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Spherical bodies of constant width
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Abstract. The intersection L of two different non-opposite hemispheres G and H of the d-
dimensional unit sphere Sd is called a lune. By the thickness of L we mean the distance of the
centers of the (d − 1)-dimensional hemispheres bounding L. For a hemisphere G supporting
a convex body C ⊂ Sd we define widthG(C) as the thickness of the narrowest lune or lunes
of the form G ∩ H containing C. If widthG(C) = w for every hemisphere G supporting C,
we say that C is a body of constant width w. We present properties of these bodies. In
particular, we prove that the diameter of any spherical body C of constant width w on Sd is
w, and that if w < π

2
, then C is strictly convex. Moreover, we check when spherical bodies

of constant width and constant diameter coincide.
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1. Introduction

Consider the unit sphere Sd in the (d + 1)-dimensional Euclidean space Ed+1

for d ≥ 2. The intersection of Sd with any two-dimensional subspace of Ed+1 is
called a great circle of Sd. By a (d−1)-dimensional great sphere of Sd we mean
the common part of Sd with any hyper-subspace of Ed+1. The 1-dimensional
great spheres of S2 are called great circles. By a pair of antipodes of Sd we
understand a pair of points of intersection of Sd with a straight line through
the origin of Ed+1.

Clearly, if two different points a, b ∈ Sd are not antipodes, there is exactly
one great circle containing them. As the arc ab connecting a and b we define
the shorter part of the great circle containing these points. The length of this
arc is called the spherical distance |ab| of a and b, or shortly distance. Moreover,
we agree that the distance of coinciding points is 0, and that of any pair of
antipodes is π.
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A spherical ball Bρ(x) of radius ρ ∈ (0, π
2 ], or a ball for short, is the set of

points of Sd at distances at most ρ from a fixed point x, which is called the
center of this ball. An open ball (a sphere) is the set of points of Sd having
distance smaller than (respectively, exactly) ρ from a fixed point. A spherical
ball of radius π

2 is called a hemisphere. So it is the common part of Sd and a
closed half-space of Ed+1. We denote by H(m) the hemisphere with center m.
Two hemispheres with centers at a pair of antipodes are called opposite.

A spherical (d − 1)-dimensional ball of radius ρ ∈ (0, π
2 ] is the set of points

of a (d − 1)-dimensional great sphere of Sd which are at distances at most ρ
from a fixed point. We call it the center of this ball. The (d − 1)-dimensional
balls of radius π

2 are called (d − 1)-dimensional hemispheres, and semicircles
for d = 2.

A set C ⊂ Sd is said to be convex if no pair of antipodes belongs to C and
if for every a, b ∈ C we have ab ⊂ C. A closed convex set on Sd with non-
empty interior is called a convex body. Some basic references on convex bodies
and their properties are [4], [9] and [10]. A short survey of other definitions of
convexity on Sd is given in Section 9.1 of [2].

Since the intersection of every family of convex sets is also convex, for every
set A ⊂ Sd contained in an open hemisphere of Sd there is the smallest convex
set conv(A) containing Q. We call it the convex hull of A.

Let C ⊂ Sd be a convex body. Let Q ⊂ Sd be a convex body or a hemi-
sphere. We say that C touches Q from inside if C ⊂ Q and bd(C)∩bd(Q) �= ∅.
We say that C touches Q from outside if C ∩Q �= ∅ and int(C)∩ int(Q) = ∅. In
both cases, points of bd(C) ∩ bd(Q) are called points of touching. In the first
case, if Q is a hemisphere, we also say that Q supports C, or supports C at t,
provided t is a point of touching. If at every boundary point of C exactly one
hemisphere supports C, we say that C is smooth. We call e ∈ C an extreme
point of C if C \ {e} is convex.

If hemispheres G and H of Sd are different and not opposite, then L = G∩H
is called a lune of Sd. This notion is considered in many books and papers
(for instance, see [12]). The (d − 1)-dimensional hemispheres bounding L and
contained in G and H, respectively, are denoted by G/H and H/G.

Observe that (G/H) ∪ (H/G) is the boundary of the lune G ∩ H. Denote
by cG/H and cH/G the centers of G/H and H/G, respectively. By corners of
the lune G∩H we mean points of the set (G/H)∩ (H/G). In particular, every
lune on S2 has two corners. They are antipodes.

