qj

q
f1dj +

∑
j

kjf1bj ,

s = (s1, . . . , sa) ∈ R
a, d ∈ D, k = (k1, k2, . . .) ∈ Z

m∗.

This implies that

(y, p1t) = (f1y, t) = exp

⎧⎨
⎩it

⎛
⎝ a∑

j=1

sjf1ej +
l∑

j=1

qj

q
f1dj +

∑
j

kjf1bj

⎞
⎠

⎫⎬
⎭ . (9)

Put

gt = (tf1e1, . . . , tf1ea, tf1d1, . . . , tf1dl, e
itf1b1 , eitf1b2 , . . .) ∈ G.

Let y = (s1, . . . , sa, d, k1, k2, . . .) ∈ Y. Taking (4) into account we get

(y, pgt) = (fy, gt) = exp

⎧⎨
⎩it

⎛
⎝ a∑

j=1

sjf1ej +
l∑

j=1

qj

q
f1dj +

∑
j

kjf1bj

⎞
⎠

⎫⎬
⎭ .

(10)
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The required statement follows from (9) and (10).
Consider now the case when K has infinite dimension. Let N = R

ℵ0∗×Z
m∗,

m ≤ ℵ0. Put M = R
ℵ0 × T

m. The groups N and M are the character groups
of one another.

We need some properties of nuclear and strongly reflexive topological Abe-
lian groups (see [2]). We use them in the proof of Theorems 2 and 3.

The group N is nuclear ([2, (7.8), (7.10)]). For such groups the Bochner
theorem about one-to-one correspondence between the family of all continuous
positive definite functions on the group N and the family of all regular finite
Borel measures on its character group holds. We note that the factor-group of
a nuclear group with respect to a closed subgroup is also nuclear.

The groups M and N are strongly reflexive ([2, (17.3)]). These groups have,
in particular, the following properties analogous to those of locally compact
Abelian groups. The Pontryagin duality theorem holds for such groups. Let
P be a closed subgroup of the group M . For any x ∈ M\P there exists a
character y ∈ A(Y, P ) such that (x, y) �= 1. Any character of the subgroup
P can be extended to a character of the group M . Moreover, the natural
homomorphisms N/A(N,P ) �→ P ∗ and (M/P )∗ �→ A(N,P ) are topological
isomorphisms.

Theorem 2. Let X be a second countable locally compact Abelian group such
that its connected component of zero cX

∼= R
a × K × T

m, where a ≥ 0, K
be a connected compact Abelian group containing no subgroups topologically
isomorphic to T, m ≤ ℵ0. Assume that K has infinite dimension. Let αj , βj ∈
Aut(X). Let ξj, j = 1, 2, . . . , n, n ≥ 2, be independent random variables with
values in X and distributions μj with non-vanishing characteristic functions.
Assume that the linear forms L1 = α1ξ1+· · ·+αnξn and L2 = β1ξ1+· · ·+βnξn

are independent. Then there exist a continuous monomorphism p : G �→ X,
where G = R

ℵ0 × T
m, and elements xj ∈ X, j = 1, 2, . . . , n, such that all

distributions μj ∗ Exj
are concentrated on the subgroup p(G). Furthermore,

p(G) is a characteristic subgroup.

Proof. We prove Theorem 2 in analogy with the proof of Theorem 1. As in
the proof of Theorem 1 we can assume that X = R

a × K × T
m, where K

is a connected compact Abelian group containing no subgroups topologically
isomorphic to T, and Y = R

a ×D×Z
m∗, where D = K∗ is a countable discrete

torsion free Abelian group containing no free factor-groups. Since the group
K has infinite dimension, the rank of the group D is ℵ0. Put G = R

ℵ0 × T
m.

Then H = G∗ ∼= R
ℵ0∗ × Z

m∗. We assume that H = R
ℵ0∗ × Z

m∗. Construct
the natural embedding of the group Y to the group H (see e.g. ([8, §5.9])).
For this purpose we choose in D a maximal independent system of elements
d1, . . . , dl, . . . and, as we constructed in the proof of Theorem 1 the continuous
homomorphism f0 : Ra × D �→ R

b, construct the continuous homomorphism
f0 : Ra ×D �→ R

ℵ0∗. Next extend it to the continuous monomorphism f : Y �→
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H. Since the group K has no subgroups topologically isomorphic to T, we have
f0(Ra × D) = R

ℵ0∗ ([8, §5.17]). This obviously implies that f(Y ) = H. Put
p = f̃ . Since G is a strongly reflexive group, it follows from f(Y ) = H that
the homomorphism p : G �→ X is a monomorphism.

