Aequat. Math. 92 (2018), 1051–1059 -c Springer International Publishing AG, part of Springer Nature 2018 0001-9054/18/061051-9 *published online* July 5, 2018 https://doi.org/10.1007/s00010-018-0567-2 **Aequationes Mathematicae**

Some stochastic *HH***-divergences in information theory**

Hamzeh Agahi and Milad Yadollahzadeh

Abstract. In this paper, we introduce the concept of stochastic HH-divergences based on convex stochastic processes. As an application, we propose some inequalities related to stochastic HH-divergences for convex stochastic processes. Our result extends HH-divergence in the class of f-divergence to the class of convex stochastic processes.

Mathematics Subject Classification. 60G05; 60E15.

Keywords. Information theory, Kullback–Leibler divergence, Fractional stochastic HH-divergence, Inequalities, Convex stochastic processes.

1. Introduction

In information divergence, the Kullback–Leibler divergence [\[10\]](#page-7-0) is a well-known concept in difference problems, information theory and statistics. f-divergence is a class of generalized divergences for a convex function $f(7)$. In 1991, Lin [\[11\]](#page-7-2) introduced a new divergence in the class of f-divergences. As a result of Lin' divergence, the Hermite–Hadamard $(HH-)$ divergence was introduced in [\[13\]](#page-7-3) based on convex functions. Then upper and lower bounds for HH-divergence were obtained by the Hermite–Hadamard inequality for convex functions.

Let χ be a set and μ be a σ -finite measure on χ . Consider

$$
\Lambda := \left\{ p \mid p : \chi \to \mathbb{R}, \ p(x) \ge 0, \ \int_{\chi} p(x) d\mu(x) = 1 \right\},\
$$

as the set of all probability densities on μ . f-divergence [\[7](#page-7-1)] is defined as

$$
D_f(p,q) := \int_{\chi} q(x) f\left[\frac{p(x)}{q(x)}\right] d\mu(x), \qquad p, q \in \Lambda,
$$
 (1)

where f is a nonnegative convex function such that $f(1) = 0$.

B Birkhäuser

For arbitrary probability densities $p(x)$ and $q(x)$, the Kullback–Leibler divergence $[6, pp. 342]$ $[6, pp. 342]$ is defined as follows:

$$
D_{KL}(p,q) := \int_{\chi} p(x) \log \left[\frac{p(x)}{q(x)} \right] d\mu(x), \quad p, q \in \Lambda,
$$

where log is on base 2.

Next, in the class of f-divergences, Lin [\[11](#page-7-2)] introduced the following divergence

$$
D_{Lin}(p,q) := \int_{X} p(x) \log \left[\frac{p(x)}{\frac{1}{2}p(x) + \frac{1}{2}q(x)} \right] d\mu(x), \quad p, q \in \Lambda.
$$

By the Kullback–Leibler divergence, Lin's divergence is given by:

$$
D_{Lin}(p,q) = D_{KL}\left(p, \frac{1}{2}p + \frac{1}{2}q\right).
$$

As a generalization of Lin's divergence, the following divergence, called Hermite–Hadamard (HH) -divergence was introduced $[6,13]$ $[6,13]$ $[6,13]$:

$$
D_{HH}^{f}(p,q) := \int_{\chi} q(x) \frac{\int_{1}^{\frac{p(x)}{q(x)}} f(t)dt}{\left(\frac{p(x)}{q(x)} - 1\right)} d\mu(x), \quad p, q \in \Lambda.
$$
 (2)

Some new inequalities for HH-divergence in information theory were proved by Barnett et al. [\[5](#page-7-5)].