We define the thickness Δ(L) of a lune L = G ∩ H on Sd as the spherical
distance of the centers of the (d − 1)-dimensional hemispheres G/H and H/G
bounding L. Clearly, it is equal to each of the non-oriented angles ∠cG/HrcH/G,
where r is any corner of L.

Compactness arguments show that for any hemisphere K supporting a
convex body C ⊂ Sd there is at least one hemisphere K∗ supporting C such
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that the lune K ∩ K∗ is of the minimum thickness. In other words, there is a
“narrowest” lune of the form K ∩ K ′ over all hemispheres K ′ supporting C.
The thickness of the lune K ∩ K∗ is called the width of C determined by K.
We denote it by widthK(C).

We define the thickness Δ(C) of a spherical convex body C as the smallest
width of C. This definition is analogous to the classical definition of thickness
(also called minimal width) of a convex body in Euclidean space.

By the relative interior of a convex set C ⊂ Sd we mean the interior of C
with respect to the smallest sphere Sk ⊂ Sd that contains C.

2. A few lemmas on spherical convex bodies

Lemma 1. Let A be a closed set contained in an open hemisphere of Sd. Then
conv(A) coincides with the intersection of all hemispheres containing A.

Proof. First, let us show that conv(A) is contained in the intersection of all
hemispheres containing A. Take any hemisphere H containing A and denote by
J the open hemisphere from the formulation of our lemma. Recall that A ⊂ J
and A ⊂ H. Thus since J ∩ H is a convex set, we obtain conv(A) ⊂ conv(J ∩
H) = J ∩ H ⊂ H. Thus, since conv(A) is contained in any hemisphere that
contains A, also conv(A) is a subset of the intersection of all those hemispheres.

Now we intend to show that the intersection of all hemispheres containing
A is contained in conv(A). Assume the opposite, i.e., that there is a point
x /∈ conv(A) which belongs to every hemisphere containing A. Since A is
closed, by Lemma 1 of [6] the set conv(A) is also closed. Hence there is an
ε > 0 such that Bε(x) ∩ conv(A) = ∅. Since these two sets are convex, we may
apply the following more general version of Lemma 2 of [6]: any two convex
disjoint sets on Sd are subsets of two opposite hemispheres (which is true again
by the separation theorem for convex cones in Ed+1). So Bε(x) and conv(A)
are in some two opposite hemispheres. Hence x does not belong to the one
which contains conv(A). Clearly, that one also contains A. This contradicts
our assumption on the choice of x, and thus the proof is finished. �

We omit the simple proof of the next lemma, which is analogous to the
situation in Ed and needed a few times later. Here our hemisphere plays the
role of a closed half-space there.

Lemma 2. Let C be a spherical convex body. Assume that a hemisphere H
supports C at a point p of the relative interior of a convex set T ⊂ C. Then
T ⊂ bd(H).

Lemma 3. Let K,M be hemispheres such that the lune K ∩ M is of thickness
smaller than π

2 . Denote by b the center of M/K. Every point of K ∩ M at
distance π

2 from b is a corner of K ∩ M .
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Proof. Denote the center of K/M by a. Take any point p ∈ K ∩ M . Let us
show that there are points x ∈ (K/M) ∩ (M/K) and y ∈ ab such that p ∈ xy.

If p = b then it is obvious. Otherwise there is a unique point q ∈ K/M such
that p ∈ bq. Moreover, there exists x ∈ (K/M) ∩ (M/K) such that q ∈ ax.
The reader can easily show that points p, q belong to the triangle abx and
thus observe that there exists y ∈ ab such that p ∈ xy, which confirms the
statement from the first paragraph of the proof.

We have |by| ≤ |ba| < π
2 . The inequality |by| < π

2 means that y is in the
interior of H(b). Of course, |bx| = π

2 , which means that x ∈ bd(H(b)). From the
two preceding sentences we conclude that xy is a subset of H(b) with x being
its only point on bd(H(b)). Thus, if |pb| = π

2 , we conclude that p ∈ bd(H(b)),
and consequently p = x, which implies that p is a corner of K ∩ M . The last
sentence means that the statement of our lemma holds true. �

Lemma 4. Let o ∈ Sd and 0 < μ < π
2 . For every x ∈ Sd at distance π

2 from o
denote by x′ the point of the arc ox at distance μ from x. Consider two points
x1, x2 at distance π

2 from o such that |x1x2| < π − μ. Then for every x ∈ x1x2

we have

Bμ(x′) ⊂ conv(Bμ(x′
1) ∪ Bμ(x′

2)).