Consider the distributions νj = μj ∗ μ̄j and reason as in the proof of Theo-
rem 1. We show that the restrictions of the characteristic functions ν̂j(y) to the
subgroup R

a × D are the characteristic functions of some Gaussian distribu-
tions on the group R

a ×K. Hence, the representations (6) and (7) hold, where
Qj are infinite symmetric positive semidefinite matrices. Next, reasoning as in
the proof of Theorem 1 we come to the continuous positive definite functions
h̄j(w, k), w ∈ R

ℵ0∗, k ∈ Z
m∗, on the group H. Since H is a nuclear group,

we can correspond to each function h̄j(w, k) a distribution λj on the group G

such that λ̂j(w, k) = h̄j(w, k), w ∈ R
ℵ0∗, k ∈ Z

m∗. We have λ̂j(f(y)) = ν̂j(y)
y ∈ Y . Taking into account that G is a strongly reflexive group, it implies
that νj = p(λj). The final part of the proof of Theorem 2 is the same as in
Theorem 1. �

Remark 2. Reasoning as in Remark 1 we see that in the case when the sub-
group K has infinite dimension, the subgroup p(G) is also the arcwise con-
nected component of zero of the group X.

We need the following general statement.

Proposition 1. Let X and G be complete separable metric Abelian groups,
αj , βj ∈ Aut(X), j = 1, 2, . . . , n, n ≥ 2, and p : G �→ X be a continuous
monomorphism such that αj(p(G)) = βj(p(G)) = p(G), j = 1, 2, . . . n. Let ξj

be independent random variables with values in the group X and distributions
μj. Assume that there exist elements xj ∈ X such that all distributions μj ∗Exj

are concentrated in the subgroup p(G). Assume that the linear forms L1 =
α1ξ1 + · · · + αnξn and L2 = β1ξ1 + · · · + βnξn are independent. Then ξ̂j =
p−1(ξj + xj) are independent random variables with values in the group G,
α̂j = p−1αjp, β̂j = p−1βjp are topological automorphisms of the group G and
the linear forms L̂1 = α̂1ξ̂1 + · · · + α̂nξ̂n and L̂2 = β̂1ξ̂1 + · · · + β̂nξ̂n are
independent.

Proof. We use the following theorem by Suslin [20, §39, IV]: Let X1 be a
complete separable metric space, X2 be a metric space, p : X1 �→ X2 be
a continuous one-to-one mapping. If B is a Borel set in X1, then p(B) is a
Borel set in X2. By the Suslin theorem ξ̂j are independent random variables
with values in the group G. It is obvious that the random variables ξ̂j are
independent. Since p is a continuous monomorphism and G is a complete
separable metric group, by the Suslin theorem images of Borel sets under
the mapping p are also Borel. Hence α̂j , β̂j are Borel automorphisms of the
group G, and hence α̂j , β̂j ∈ Aut(G) (see e.g. [26, §4.3.9]). To prove the
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independence of the linear forms L̂1 and L̂2 it suffices to note that for any
Borel subsets A1 and A2 of the group G we have: {ω : L̂i(ω) ∈ Ai} = {ω :
Li(ω) ∈ p(Ai) − (α1x1 + · · · + αnxn)}, i = 1, 2. �

Remark 3. Let X = R
a × K × T

m, where a ≥ 0, K be a connected com-
pact Abelian group containing no subgroups topologically isomorphic to T and
having dimension l, m ≤ ℵ0. Let ξj , j = 1, 2, . . . , n, n ≥ 2, be independent
random variables with values in X and distributions μj with non-vanishing
characteristic functions. Let αj , βj ∈ Aut(X). Assume that the linear forms
L1 = α1ξ1 + · · ·+αnξn and L2 = β1ξ1 + · · ·+βnξn are independent. By Theo-
rem 1 there exist a continuous monomorphism p : G �→ X, where G = R

b×T
m,

b = a + l, and elements xj ∈ X, j = 1, 2, . . . , n, such that all distributions
μj ∗ Exj