Recently, the three concepts of fractional HH-divergence were studied in [\[3\]](#page-7-6), which generalizes the HH-divergence [\(2\)](#page-1-0). Recall that the Riemann–Liouville fractional HH f-divergence of order $\alpha > 0$ is defined as [\[3\]](#page-7-6):

$$
\alpha \mathbb{D}_{HH}^f(p,q) := \int_{\chi} q(x) \frac{\left[\left(\mathbb{I}_{1+}^{\alpha} f \right) \left(\frac{p(x)}{q(x)} \right) + \left(\mathbb{I}_{\frac{p(x)}{q(x)}}^{\alpha} - f \right) (1) \right]}{2 \left(\frac{p(x)}{q(x)} - 1 \right)^{\alpha}} d\mu(x), \qquad p, q \in \Lambda \tag{3}
$$

where the left- and the right-side Riemann-Liouville fractional integrals of order $\alpha > 0$ of a real function f are defined by:

$$
\left(\mathbb{I}_{a+}^{\alpha}f\right)(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t)dt, \qquad (x > a),
$$

and

$$
\left(\mathbb{I}_{b-}^{\alpha}f\right)(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1} f(t)dt, \qquad (x < b),
$$

respectively and $\Gamma(\alpha)$ is the Gamma function. Clearly when $\alpha = 1$, [\(3\)](#page-1-1) coincides to the HH f -divergence (2) .

Convex stochastic processes and some of their properties were presented by Nikodem [\[12\]](#page-7-7) in 1980. Let Ω be a probability measure space. A stochastic

process $X: I \times \Omega \longrightarrow \mathbb{R}$ is called convex, if for all $\lambda \in [0,1]$ and $a, b \in I$, the inequality

$$
X(\lambda a + (1 - \lambda)b, \cdot) \le \lambda X(a, \cdot) + (1 - \lambda)X(b, \cdot) \quad (a.e.), \tag{4}
$$

is satisfied. The concept of stochastic divergence is based on convex stochastic processes. The following definition gives us the concept of stochastic divergence for convex stochastic processes.

Definition 1. Let $X: I \times \Omega \to \mathbb{R}$ be a convex stochastic process in the interval $I \subseteq (0,\infty)$ such that $X(1,\cdot)=0$. Stochastic divergence for $\gamma, \delta \in \Lambda$ is defined as:

$$
SD_X(\gamma, \delta) := \int_{X} \delta(\omega) X\left(\frac{\gamma(\omega)}{\delta(\omega)}, \cdot\right) d\mu(\omega).
$$

Stochastic processes play important roles in different fields of mathematics. For example, Kotrys in [\[9\]](#page-7-8) proposed the Hermite–Hadamard inequality for convex stochastic processes. In [\[1](#page-7-9)], some refinements of mean-square stochastic integral inequalities on convex stochastic processes were proved. Recently, some fractional stochastic inequalities for convex stochastic processes were proposed in [\[2\]](#page-7-10). Also, the authors introduced the concepts of generalized stochastic mean square fractional integrals and comonotonic stochastic processes in [\[4](#page-7-11)].

In this paper, we introduce the concept of stochastic HH -divergence based on convex stochastic processes. Then its upper and lower bounds are obtained. Moreover, we introduce fractional stochastic HH-divergence which is a generalization of stochastic HH-divergence.

Now, we recall some basic definitions that are needed to prove our results.

Definition 2. Let $X: I \times \Omega \to \mathbb{R}$ be a stochastic process with $E\left[X^2(t, \cdot)\right] < \infty$ for all $t \in I$, where $E[X(t, \cdot)]$ denotes the expectation value of $X(t, \cdot)$. Let $[a, b] \subset I$, $a = t_0 < t_1 < t_2 < \cdots < t_n = b$ be a partition of $[a, b]$ and $\Theta_k \in [t_{k-1}, t_k]$ for all $k = 1, \ldots, n$. A random variable $Y : \Omega \to \mathbb{R}$ is called the mean-square stochastic integral of the process X on $[a, b]$, if for all sequences of partitions of the interval [a, b] and for all $\Theta_k \in [t_{k-1}, t_k]$ for all $k = 1, \ldots, n$ we have

$$
\lim_{n \to \infty} E\left[\left(\sum_{k=1}^{n} X\left(\Theta_k, \cdot\right) \left(t_k - t_{k-1}\right) - Y\right)^2\right] = 0.
$$

Then we write

$$
Y(\cdot) = \int_{a}^{b} X(s, \cdot) ds \qquad (a.e.).
$$

In 2004, Hafiz [\[8](#page-7-12)] introduced the following definition of stochastic meansquare fractional integral.