Proof. Let o,m be points of Sd and ρ be a positive number less than π
2 . Let

us show that

Bρ(o) ⊂ H(m) if and only if |om| ≤ π

2
− ρ. (1)

First assume that Bρ(o) ⊂ H(m). Let b be a boundary point of Bρ(o) such
that o ∈ mb. We have: |om| = |bm| − |ob| = |bm| − ρ ≤ π

2 − ρ, which confirms
the “only if” part of (1). Assume now that |om| ≤ π

2 −ρ. Let b be any point of
Bρ(o). We have: |bm| ≤ |bo| + |om| ≤ ρ +

(
π
2 − ρ

)
= π

2 . Therefore every point
of Bρ(o) is at a distance at most π

2 from m. Hence B ⊂ H(m), which confirms
the “if” part of (1). So (1) is shown.

Lemma 1 of [6] guarantees that Y = conv(Bμ(x′
1) ∪ Bμ(x′

2)) is a closed set
as a convex hull of a closed set. Consequently, from Lemma 1 we see that Y
is the intersection of all hemispheres containing Y . Moreover, observe that an
arbitrary hemisphere contains a set if and only if it contains the convex hull of
it. Hence Y is the intersection of all hemispheres containing Bμ(x′

1) ∪ Bμ(x′
2).

As a result of the preceding paragraph, in order to prove the statement
of our lemma it is sufficient to show that every hemisphere H(m) containing
Bμ(x′

1) ∪ Bμ(x′
2) also contains Bμ(x′). Thus, having (1) in mind we see that

in order to verify this it is sufficient to show that for any m ∈ Sd

|x′
1m| ≤ π

2
− μ and |x′

2m| ≤ π

2
− μ imply |x′m| ≤ π

2
− μ. (2)

Let us assume the first two of these inequalities and show the third one.
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Observe that x, x′
1 and x′

2 belong to the spherical triangle x1x2o. Therefore
the arcs xo and x′

1x
′
2 intersect. Denote the point of intersection by g.

In this paragraph we consider the intersection of Sd with the three-
dimensional subspace of Ed+1 containing x′

1, x
′
2,m. Observe that this inter-

section is a two-dimensional sphere concentric with Sd. Denote this sphere
by S2. Denote by o the other unique point on S2 such that the triangles
x′

1x
′
2o and x′

1x
′
2o are congruent. By the first two inequalities of (2) we obtain

m ∈ Bπ
2 −μ(x′

1)∩Bπ
2 −μ(x′

2). Observe that go∪go dissects Bπ
2 −μ(x′

1)∩Bπ
2 −μ(x′

2)
into two parts so that x′

1 belongs to one of them and x′
2 belongs to the other.

Therefore at least one of the arcs x′
1m and x′

2m, say x′
1m intersects go or

go, say go. Denote this point of intersection by s. Taking the first assump-
tion of (2) into account and using two times the triangle inequality we obtain
|og| = (|os| + |x′

1s|)−|x′
1s|+ |sg| ≥ |ox′

1|− |x′
1s|+ |sg| = π

2 −μ−|x′
1s|+ |sg| ≥

|x′
1m| − |x′

1s| + |sg| = |sm| + |sg| ≥ |gm|.
Applying the just obtained inequality and looking now again on the whole

Sd we get |x′m| ≤ |x′g| + |gm| ≤ |x′g| + |og| = |x′o| = π
2 − μ which is the

required inequality in (2). Thus by (2) also our lemma holds true. �

Lemma 5. Let C ⊂ Sd be a convex body. Every point of C belongs to the convex
hull of at most d + 1 extreme points of C.

Proof. We apply induction with respect to d. For d = 1 the statement is trivial
since every convex body on S1 is a spherical arc. Let d ≥ 2 be a fixed integer.
Assume that for each k = 1, 2, . . . , d − 1 every boundary point of a spherical
convex body Ĉ ⊂ Sk belongs to the convex hull of at most k + 1 extreme
points of Ĉ.

Let x be a point of C. Take an extreme point e of C. If x is not a boundary
point of C, take the boundary point f of C such that x ∈ ef . In the opposite
case put f = x.