, j = 1, 2, . . . , n, are concentrated on the subgroup p(G), and p(G)
is a characteristic subgroup. It follows from Proposition 1 that the study of
possible distributions of the independent random variables ξj is reduced to the
study of possible distributions of independent random variables ξ̂j with values
in a group of the form R

b × T
m, where b ≥ 0, m ≤ ℵ0.

If the subgroup K has infinite dimension, applying Theorem 2 instead of
Theorem 1, we come to the conclusion that the study of possible distributions
of the independent random variables ξj is reduced to the study of possible
distributions of independent random variables ξ̂j with values in a group of the
form R

ℵ0 × T
m, where m ≤ ℵ0.

3. The Skitovich–Darmois theorem for groups containing no
subgroup topologically isomorphic to T

2

We will solve Problem 1 when n = 2 for second countable locally compact
Abelian groups X containing a subgroup topologically isomorphic to T and
containing no subgroups topologically isomorphic to T

2. Taking Lemma 5 into
account, we can assume that X is a connected a group. By Lemma 3 such group
is topologically isomorphic to a group of the form R

a ×K ×T, where a ≥ 0, K
is a connected compact Abelian group containing no subgroups topologically
isomorphic to T. To avoid introducing additional notation we assume that
X = R

a × K × T. As has been noted in the proof of Theorem 1, T is a
characteristic subgroup of the group X. Let δ ∈ Aut(X). Since Aut(T) = {±I},
we have either δ|T = I, or δ|T = −I. Let ξ1, ξ2 be independent random variables
with values in X and distributions μj . Let αj , βj ∈ Aut(X). It is easily
seen that the study of possible distributions μj provided that the linear forms
L1 = α1ξ1 + α2ξ2 and L2 = β1ξ1 + β2ξ2 are independent is reduced to the
case when L1 and L2 are of the form L1 = ξ1 + ξ2 and L2 = ξ1 + δξ2, where
δ ∈ Aut(X). Then the Skitovich–Darmois functional Eq. (2) becomes
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μ̂1(u + v)μ̂2(u + εv) = μ̂1(u)μ̂1(v)μ̂2(u)μ̂2(εv), u, v ∈ Y, (11)

where ε = δ̃.
Let t = (t1, . . . , tn, . . .) ∈ R

ℵ0 and s = (s1, . . . , sn, 0, . . .) ∈ R
ℵ0∗. Put

〈t, s〉 =
∞∑

j=1

tjsj , (t, s) = exp{i〈t, s〉}.

Let μ be a distribution on the group R
ℵ0 . The characteristic function of the

distribution μ is defined by the formula

μ̂(s) =
∫

Rℵ0

(t, s)dμ(t), s ∈ R
ℵ0∗.

We recall that a distribution γ on the group R
ℵ0 is called Gaussian if its

characteristic function is represented in the form

γ̂(s) = (t, s) exp{−〈As, s〉}, s ∈ R
ℵ0∗,

where t ∈ R
ℵ0 , and A = (αij)∞

i,j=1 is a symmetric positive semidefinite matrix
(see e.g. [8, §5.8]).

We need some lemmas. It is convenient for us to formulate as a lemma the
following standard statement.

Lemma 6. Let X be a locally compact Abelian group, H be a closed subgroup
of Y and μ ∈ M1(X). If μ̂(y) = 1 for y ∈ H, then the characteristic function
μ̂(y) is H-invariant and σ(μ) ⊂ A(X,H).

Lemma 7. ([15]). Let Y be an Abelian group, ε be an automorphism of the
group Y . Assume that the functions fj(y) do not vanish, satisfy Eq. (11) and
conditions f1(0) = f2(0) = 1. Then each function fj(y) satisfies the equation

fj(u + v)fj(u − v) = f2
j (u)fj(v)fj(−v), u ∈ (ε − I)Y, v ∈ Y. (12)

Lemma 8. ([6]). Let X be a second countable locally compact Abelian group
containing no subgroups topologically isomorphic to T

2. Let ξ1, ξ2 be indepen-
dent identically distributed random variables with values in X and distribution
μ. Assume that the characteristic function μ̂(y) does not vanish. If the linear
forms L1 = ξ1 + ξ2 and L2 = ξ1 − ξ2 are independent, then μ ∈ Γ(X).