Definition 3. For the stochastic process $X: I \times \Omega \to \mathbb{R}$, the concept of stochastic mean-square fractional integrals $\mathbb{SFI}_{a+}^{\alpha}$ and $\mathbb{SFI}_{b-}^{\alpha}$ of X of order $\alpha > 0$ is defined by

$$
\mathbb{SFL}_{a+}^{\alpha}[X](t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} (t-s)^{\alpha-1} X(s,.)ds \quad (a.e.), \quad t > a,
$$

and

$$
\mathbb{S}\mathbb{F}\mathbb{I}_{b-}^{\alpha}[X](t) = \frac{1}{\Gamma(\alpha)} \int_{t}^{b} (s-t)^{\alpha-1} X(s,.)ds \quad (a.e.), \quad t < b.
$$

Here $\Gamma(\alpha)$ is the Gamma function.

The paper is organized as follows: In Sect. [2,](#page-3-0) stochastic HH-divergences are presented. Next, we prove some inequalities related to stochastic HH -divergences. In Sect. [3,](#page-5-0) we introduce the concept of fractional stochastic HH divergence with some results. Finally, we add some conclusions.

2. Main results

In this section, we first propose the concept of stochastic Hermite–Hadamard (HH-) divergence. Then, we prove some inequalities for stochastic HH -divergence on convex stochastic processes. Throughout this paper, X : $I \times \Omega \to \mathbb{R}$ is a convex stochastic process in the interval $I \subseteq (0,\infty)$ such that $X(1, \cdot)=0.$

Definition 4. Let $\gamma, \delta \in \Lambda$. For a convex stochastic process $X : I \times \Omega \to \mathbb{R}$, the stochastic Hermite–Hadamard (HH) divergence is defined as:

$$
SD_{HH}^{X}(\gamma, \delta) := \int_{\chi} \delta(x) \frac{\int_{1}^{\frac{\gamma(x)}{\delta(x)}} X(t, \cdot) dt}{\left(\frac{\gamma(x)}{\delta(x)} - 1\right)} d\mu(x) \quad (a.e.). \tag{5}
$$

Theorem 5. Let $\gamma, \delta \in \Lambda$. Then we have the inequality

$$
SD_X\left(\frac{1}{2}\gamma + \frac{1}{2}\delta, \delta\right) \leqslant SD_{HH}^X\left(\gamma, \delta\right) \leqslant SD_X\left(\gamma, \delta\right) \quad \text{(a.e.)}.\tag{6}
$$

Proof. First, we recall the following Hermite–Hadamard inequalities for convex stochastic processes [\[9](#page-7-8)]:

$$
X\left(\frac{a+b}{2},\cdot\right) \leqslant \frac{1}{(b-a)} \int_{a}^{b} X\left(t,\cdot\right) dt \leqslant \frac{X(a,\cdot) + X(b,\cdot)}{2} \quad (a.e.). \tag{7}
$$

Taking $a = 1, b = \frac{\gamma(x)}{\delta(x)}$ in [\(7\)](#page-3-1), we obtain

$$
X\left(\frac{1+\frac{\gamma(x)}{\delta(x)}}{2},\cdot\right) \leq \frac{1}{\left(\frac{\gamma(x)}{\delta(x)}-1\right)} \int_1^{\frac{\gamma(x)}{\delta(x)}} X\left(t,\cdot\right) dt \leq \frac{X(1,\cdot)+X\left(\frac{\gamma(x)}{\delta(x)},\cdot\right)}{2} \ (a.e.).
$$