If f is an extreme point of C, the statement follows immediately. In the
opposite case take a hemisphere K supporting C at f . Put C ′ = bd(K) ∩ C.
Observe that every extreme point of C ′ is also an extreme point of C. Let Q be
the intersection of the smallest linear subspace of Ed+1 containing C ′ with Sd.
Clearly, Q is isomorphic to Sk for k < d. Moreover, C ′ has non-empty relative
interior with respect to Q, because otherwise there would exist a smaller linear
subspace of Ed+1 containing C ′. Thus, by the inductive hypothesis we obtain
that f is in the convex hull of a set F of at most d extreme points of C.
Therefore x ∈ conv({e} ∪ F ) which means that x belongs to the convex hull
of d + 1 extreme points of C. This finishes the inductive proof. �

The proof of the following d-dimensional lemma is analogous to that of the
two-dimensional Lemma 4.1 from [8] shown there for a wider class of reduced
spherical convex bodies.
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Lemma 6. Let C ⊂ Sd be a spherical convex body with Δ(C) > π
2 and let

L ⊃ C be a lune such that Δ(L) = Δ(C). Each of the centers of the (d − 1)-
dimensional hemispheres bounding L belongs to the boundary of C and both
are smooth points of the boundary of C.

Having the next lemma in mind, we note the obvious fact that the diameter
of a convex body C ⊂ Sd is realized only for some pairs of points of bd(C).

Lemma 7. Assume that the diameter of a convex body C ⊂ Sd is realized for
points p and q. The hemisphere K orthogonal to pq at p and containing q ∈ K
supports C.

Proof. Denote the diameter of C by δ.
Assume first that δ > π

2 . The set of points at distance at least δ from q
is the ball Bπ−δ(q′), where q′ is the antipode of q. Clearly, K has only p in
common with Bπ−δ(q′).

Since the diameter δ of C is realized for pq, every point of C is at distance
at most δ from q. Thus C has empty intersection with the interior of Bπ−δ(q′).

Assume that K does not contain C. Then C contains a point b �∈ K. Observe
that the arc bp has nonempty intersection with the interior of Bπ−δ(q′) [the
reason: K is the only hemisphere touching Bπ−δ(q′) from outside at p]. On the
other hand, by the convexity of C we have bp ⊂ C. This contradicts the fact
from the preceding paragraph that C has empty intersection with the interior
of Bπ−δ(q′). Consequently, K contains C.

Now consider the case when δ ≤ π
2 . For every y �∈ K we have |pq| < |yq|

which by |pq| = δ implies y �∈ C. Thus if y ∈ C, then y ∈ K. �

Let us apply our Lemma 7 for a convex body C of diameter larger than
π
2 . Having in mind that the center k of K is in pq and thus in C, by Part III
of Theorem 1 in [6] we obtain that Δ(K ∩ K∗) > π

2 . This gives the follow-
ing corollary which implies the other one. The symbol diam(C) denotes the
diameter of C.

Corollary 1. Let C ⊂ Sd be a convex body of diameter larger than π
2 and let

diam(C) be realized for points p, q ∈ C. Take the hemisphere K orthogonal to
pq at p which supports C. Then widthK(C) > π

2 .

Corollary 2. Let C ⊂ Sd be a convex body of diameter larger than π
2 and let K

denote the family of all hemispheres supporting C. Then maxK∈K widthK(C) >
π
2 .

3. Spherical bodies of constant width

If for every hemisphere supporting a convex body W ⊂ Sd the width of W
determined by K is the same, we say that W is a body of constant width
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(see [6] and for an application also [5]). In particular, spherical balls of radius
smaller than π

2 are bodies of constant width. Also every spherical Reuleaux
odd-gon (for the definition see [6], p. 557) is a convex body of constant width.
Each of the 2d+1 parts of Sd dissected by d + 1 pairwise orthogonal (d − 1)-
dimensional spheres of Sd is a spherical body of constant width π

2 , which easily
follows from the definition of a body of constant width. The class of spherical
bodies of constant width is a subclass of the class of spherical reduced bodies
considered in [6] and [8], and mentioned by [3] in a larger context, (recall that
a convex body R ⊂ Sd is called reduced if Δ(Z) < Δ(R) for every body Z ⊂ R
different from R, see also [7] for this notion in Ed).

By the definition of width and by Claim 2 of [6], if W ⊂ Sd is a body
of constant width, then every supporting hemisphere G of W determines a
supporting hemisphere H of W for which G ∩ H is a lune of thickness Δ(W )
such that the centers of G/H and H/G belong to the boundary of W . Hence
every spherical body W of constant width is an intersection of lunes of thickness
Δ(W ) such that the centers of the (d − 1)-dimensional hemispheres bounding
these lunes belong to bd(W ). Recall the related question from p. 563 of [6]
if a convex body W ⊂ Sd is of constant width provided every supporting
hemisphere G of W determines at least one hemisphere H supporting W such
that G ∩ H is a lune with the centers of G/H and H/G in bd(W ).