Lemma 9. ([12], see also [11, Lemma 12.4]). Let Y be a topological Abelian
group, let ψ(y) be a continuous function on Y satisfying the equation

Δ2kΔ2
hψ(y) = 0, h, k, y ∈ Y, (13)

and the conditions ψ(−y) = ψ(y), ψ(0) = 0. Then the function ψ(y) can be
represented in the form

ψ(y) = ϕ(y) + cα, y ∈ yα + Y (2), (14)
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where ϕ(y) is a continuous function on Y satisfying Eq. (1), and

Y =
⋃
α

(yα + Y (2)), y0 = 0,

is a decomposition of the group Y with respect to the subgroup Y (2).

Lemma 10. Let X = R
ℵ0 , αj, βj, j = 1, 2, . . . , n, n ≥ 2, be topological auto-

morphisms of the group X. Let ξj be independent random variables with values
in X and distributions μj. Assume that the linear forms L1 = α1ξ1+· · ·+αnξn

and L2 = β1ξ1 + · · · + βnξn are independent. Then all μj are Gaussian distri-
butions.

Proof. Each element s ∈ R
ℵ0∗ defines a linear continuous functional in the

space R
ℵ0 , and hence for any distribution μ on the group R

ℵ0 we can consider
its image s(μ) ∈ M1(R). We shall say that a distribution γ on the group R

ℵ0

is weak Gaussian if s(γ) ∈ Γ(R) for all s ∈ R
ℵ0∗. It is easy to see that the

definitions of a Gaussian distribution and a weak Gaussian distribution on the
group R

ℵ0 are equivalent. As has been noted in [22], the Skitovich–Darmois
theorem holds true for weak Gaussian distributions on the group R

ℵ0 . �

Lemma 11. Let X = R
ℵ0 × T. Let ξ1, ξ2 be independent identically distributed

random variables with values in X and distribution μ. Assume that the char-
acteristic function μ̂(y) does not vanish. If the linear forms L1 = ξ1 + ξ2 and
L2 = ξ1 − ξ2 are independent, then μ is a Gaussian distribution.

Proof. The group X is strongly reflexive, and its character group is topolog-
ically isomorphic to the group R

ℵ0∗ × Z, and a Gaussian distribution on the
group X is defined in the same way as for the group R

ℵ0 . Since X is strongly
reflexive, as is easily seen, Lemma 1 holds for the group X. In [10, Lemma
9.11] Lemma 11 was proved for second countable locally compact Abelian
groups containing no more than one element of order 2. This proof is based on
Lemma 1 and the properties of strongly reflexive topological Abelian groups
listed before the formulation of Theorem 2. Hence, it is valid for the group
X. �

Theorem 3. Let X = R
a × K × T, where a ≥ 0, K be a second countable con-

nected compact Abelian group containing no subgroups topologically isomorphic
to T. Let δ ∈ Aut(X). Let ξ1, ξ2 be independent random variables with values
in X and distributions μj with non-vanishing characteristic functions. Assume
that the linear forms L1 = ξ1+ξ2 and L2 = ξ1+δξ2 are independent. If δ|T = I,
then μj ∈ Γ(X). If δ|T = −I, then μj = γj ∗ πj, where γj ∈ Γ(X), and πj are
signed measures on the subgroup Z(2) ⊂ T.