Since $X(1, .)=0$, we get

$$
X\left(\frac{\gamma(x) + \delta(x)}{2\delta(x)}, \cdot\right) \leq \frac{1}{\left(\frac{\gamma(x)}{\delta(x)} - 1\right)} \int_1^{\frac{\gamma(x)}{\delta(x)}} X\left(t, \cdot\right) dt \leq \frac{1}{2} X\left(\frac{\gamma(x)}{\delta(x)}, \cdot\right) \quad (a.e.).
$$
\n
$$
(8)
$$

Multiplying both sides of [\(8\)](#page-4-0) by $\delta(x) \geq 0$, $x \in \chi$ and integrating on χ , we have

$$
\begin{aligned} &\int_{\chi}\delta(x)X\left(\frac{\gamma(x)+\delta(x)}{2\delta(x)},\cdot\right)d\mu(x)\leqslant\int_{\chi}\delta(x)\frac{\int_{1}^{\frac{\gamma(x)}{\delta(x)}}X\left(t,\cdot\right)dt}{\left(\frac{\gamma(x)}{\delta(x)}-1\right)}d\mu(x)\\ &\leqslant\frac{1}{2}\int_{\chi}\delta(x)X\left(\frac{\gamma(x)}{\delta(x)},\cdot\right)d\mu(x)\ (a.e.). \end{aligned}
$$

By Definitions [1](#page-2-0) and [4,](#page-3-2) we obtain (6) .

Theorem 6. *Let* $\gamma, \delta \in \Lambda$ *. Then for any* $\lambda \in [0, 1]$ *, the following inequality*

$$
SD_X\left(\frac{1}{2}\gamma + \frac{1}{2}\delta, \delta\right) \leq l(\lambda) \leq SD_{HH}^X\left(\gamma, \delta\right) \leq L(\lambda) \leq \frac{1}{2}SD_X\left(\gamma, \delta\right) \quad \text{(a.e.)}
$$
\n(9)

holds where

$$
l(\lambda) := \lambda SD_X \left(\delta + \frac{\lambda}{2} \left(\gamma - \delta \right), \delta \right) + (1 - \lambda) SD_X \left(\frac{\gamma + \delta}{2} + \frac{\lambda}{2} \left(\gamma - \delta \right), \delta \right)
$$

and

$$
L(\lambda) := \frac{1}{2} \left[SD_X \left(\lambda \gamma + (1 - \lambda) \delta, \delta \right) + (1 - \lambda) SD_X \left(\gamma, \delta \right) \right].
$$

Proof. By applying the following refinement of Hermite–Hadamard's inequalities for convex stochastic processes in [\[1\]](#page-7-9), we have

$$
X\left(\frac{a+b}{2},\cdot\right) \le \lambda X\left(\frac{\lambda b + (2-\lambda)a}{2},\cdot\right) + (1-\lambda)X\left(\frac{(1+\lambda)b + (1-\lambda)a}{2},\cdot\right)
$$

$$
\le \frac{1}{(b-a)} \int_a^b X(t,\cdot) dt \le \frac{1}{2} \left[X\left(\lambda b + (1-\lambda)a,\cdot\right) + \lambda X\left(a,\cdot\right) + (1-\lambda)X\left(b,\cdot\right)\right]
$$

$$
\le \frac{X(a,\cdot) + X(b,\cdot)}{2} \quad (a.e.).
$$
 (10)

Put $a = 1, b = \frac{\gamma(x)}{\delta(x)}$ in [\(10\)](#page-4-1). Then

$$
X\left(\frac{\gamma(x) + \delta(x)}{2\delta(x)}, \cdot\right) \le \lambda X\left(\frac{2\delta(x) + \lambda(\gamma(x) - \delta(x))}{2\delta(x)}, \cdot\right) + (1 - \lambda) X\left(\frac{\gamma(x) + \delta(x)}{2\delta(x)} + \frac{\lambda(\gamma(x) - \delta(x))}{2\delta(x)}, \cdot\right)
$$

$$
\leq \frac{1}{\left(\frac{\gamma(x)}{\delta(x)} - 1\right)} \int_{1}^{\frac{\gamma(x)}{\delta(x)}} X(t, \cdot) dt
$$