Here is an example of a spherical body of constant width on S3.

Example. Take a circle X ⊂ S3 (i.e., a set congruent to a circle in E2) of a
positive diameter κ < π

2 , and a point y ∈ S3 at distance κ from every point
x ∈ X. Prolong every spherical arc yx by a distance σ ≤ π

2 − κ up to points
a and b so that a, y, x, b are on one great circle in this order. All these points
a form a circle A, and all points b form a circle B. On the sphere on S3 of
radius σ whose center is y take the “smaller” part A+ bounded by the circle
A. On the sphere on S3 of radius κ + σ with center y take the “smaller” part
B+ bounded by B. For every x ∈ X denote by x′ the point on X such that
|xx′| = κ. Prolong every xx′ up to points d, d′ so that d, x, x′, d′ are in this
order and |dx| = σ = |x′d′|. For every x provide the shorter piece Cx of the
circle with center x and radius σ connecting b and d determined by x and also
the shorter piece Dx of the circle with center x of radius κ + σ connecting a
and d′ determined by x. Denote by W the convex hull of the union of A+, B+

and all the pieces Cx and Dx. It is a body of constant width κ + 2σ (hint:
for every hemisphere H supporting W and every H∗ the centers of H/H∗ and
H∗/H belong to bd(W ) and the arc connecting them passes through one of
our points x, or through the point y).

Theorem 1. At every boundary point p of a body W ⊂ Sd of constant width
w > π/2 we can inscribe a unique ball Bw−π/2(p′) touching W from inside
at p. What is more, p′ belongs to the arc connecting p with the center of the
unique hemisphere supporting W at p, and |pp′| = w − π

2 .
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Proof. Observe that if a ball touches W at p from inside, then there exists a
unique hemisphere supporting W at p such that our ball touches this hemi-
sphere at p. So for any ρ ∈ (0, π

2 ) there is at most one ball of radius ρ touching
W from inside at p. Our aim is to show that we can always find one.

In the first part of the proof consider the case when p is an extreme point
of W . By Theorem 4 of [6] there is a lune L = K ∩M of thickness w containing
W such that p is the center of K/M . Denote by m the center of M and by k
the center of K. Clearly, m ∈ pk and |pm| = w− π

2 . Since widthM (W ) = w, by
the third part of Theorem 1 of [6] the ball Bw−π/2(m) touches W from inside.
Moreover, it touches W from inside at the center of M∗/M . Since K is one of
these hemispheres M∗, our ball touches W at p.

In the second part consider the case when p is not an extreme point of
W . From Lemma 5 we see that p belongs to the convex hull of a finite set E
of extreme points of W . We do not lose the generality assuming that E is a
minimum set of extreme points of W with this property. Hence p belongs to
the relative interior of conv(E).

Take a hemisphere K supporting W at p and denote by o the center of
K. Since p belongs to the relative interior of conv(E), by Lemma 2 we obtain
conv(E) ⊂ bd(K). Moreover, conv(E) is a subset of the boundary of W .

We intend to show that for every x ∈ conv(E) the inclusion

Bw− π
2
(x′) ⊂ W (3)

holds true, where x′ denotes the point on ox at distance w − π
2 from x.

By Lemma 4 for w = μ, if (3) holds true for x1, x2 ∈ conv(E), then (3) is
also true for every point of the arc x1x2. Applying this lemma a finite number
of times and considering the first part of this proof, we conclude that (3) is true
for every point of conv(E), so in particular for p. Clearly, the ball Bw− π

2
(p′)

supports W at p from inside.
Both parts of the proof confirm the statement of our theorem. �

By Lemma 6 we obtain the following proposition generalizing Proposition
4.2 from [8] for arbitrary dimension d. We omit an analogous proof.

Proposition 1. Every spherical body of constant width larger than π
2 (and more

generally, every reduced body of thickness larger than π
2 ) of Sd is smooth.

From Corollary 2 we obtain the following corollary which implies the two
other ones.

Corollary 3. If diam(W ) > π
2 for a body W ⊂ Sd of constant width w, then

w > π
2 .

Corollary 4. For every body W ⊂ Sd of constant width w ≤ π
2 we have

diam(W ) ≤ π
2 .
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Corollary 5. Let p be a point of a body W ⊂ Sd of constant width at most π
2 .