Proof. There are two cases: either the dimension of the group K is finite or is
infinite.
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1. Assume that the group K has a finite dimension l. Then the rank of
the group D is also l. Taking into account Proposition 1 and Remark 3, it
suffices to prove Theorem 3 for groups of the form X = R

b × T, where b ≥ 0,
because in the notation of Proposition 1 δ|T = δ̂|T. We have Y ∼= R

b × Z. To
avoid introducing additional notation we assume that Y = R

b × Z. Denote
elements of the group X by (t, z), t ∈ R

b, z ∈ T, and elements of the group Y
by (s, n), s ∈ R

b, n ∈ Z. It is easy to see that each automorphism δ ∈ Aut(X)
is determined by the matrix(

α v
0 ±1

)
, α ∈ Aut(Rb), v ∈ R

b, (15)

and the automorphisms δ and ε = δ̃ act on the groups X and Y , respectively,
by the formulas

δ(t, z) = (αt, ei〈v,t〉z±1), (t, z) ∈ X, ε(s, n) = (αs + nv,±n), (s, n) ∈ Y.

It is obvious that R
b is a characteristic subgroup of the group Y , because

R
b is the connected component of zero of Y . Put L = Ker(I − ε)|Rb and first

verify that the proof of Theorem 3 is reduced to the case when L = {0}.
By Lemma 1 the characteristic functions μ̂j(y) satisfy Eq. (11). Put νj =

μj ∗ μ̄j , j = 1, 2. Then ν̂j(y) = |μ̂j(y)|2 > 0 and the characteristic functions
ν̂j(y) also satisfy Eq. (11). Consider the restriction of Eq. (11) for the functions
ν̂j(y) to the subgroup L. We have

ν̂1(u + v)ν̂2(u + v) = ν̂1(u)ν̂1(v)ν̂2(u)ν̂2(v), u, v ∈ L. (16)

Set h(y) = ν̂1(y)ν̂2(y). It follows from (16) that the function h(y) on the group
L satisfies the equation h(u + v) = h(u)h(v), i.e. h(y) is a character of the
group L. This implies that the restrictions of the characteristic functions ν̂j(y)
to L are also characters of the subgroup L. Since ν̂j(y) > 0, y ∈ Y , we have
ν̂1(y) = ν̂2(y) = 1 for y ∈ L. Applying Lemma 6, we get σ(νj) ⊂ G = A(X,L).
Inasmuch as L is the kernel of a continuous linear operator in the space R

b,
L is a closed subspace in R

b. It follows from this that G = W × T, where W
is a closed subspace in R

b. It is obvious that ε(L) = L. Hence δ(G) = G. It is
clear that if L �= {0}, then G is a proper subgroup of X.

Consider a family of subgroups B of the group X having the properties:
(i) B = V × T, where V is a closed subspace in R

b;
(ii) δ(B) = B;

(iii) σ(νj) ⊂ B, j = 1, 2.
Let N be an intersection of all subgroups of the group X having properties

(i)–(iii). Obviously, the subgroup N also possesses properties (i)–(iii) and N is
the smallest subgroup having these properties. To avoid introducing additional
notation we assume that N = R

c × T, c ≤ b, and N∗ = R
c × Z. Put β = δ|N .

If Ker(I − β̃)|Rc �= {0}, then the above reasoning shows that the subgroup
A(N,Ker(I − β̃)|Rc) possesses properties (i)–(iii) and is a proper subgroup of
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N , contrary to the construction. Since νj = μj ∗ μ̄j , it follows from Lemma 4
that the distributions μj can be replaced by their shifts μ′

j in such a manner
that σ(μ′

j) ⊂ N . It follows from what has been said that we can assume from
the beginning without loss of generality that L = {0}. Let us note that the
condition L = {0} means that in (15) (I − α) ∈ Aut(Rb).

1a. Assume that δ|T = I. It means that the matrix which corresponds to

the automorphism δ is of the form
(

α v
0 1

)
. Put M = Ker(I − ε) and consider

the restriction of Eq. (11) for the functions ν̂j(y) to the subgroup M . We
come to Eq. (16), but when u, v ∈ M . Reasoning as above we conclude that
σ(νj) ⊂ F = A(X,M). We have F = A(X,M) = A(X,Ker(I − ε)) = (I −
δ)(X). It follows from X = R

b × T, where b ≥ 0, and L = {0} that F =
(I − δ)(X) ∼= R

b. Since ε(M) = M , the restriction of the automorphism δ
to the subgroup F is a topological automorphism of the group F . Let ηj be
independent random variables with values in F and distributions νj . Since the
characteristic functions ν̂j(y) satisfy Eq. (11), the linear forms L̃1 = η1 + η2
and L̃2 = η1 + δη2 by Lemma 1 are independent. This implies by the Ghurye–
Olkin theorem that νj ∈ Γ(F ). Next, applying the Cramér theorem about the
decomposition of a Gaussian distribution in the space R

b and Lemma 4, we
get μj ∈ Γ(X).