\n
$$
\leq \frac{1}{2} \left[X \left(\frac{\lambda \gamma(x) + (1 - \lambda) \delta(x)}{\delta(x)}, \cdot \right) + \lambda X (1, \cdot) + (1 - \lambda) X \left(\frac{\gamma(x)}{\delta(x)}, \cdot \right) \right]
$$

\n
$$
\leq \frac{1}{2} \left(X(1, \cdot) + X \left(\frac{\gamma(x)}{\delta(x)}, \cdot \right) \right) \quad (a.e.). \tag{11}
$$

Multiplying both sides of [\(11\)](#page-4-2) by $\delta(x) > 0$ and integrating on χ , since $X(1, \cdot) =$ 0, we obtain

$$
\int_{\chi} \delta(x) X\left(\frac{\gamma(x) + \delta(x)}{2\delta(x)}, \cdot\right) d\mu(x)
$$
\n
$$
\leq \lambda \int_{\chi} \delta(x) X\left(\frac{2\delta(x) + \lambda(\gamma(x) - \delta(x))}{2\delta(x)}, \cdot\right) d\mu(x)
$$
\n
$$
+ (1 - \lambda) \int_{\chi} \delta(x) X\left(\frac{\gamma(x) + \delta(x)}{2\delta(x)} + \frac{\lambda(\gamma(x) - \delta(x))}{2\delta(x)}, \cdot\right) d\mu(x)
$$
\n
$$
\leq \int_{\chi} \delta(x) \frac{\int_{1}^{\gamma(x)} X(t, \cdot) dt}{\left(\frac{\gamma(x)}{\delta(x)} - 1\right)} d\mu(x)
$$
\n
$$
\leq \frac{1}{2} \int_{\chi} \delta(x) X\left(\frac{\lambda \gamma(x) + (1 - \lambda) \delta(x)}{\delta(x)}, \cdot\right) d\mu(x)
$$
\n
$$
+ \frac{1}{2} (1 - \lambda) \int_{\chi} \delta(x) X\left(\frac{\gamma(x)}{\delta(x)}, \cdot\right) d\mu(x)
$$
\n
$$
\leq \frac{1}{2} \int_{\chi} \delta(x) X\left(\frac{\gamma(x)}{\delta(x)}, \cdot\right) d\mu(x) \quad (a.e.).
$$

By Definitions [1](#page-2-0) and [4,](#page-3-2) we can obtain inequality [\(9\)](#page-4-3). \Box

3. Further discussions: fractional stochastic *HH***-divergence**

First, we introduce the fractional stochastic Hermite–Hadamard (HH-) divergence on a convex stochastic process $X : I \times \Omega \to \mathbb{R}$ in the interval $I \subseteq (0, \infty)$, such that $X(1, \cdot) = 0$, which is generalization of the stochastic HH-divergence obtained in Definition [4.](#page-3-2) Then, a general version of inequality [\(6\)](#page-3-3) for fractional stochastic HH-divergence is given.