Then W ⊂ H(p).

The following theorem generalizes Theorem 5.2 of [8] proved there for d = 2
only.

Theorem 2. Every spherical convex body of constant width smaller than π
2 on

Sd is strictly convex.

Proof. Take a body W of constant width w < π
2 and assume it is not strictly

convex. Then there is a supporting hemisphere K of W that supports W at
more than one point. By Claim 2 of [6] the centers a of K/K∗ and b of K∗/K
belong to bd(W ). Since K supports W at more than one point, K/K∗ contains
also a boundary point x �= a of W . By the first statement of Lemma 3 of [6]
we have |xb| > |ab| = w. Hence diam(W ) > w.

By Corollary 4 we have diam(W ) ≤ π
2 . By Theorem 3 of [6] we see that w =

diam(W ). This contradicts the inequality diam(W ) > w from the preceding
paragraph. The contradiction means that our assumption that W is not strictly
convex must be false. Consequently, W is strictly convex. �

On p. 566 of [6] the question is put if for every reduced spherical body
R ⊂ Sd and for every p ∈ bd(R) there exists a lune L ⊃ R fulfilling Δ(L) =
Δ(R) with p as the center of one of the two (d − 1)-dimensional hemispheres
bounding this lune. The following theorem gives a positive answer in the case
of spherical bodies of constant width. It is a generalization of the version for
S2 given as Theorem 5.3 in [8]. The idea of the proof of our theorem below for
Sd substantially differs from the one given for S2.

Theorem 3. For every body W ⊂ Sd of constant width w and every p ∈ bd(W )
there exists a lune L ⊃ W fulfilling Δ(L) = w with p as the center of one of
the two (d − 1)-dimensional hemispheres bounding this lune.

Proof. Part I for w < π
2 .

By Theorem 2 the body W is strictly convex, which means that all its
boundary points are extreme. Thus the statement follows from Theorem 4 of
[6].

Part II for w = π
2 .

If p is an extreme point of W we again apply Theorem 4 of [6].
Consider the case when p is not an extreme point. Take a hemisphere G

supporting W at p. Applying Corollary 5 we see that W ⊂ H(p). Clearly, the
lune H(p) ∩ G contains W . The point p is at distance π

2 from every corner
of this lune and also from every point of the opposite (d − 1)-dimensional
hemisphere bounding the lune. Hence this is a lune that we are looking for.

Part III, for w > π
2 .

By Lemma 5 the point p belongs to the convex hull conv(E) of a finite set E
of extreme points of W . We do not lose the generality by assuming that E is a
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minimum set of extreme points of W with this property. Hence p belongs to the
relative interior of conv(E). By Proposition 1 we know that there is a unique
hemisphere K supporting W at p. Since p belongs to the relative interior of
conv(E), by Lemma 2 we have conv(E) ⊂ bd(K). Moreover, conv(E) is a
subset of the boundary of W .

By Theorem 4 of [6] for every e ∈ E there exists a hemisphere K∗
e (it plays

the part of K∗ in Theorem 1 of [6]) supporting W such that the lune K ∩K∗
e is

of thickness Δ(W ) with e as the center of K/K∗
e . By Proposition 1, for every

e the hemisphere K∗
e is unique. For every e ∈ E denote by te the center of

K∗
e /K and by ke the boundary point of K such that te ∈ oke, where o is the

center of K. So e, ke are antipodes. Denote the set of all these points ke by Q.
Clearly, the ball B = BΔ(W )− π

2
(o) (as in Part III of Theorem 1 in [6])

touches W from inside at every point te. Moreover, from the proof of Theorem
1 of [6] and from the earlier established fact that every e ∈ E is the center of
K/K∗

e and every te is the center of K∗
e /K we obtain that o belongs to all the

arcs of the form ete.
Put U = conv(Q ∪ {o}). Denote by UB the intersection of U with the

boundary of B, and by UW the intersection of U with the boundary of W .
Having this construction in mind we see the following one-to-one correspon-
dence between some pairs of points in UB and UW . Namely, between the pairs
of points of UB and UW such that each pair is on the arc connecting o with a
point of conv(Q).