1b. Assume that δ|T = −I. It means that the matrix which corresponds

to the automorphism δ is of the form
(

α v
0 −1

)
. Put H = (I − ε)Y . Since

L = Ker(I − ε)|Rb = {0}, we have H = Y (2) = R
b × Z

(2) ∼= R
b × Z. It follows

from Lemma 7 that each characteristic function μ̂j(y) satisfies Eq. (12) when
u, v ∈ Y (2). Since H ∼= R

b × Z, we have H∗ ∼= R
b × T. Taking into account

that the group H∗ contains no subgroups topologically isomorphic to T
2, and

applying Lemmas 1 and 8 we conclude that the restrictions of the characteristic
functions μ̂j(y) to the subgroup H are characteristic functions of Gaussian
distributions. Thus, we have on the subgroup H the representation

μ̂j(y) = mj(y) exp{−ϕj(y)}, j = 1, 2,

where mj(y) are characters of the subgroup H, and ϕj(y) are continuous non-
negative functions on H satisfying Eq. (1). Replacing, if necessary, the distri-
butions μj by their shifts we can assume that

μ̂j(y) = exp{−ϕj(y)}, y ∈ H, j = 1, 2. (17)

Next the proof of Theorem 3 is quite similar to the proof of this theorem
for the group X = R × T given in ([15]). Put

l1(y) =
μ̂1(y)
|μ̂1(y)| , l2(y) =

μ̂2(y)
|μ̂2(y)| , y ∈ Y,
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and verify that lj(y) are characters of the group Y . It follows from the equality
μ̂j(y) = |μ̂j(y)| for y ∈ H, that lj(y) = 1 for y ∈ H. The functions lj(y) satisfy
Eq. (12), which takes the form

lj(u + v)lj(u − v) = 1, u ∈ H, v ∈ Y. (18)

Substitute in (18) u = (s/2, 0), v = (s/2, n). We obtain

lj(s, n)lj(0,−n) = 1, s ∈ R
b, n ∈ Z.

Multiplying both sides of this equation by lj(0, n) and taking into account that
|lj(y)| = 1, lj(−y) = lj(y), we find

lj(s, n) = lj(0, n), s ∈ R
b, n ∈ Z. (19)

Obviously, the functions lj(y) satisfy Eq. (11). Taking (19) into account, we
can write Eq. (11) for the functions lj(y) in the form

l1(0,m + n)l2(0,m − n) = l1(0,m)l1(0, n)l2(0,m)l2(0,−n), m, n ∈ Z. (20)

We can get by induction from Eq. (20) that lj(0, n) are characters of the group
Z, and hence lj(y) are characters of the group Y . Thus, there exist elements
xj ∈ X such that

lj(y) = (xj , y), y ∈ Y, j = 1, 2. (21)

Now find the representations for |μ̂j(y)|. Put ψj(y) = − log |μ̂j(y)|. Then
(11) implies that the functions ψj(y) satisfy the equation

ψ1(u + v) + ψ2(u + εv) = P (u) + Q(v), u, v ∈ Y, (22)

where P (u) = ψ1(u) + ψ2(u), Q(v) = ψ1(v) + ψ2(εv).
As has been proved in [10, Lemma 10.9], (22) implies that each of the

functions ψj(y) satisfies the equation

Δ(I−ε)kΔ2
hψj(y) = 0, y, k, h ∈ Y. (23)

Since (I − ε)Y = Y (2), we conclude from (23) that each of the functions ψj(y)
satisfies the equation

Δ2kΔ2
hψj(y) = 0, y, k, h ∈ Y. (24)

Since H = Y (2) = Y (2)), the decomposition of the group Y with respect to the
subgroup Y (2) is of the form Y = H ∪ ((0, 1) + H). It follows from (17) and
Lemma 9 that there exist real constants c1, c2 such that