Definition 7. For a convex stochastic process $X : I \times \Omega \to \mathbb{R}$, the fractional stochastic Hermite–Hadamard (HH) divergence of order $\alpha > 0$ is defined as:

$$
{}^{\alpha}SD_{HH}^{X}\left(\gamma,\delta\right):=\Gamma\left(\alpha+1\right)\int_{X}\delta(x)\frac{\left[\mathbb{SFR}_{1+}^{\alpha}\left[X\right]\left(\frac{\gamma(x)}{\delta(x)}\right)+\mathbb{SFR}_{\frac{\gamma(x)}{\delta(x)}-\frac{\gamma(X)}{\delta(x)}\left[X\right]\left(1\right)\right]}{2\left(\frac{\gamma(x)}{\delta(x)}-1\right)^{\alpha}}d\mu(x) \ (a.e.),
$$

where $\mathbb{S}\mathbb{F}\mathbb{I}^{\alpha}$ is defined in Definition [3.](#page-3-4)

Remark 8. If $\alpha = 1$, then Definition [7](#page-5-1) becomes Definition [4.](#page-3-2)

Theorem 9. Let $\gamma, \delta \in \Lambda$. Then we have the inequality

$$
SD_X\left(\frac{1}{2}\gamma + \frac{1}{2}\delta, \delta\right) \leq \, ^\alpha SD_{HH}^X\left(\gamma, \delta\right) \leq \frac{1}{2} SD_X\left(\gamma, \delta\right) \quad \text{(a.e.)}.\tag{12}
$$

Proof. We recall the following Hermite–Hadamard inequalities via stochastic mean-square fractional integrals of order α for a convex stochastic process $X: I \times \Omega \to \mathbb{R}$ in [\[2](#page-7-10)]:

$$
X\left(\frac{a+b}{2},\cdot\right) \leq \frac{\Gamma\left(\alpha+1\right)}{2\left(b-a\right)^{\alpha}} \left[\mathbb{S}\mathbb{F}\mathbb{T}_{a+}^{\alpha}\left[X\right]\left(b\right) + \mathbb{S}\mathbb{F}\mathbb{T}_{b-}^{\alpha}\left[X\right]\left(a\right)\right] \leq \frac{X(a,\cdot) + X(b,\cdot)}{2} \quad (a.e.), \tag{13}
$$

where $a, b \in I$. If we choose $a = 1$, $b = \frac{\gamma(x)}{\delta(x)}$ in ([13\)](#page-6-0), then we get

$$
X\left(\frac{1+\frac{\gamma(x)}{\delta(x)}}{2},\cdot\right) \leq \frac{\Gamma\left(\alpha+1\right)}{2\left(\frac{\gamma(x)}{\delta(x)}-1\right)^{\alpha}} \left[\mathbb{S}\mathbb{F}\mathbb{I}^{\alpha}_{1+}\left[X\right]\left(\frac{\gamma(x)}{\delta(x)}\right) + \mathbb{S}\mathbb{F}\mathbb{I}^{\alpha}_{\frac{\gamma(x)}{\delta(x)}-}\left[X\right]\left(1\right)\right]
$$

$$
\leq \frac{X(1,\cdot) + X\left(\frac{\gamma(x)}{\delta(x)},\cdot\right)}{2} \quad (a.e.),
$$

since $X(1, \cdot) = 0$, we have

$$
X\left(\frac{\gamma(x) + \delta(x)}{2\delta(x)},\cdot\right) \leq \frac{\Gamma\left(\alpha + 1\right)}{2\left(\frac{\gamma(x)}{\delta(x)} - 1\right)^{\alpha}} \left[\mathbb{S}\mathbb{F}\mathbb{I}_{1+}^{\alpha}\left[X\right]\left(\frac{\gamma(x)}{\delta(x)}\right) + \mathbb{S}\mathbb{F}\mathbb{I}_{\frac{\gamma(x)}{\delta(x)} -}^{\alpha}\left[X\right]\left(1\right)\right] \leq \frac{1}{2}X\left(\frac{\gamma(x)}{\delta(x)},\cdot\right) \quad (a.e.).
$$
\n(14)