Now, we will show that UW = UB . Assume the opposite. By the preced-
ing paragraph, our opposite assumption means that there is a point x which
belongs to UW but not to UB . Hence |xo| > Δ(W ) − π

2 . Moreover, there is a
boundary point y of the (d − 1)-dimensional great sphere bounding K such
that o ∈ xy and a point y′ ∈ oy at distance Δ(W ) − π

2 from y.
We have |xy′| = |xo| + |oy| − |yy′| >

(
Δ(W ) − π

2

)
+ π

2 − (
Δ(W ) − π

2

)
= π

2 .
By Lemma 5 the point x belongs the convex hull of a finite set of extreme

points of W . Assume for a while that all these extreme points are at distance
at most π

2 from y′. Therefore all of them are contained in H(y′). Thus their
convex hull is contained in H(y′) and so x ∈ H(y′). This contradicts the fact
established in the preceding paragraph that |xy′| > π

2 . The contradiction shows
that at least one of these extreme points is at distance larger than π

2 from y′.
Take such a point z for which |zy′| > π

2 .
Since z is an extreme point of W , by Theorem 4 of [6] it is the center of one

of the (d − 1)-dimensional hemispheres bounding a lune L of thickness Δ(W )
which contains W . Hence by the third part of Lemma 3 of [6] every point
of L different from the center of the other (d − 1)-dimensional hemisphere
bounding L is at distance smaller than Δ(W ) from z. Taking into account
that the distance of these centers is Δ(W ) we see that the distance of every
point of L, and in particular of W , from z is at most Δ(W ).

By Theorem 1 the ball BΔ(W )− π
2
(y′) touches W from inside at y.
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For the boundary point v of this ball such that y′ ∈ zv we have |zv| =
|zy′| + |y′v| > π

2 +
(
Δ(W ) − π

2

)
= Δ(W ), which by v ∈ W contradicts the

result of the preceding paragraph. Consequently, UW = UB .
Since UW = UB , the ball B touches W from inside at every point of UB, in

particular at the point tp such that o ∈ ptp. Therefore by Part III of Theorem
1 in [6] there exists a hemisphere K∗

p supporting W at tp, such that tp is the
center of K∗

p/K, p is the center of K/K∗
p and the lune L = K ∩ K∗

p is of
thickness Δ(W ). Consequently, L is a lune announced in our theorem. �

If the body W from Theorem 3 is of constant width greater than π
2 , then

by Proposition 1 it is smooth. Thus at every p ∈ bd(W ) there is a unique
supporting hemisphere of W , and so the lune L from the formulation of this
theorem is unique. If the constant width of W is at most π

2 , there are non-
smooth bodies of constant width (e.g., a Reuleaux triangle on S2) and then
for non-smooth p ∈ bd(W ) we may have more such lunes.

Our Theorem 3 and Claim 2 in [6] imply the first sentence of the following
corollary. The second sentence follows from Proposition 1 and the last part of
Lemma 3 in [6].

Corollary 6. For every convex body W ⊂ Sd of constant width w and for every
p ∈ bd(W ) there exists q ∈ bd(W ) such that |pq| = w. If w > π

2 , this q is
unique.

Theorem 4. If W ⊂ Sd is a body of constant width w, then diam(W ) = w.

Proof. If diam(W ) ≤ π
2 , then the statement is an immediate consequence of

Theorem 3 in [6].
Assume that diam(W ) > π

2 . Take an arc pq in W such that |pq| = diam(W ).
By Corollary 1 this hemisphere K orthogonal to pq at p which contains q,
contains also W . The center of K lies strictly inside pq and thus by Part III
of Theorem 1 in [6] we have w > π

2
Having Theorem 3 in mind, consider a lune L ⊃ W with Δ(L) = Δ(W )

such that p is the center of a (d − 1)-dimensional hemisphere bounding L.
Clearly, q ∈ W ⊂ L. Since W is of constant width w > π

2 , we have Δ(L) > π
2 .

Thus from the last part of Lemma 3 of [6] it easily follows that the center
of the other (d − 1)-dimensional hemisphere bounding L is a farthest point of
L from p. Since it is at distance w from p, we obtain w ≥ |pq| = diam(W ).

On the other hand, by Proposition 1 of [6] we have w ≤ diam(W ).
As a consequence, diam(W ) = w. �

4. Constant width and constant diameter

We say that a convex body W ⊂ Sd is of constant diameter w if the following
two conditions hold true
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(i) diam(W ) = w,
(ii) for every boundary point p of W there exists a boundary point p′ of W

with |pp′| = w.