ψj(y) =

{
ϕj(y), y ∈ H,

ϕj(y) + cj , y ∈ (0, 1) + H,
(25)

j = 1, 2.
It follows from (11) and (17) that the equality

ϕ1(u + v) + ϕ2(u + εv) = ϕ1(u) + ϕ1(v) + ϕ2(u) + ϕ2(εv) (26)
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holds true for any u, v ∈ H, and hence, for any u, v ∈ Y . Substituting in (22)
u, v ∈ (0, 1)+H and taking into account (25) and (26), we find that c1 = −c2.
Put c1 = −c2 = −2κ. It follows from (25) that the functions |μ̂j(y)| are of the
form

|μ̂1(y)| = exp{−ϕ1(y) + κ(1 − (−1))n}, y = (s, n) ∈ Y,

|μ̂2(y)| = exp{−ϕ2(y) − κ(1 − (−1))n}, y = (s, n) ∈ Y.

Taking (21) into account we finally obtain

μ̂1(y) = (x1, y) exp{−ϕ1(y) + κ(1 − (−1))n}, y = (s, n) ∈ Y, (27)
μ̂2(y) = (x2, y) exp{−ϕ2(y) − κ(1 − (−1))n}, y = (s, n) ∈ Y. (28)

Consider the signed measures

π1 =
1
2
(1 + e2κ)E(0,1) +

1
2
(1 − e2κ)E(0,−1), π2 =

1
2
(1 + e−2κ)E(0,1)

+
1
2
(1 − e−2κ)E(0,−1)

supported in Z(2) ⊂ X (it is clear that one of πj is a distribution). Obviously,
the characteristic functions π̂j(y) are of the form

π̂1(y) = exp{κ(1 − (−1)n)}, π̂2(y) = exp{−κ(1 − (−1)n)}, y = (s, n) ∈ Y.
(29)

The statement of Theorem 3 follows from (27), (28) and (29). Note that π1 ∗
π2 = E(0,1).

2. Assume that the group K has infinite dimension. It follows from Propo-
sition 1 and Remark 3 that it suffices to prove Theorem 3 for the group of
the form X = R

ℵ0 × T. Then Y ∼= R
ℵ0∗ × Z. To avoid introducing additional

notation we assume that Y = R
ℵ0∗ × Z. We follow the scheme of the proof

of Theorem 3 in case 1. First note that Lemma 1 holds true for the group X
because X is strongly reflexive. Moreover, Lemma 6 is also valid for the group
X because Y is a nuclear group and X is strongly reflexive. As in case 1 we
consider the subgroup L = Ker(I − ε)|Rℵ0∗ and reduce the proof of Theorem 3
to the case when L = {0}. In so doing we use the fact that any closed linear
subspace in R

ℵ0 is either finite-dimensional or topologically isomorphic to R
ℵ0

([3]), and that Lemma 6 holds true for the group X.
2a. Let δ|T = I. Reason as in case 1a. We use the fact that Lemma 1 is

valid for the group R
ℵ0 , and that Lemma 6 holds true for the group X. Instead

of the Ghurye–Olkin theorem we apply Lemma 10, and also use the fact that
the Cramér theorem about the decomposition of a Gaussian distribution holds
true for the space X = R

ℵ0 .
2b. Let δ|T = −I. Reason as in case 1b. We use the fact that Lemma 1 is

valid for the group X and Y is a nuclear group. Instead of Lemma 8 we apply
Lemma 11. In all other respects the proof repeats the proof in case 1b. �



1146 G. Feldman and M. Myronyuk AEM

References

[1] Armacost, D.L.: The Structure of Locally Compact Abelian Groups. Marcel Dekker
Inc., New York (1981)

[2] Banaszczyk, W.: Additive Subgroups of Topological Vector Spaces. Lecture Notes in
Mathematics, vol. 1466. Springer, Berlin (1991)

[3] Bessaga, Cz, Pelczynski, A.: On a class of B0-spaces. Bull. Acad. Pol. Sci. Cl. III,
375–377 (1957)

[4] Chistyakov, G.P., Götze, F.: Independence of linear forms with random coefficients.
Probab. Theory Relat. Fields 137(1–2), 1–24 (2007)