Multiplying both sides of [\(14\)](#page-6-1) by $\delta(x) > 0$ and integrating on χ , we obtain

$$
\int_{\chi} \delta(x) X\left(\frac{\gamma(x) + \delta(x)}{2\delta(x)}, \cdot\right) d\mu(x)
$$
\n
$$
\leq \Gamma(\alpha + 1) \int_{\chi} \delta(x) \frac{\left[\mathbb{SFR}_{1+}^{\alpha}\left[X\right]\left(\frac{\gamma(x)}{\delta(x)}\right) + \mathbb{SFR}_{\frac{\gamma(x)}{\delta(x)} -}^{\alpha}\left[X\right](1)\right]}{2\left(\frac{\gamma(x)}{\delta(x)} - 1\right)^{\alpha}} d\mu(x)
$$
\n
$$
\leq \frac{1}{2} \int_{\chi} \delta(x) X\left(\frac{\gamma(x)}{\delta(x)}, \cdot\right) d\mu(x) \quad (a.e.).
$$

The proof is completed by Definitions [1](#page-2-0) and [7.](#page-5-1) \Box

Remark 10. In Theorem [9,](#page-6-2) if $\alpha = 1$, then we obtain Theorem [5.](#page-3-5)

4. Conclusions

We have introduced the concept of stochastic Hermite–Hadamard $(HH₋)$ divergence based on convex stochastic processes. Then, the upper and lower bounds of stochastic HH-divergence are proposed. Next, we have improved the result of Theorem [5](#page-3-5) for stochastic HH-divergence obtained in Theorem [6.](#page-4-4) Also, we have introduced fractional stochastic HH -divergence of order α which is a generalization of stochastic HH -divergence. Thus, we have extended some previous results on HH-divergence in the class of f-divergence to the class of convex stochastic processes.

References

- [1] Agahi, H.: Refinements of mean-square stochastic integral inequalities on convex stochastic processes. Aequat. Math. **90**, 765–772 (2015)
- [2] Agahi, H., Babakhani, A.: On fractional stochastic inequalities related to Hermite– Hadamard and Jensen types for convex stochastic processes. Aequat. Math. **90**, 1035– 1043 (2016)
- [3] Agahi, H., Yadollahzadeh, M.: A generalization of H–H f-divergence, submitted to publication
- [4] Agahi, H., Yadollahzadeh, M.: Comonotonic stochastic processes and generalized meansquare stochastic integral with applications. Aequ. Math. **91**, 153–159 (2017)
- [5] Barnett, N.S., Cerone, P., Dragomir, S.S.: Some new inequalities for Hermite-Hadamard divergence in information theory. In: Cho, Y.J., Kim, J.K., Choi, Y.K. (eds.) Stochastic Analysis and Applications, vol. 3, pp. 7–19. Nova Science Publishers Inc, Hauppauge (2003)
- [6] Basu, A., Shioya, H., Park, C.: Statistical Inference: The Minimum Distance Approach. CRC Monographs on Statistics & Applied Probability. CRC Press, Boca Raton (2011)
- [7] Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Stud. Math. Hung. **2**, 299–318 (1967)
- [8] Hafiz, F.M.: The fractional calculus for some stochastic processes. Stoch. Anal. Appl. **22**, 507–523 (2004)
- [9] Kotrys, D.: Hermite-Hadamard inequality for convex stochastic processes. Aequat. Math. **83**, 143–151 (2012)
- [10] Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. **22**, 79–86 (1951)
- [11] Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory **37**(1), 145–151 (1991)
- [12] Nikodem, K.: On convex stochastic processes. Aequat. Math. **20**, 184–197 (1980)
- [13] Shioya, H., Da-te, T.: A generalization of Lin divergence and the derivative of a new information divergence. Electr. Commun. Jpn. **78**(7), 37–40 (1995)

Hamzeh Agahi Department of Mathematics, Faculty of Basic Sciences Babol University of Technology Shariati Ave Babol 47148-71167 Iran e-mail: h agahi@nit.ac.ir

Milad Yadollahzadeh Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran Babolsar 47416-95447 Iran e-mail: m.yadollahzadeh@yahoo.com

Received: December 17, 2017 Revised: April 10, 2018