This definition is analogous to the Euclidean notion (compare the beginning
of Part 7.6 of [11] for the Euclidean plane, and the bottom of p. 53 of [1] also for
higher dimensions). Here is a theorem similar to the planar Euclidean version
from [11] (see the beginning of Part 7.6).

Theorem 5. Every spherical convex body W ⊂ Sd of constant width w is of con-
stant diameter w. Every spherical convex body W ⊂ Sd of constant diameter
w ≥ π

2 is of constant width w.

Proof. For the proof of the first statement of our theorem assume that W is
of constant width w. Theorem 4 implies (i) and Corollary 6 implies (ii), which
means that W is of constant diameter w.

Let us prove the second statement. Let W ⊂ Sd be a spherical body of
constant diameter w ≥ π

2 . We have to show that W is a body of constant
width w.

Consider an arbitrary hemisphere K supporting W . As an immediate con-
sequence of two facts from [6], namely Theorem 3 and Proposition 1, we obtain
that

widthK(W ) ≤ w. (4)

Let us show that widthK(W ) = w.
Make the opposite assumption (that is widthK(W ) �= w) in order to provide

an indirect proof of this equality. By (4) this opposite assumption implies that
widthK(W ) < w.

Consider two cases.
At first consider the case when w > π/2.
Put w′ = widthK(W ). There exists a hemisphere M supporting W such

that Δ(K ∩ M) = w′. Denote the center of K/M by a and the center of M/K
by b. From Corollary 2 of [6] we see that b ∈ bd(W ).

We have π
2 < w′ since the opposite means w′ ≤ π

2 and then every point of
the lune K ∩M is at distance at most π

2 from the center b of M/K (for w′ = π
2

this is clear by K ∩ M ⊂ H(b), and consequently this is also true if w′ < π
2 ).

Since b is a boundary point of our body W of constant diameter w > π/2, we
get a contradiction to (ii).

Since b is a boundary point of the body W of constant diameter, by the
assumption (ii) there exists b′ ∈ bd(W ) such that |bb′| = w. By the definition
of the thickness of a lune, we have |ab| = w′. Observe that the last part of
Lemma 3 of [6] implies that |ucH/G| ≤ |cG/HcH/G| for every point u of the
lune H ∩ G. This observation applies to our lune K ∩ M since Δ(K ∩ M) > π

2
(i.e, w′ > π

2 ). Hence we obtain |b′b| ≤ |ab|, which by the first two sentences of
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this paragraph gives w ≤ w′. This contradicts the inequality w′ < w resulting
from our opposite assumption that widthK(W ) �= w.

Consequently, widthK(W ) = w.
Now consider the case when w = π

2 .
From widthK(W ) < w (resulting from our opposite assumption) we obtain

widthK(W ) < π/2. Thus Δ(K ∩ K∗) < π
2 . Denote by b the center of K∗/K.

From Corollary 2 of [6] we see that b ∈ bd(W ).
The set D = (K/K∗) ∩ (K∗/K) of corner points of K ∩ K∗ is isomorphic

to Sd−2. Moreover, Sk contains at most k + 1 points pairwise distant by π
2 ,

which follows from the fact (which is easy to show) that every set of at least
k + 2 points pairwise equidistant on Sk must be the set of vertices of a regular
simplex inscribed in Sk (still the distances of these vertices are not π

2 ). Putting
k = d − 2, we see that D contains at most d − 1 points pairwise distant by
π
2 . Therefore there exists a set Pmax of the maximum number (being at most
d − 1) of points of W ∩ D pairwise distant by π

2 .
Put T = conv(Pmax ∪ {b}). Clearly, T ⊂ W , and since moreover T ⊂

bd(K∗) and W ⊂ K∗, we obtain T ⊂ bd(W ). Take a point x from the relative
interior of T . The inclusion T ⊂ bd(W ) implies that x ∈ bd(W ). Hence by
(ii) there exists y ∈ bd(W ) such that |xy| = π

2 . By Lemma 2 we have T ⊂
bd(H(y)). By this inclusion and b ∈ T we obtain |by| = π

2 . Thus by Lemma
3 we have y ∈ D. As a consequence, the set Pmax ∪ {y} is a set of points of
W ∩ D pairwise distant by π

2 . This set has a greater number of points than
the set Pmax. This contradiction shows that our assumption widthK(W ) �= w
is wrong. So widthK(W ) = w.

In both cases, from the arbitrariness of the hemisphere K supporting our
convex body W we get that W is a body of constant width w. �

Problem. Is every spherical body of constant diameter w < π
2 a body of

constant width w?
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