[5] Feldman, G.M.: Gaussian distributions on locally compact Abelian groups. Theory
Probab. Appl., 23(3), 529–542 (1979)

[6] Feldman, G.M.: Bernstein Gaussian distributions on groups. Theory Probab. Appl.
31(1), 40–49 (1986)

[7] Feldman, G.M.: Characterization of the Gaussian distribution on groups by the inde-
pendence of linear statistics. Siberian Math. J. 31, 336–345 (1990)

[8] Feldman, G.M.: Arithmetic of Probability Distributions and Characterization Prob-
lems on Abelian Groups, vol. 116. AMS Translation of Mathematical Monographs,
Providence (1993)

[9] Feldman, G.M.: A characterization of the Gaussian distribution on Abelian groups.
Probab. Theory Relat. Fields 126, 91–102 (2003)

[10] Feldman, G.M.: Functional Equations and Characterization Problems on Locally Com-
pact Abelian Groups. EMS Tracts in Mathematics, vol. 5. European Mathematical
Society (EMS), Zurich (2008)

[11] Feldman, G.M.: Characterization Problems of Mathematical Statistics on Locally Com-
pact Abelian Groups. Naukova Dumka, Kiev (2010)

[12] Feldman, G.M.: The Heyde theorem for locally compact Abelian groups. J. Funct. Anal.
258, 3977–3987 (2010)

[13] Feldman, G.M.: On the Skitovich–Darmois theorem for the group of p-adic numbers. J.
Theor. Probab. 28(2), 539–549 (2015)

[14] Feldman, G.M., Graczyk, P.: The Skitovich–Darmois theorem for locally compact
Abelian groups. J. Aust. Math. Soc. 88(3), 339–352 (2010)

[15] Feldman, G.M., Myronyuk, M.V.: Independent linear forms on connected Abelian
groups. Math. Nach. 284(2–3), 255–265 (2011)

[16] Fuchs, L.: Infinite Abelian Groups, vol. 1. Academic Press, New York (1970)
[17] Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Springer, Berlin (1963)
[18] Ibragimov, I.A.: On the Skitovich–Darmois–Ramachandran theorem. Theory Probab.

Appl 57(3), 368–374 (2013)
[19] Kagan, A.M., Linnik, YuV, Rao, C.R.: Characterization Problems in Mathematical

Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York
(1973)

[20] Kuratowski, K.: Topology, vol. 1. Academic Press, New York (1966)
[21] Mazur, I.P.: Skitovich–Darmois theorem for discrete and compact totally disconnected

Abelian groups. Ukrainian Math. J 65(7), 1054–1070 (2013)
[22] Myronyuk, M.V.: On the Skitovich–Darmous theorem and Heyde theorem in a Banach

space. Ukrainian Math. J. 60(9), 1437–1447 (2008)
[23] Myronyuk, M.V., Feldman, G.M.: Independent linear statistics on a two-dimensional

torus. Theory Probab. Appl. 52, 78–92 (2008)
[24] Neuenschwander, D., Schott, R.: The Bernstein and Skitovich–Darmois characterization

theorems for Gaussian distributions on groups, symmetric spaces, and quantum groups.
Expos. Math. 15(4), 289–314 (1997)



Vol. 92 (2018) On the Skitovich–Darmois theorem for some groups 1147

[25] Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, New
York (1967)

[26] Srivastava, S.M.: Course on Borel Sets. Springer, New York (1998)

Gennadiy Feldman and Margaryta Myronyuk
B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy
of Sciences of Ukraine
Nauky Ave. 47
Kharkiv 61103
Ukraine
e-mail: feldman@ilt.kharkov.ua

Margaryta Myronyuk
e-mail: myronyuk@ilt.kharkov.ua

Received: January 23, 2018


	On the Skitovich–Darmois theorem for some locally compact Abelian groups
	Abstract
	1. Introduction
	2. Reduction of Problem 1 for arbitrary groups to groups of the form mathbbRmathfrakn timesmathbbTmathfrakm
	3. The Skitovich–Darmois theorem for groups containing no subgroup topologically isomorphic to mathbbT2
	References




