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Elementary geometry on the integer lattice
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Abstract. The n-dimensional integer lattice, denoted by Z
n, is the subset of R

n consisting
of those points whose coordinates are all integers. In this expository paper, many concrete,
intuitive, and geometric results concerning the integer lattice Z

n are presented, most of them
together with new elementary or streamlined proofs. Some of the presented results are new,
and others are improved versions of old results.
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1. Introduction

Lattice point problems have a long history connected with famous names like
Gauss, Dirichlet, Minkowski, Weyl, Siegel, Mordell and many others, see the
historical contributions of Hlawka [46] and Schwermer [90]. They nicely demon-
strate how deep cross connections between basic mathematical fields (like, e.g.,
number theory, convexity, discrete geometry, algebraic geometry and, more
specifically, the theory of positive quadratic forms, as observed by Gauss [31])
can be. There are also many applications (e.g., in numerical analysis, dis-
crete optimization, discrete and computational geometry, stochastic geometry,
image processing and pattern recognition, computer science, and crystallogra-
phy), so that the development of suitable tools to handle lattice point problems
as unitedly as possible has a natural motivation. To present such tools is one
of our main aims.

The most important historical contribution regarding the alignment of our
paper was given by Minkowski, namely by his “Geometrie der Zahlen” (see
[71]); he proposed the application of geometric methods and topics to prob-
lems from number theory. Since Minkowski also created the basic notions for
the field of classical convexity, he established the fundaments for the fruitful
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interplay between lattice point problems and parts of convexity. Without be-
ing exhaustive, we mention some basic books and surveys referring (not only)
to this direction: Keller [53], Gioia [32, Chapter 9], Cassels [16], Gruber and
Lekkerkerker [39], Erdős, Gruber, and Hammer [26], Gruber (see [36,37], and
[38, § 21 to § 34]), Lagarias [59], Gritzmann and Wills [33], Olds, Lax, and
Davidoff [78] as well as the problem books [20, Chapter E] and [12, Chapter
10]. More specified expository papers and books, discussing special aspects
or notions emerging from lattice point problems, refer to Ehrhart polynomials
(cf. [10,13,14,22,84] etc.), Minkowski’s successive minima (see [45]), properties
of lattice polytopes and also their connections to algebraic geometry (cf. [77,
Chapter 2], [7,8,14,27, Chapter V] etc.), random and computational aspects
([9,52,88] etc.), applications regarding packing and covering ( [19,28,34,102]
etc.), lattice tilings (see the respective sections in [40,89]) and relations to
crystallography [25].

In this paper we discuss and prove new geometric results related to the
integer lattice. It is one of our main goals to demonstrate typical methods which
successfully and elegantly work in this field. Most of the obtained results are
not new, but we give new approaches, simplified proofs, or improved versions
of them.

This paper is organized as follows.
Section 1: Introduction
Section 2: Lattice polygons and Pick’s formula
Section 3: Special similarities and regular simplices
Section 4: Lattice angles and lattice polygons
Section 5: Lattice simplices
Section 6: Lattice points in a planar region
Section 7: Lattice points on quadratic curves

In Sect. 2, we recall some elementary and interesting results on lattice polygons
(such as Scherrer’s nonexistence-proof [85] and Pick’s formula [80]), where a
lattice polygon means a planar polygon whose vertices are all lattice points;
see also Scott [93]. In Sect. 3, we present special similarities of R

n for n = 2
or n = 4k, (obtained by Maehara [61]), mapping a given line that passes
through the origin and another lattice point to the first coordinate axis of
R

n, and mapping Z
n to Z

n. Such similarities are applied to present sufficient
conditions for dimensions n such that R

n contains a regular n-simplex whose
vertices are all lattice points.

An angle ∠ABC determined by lattice points A,B,C in R
n is called a

lattice angle in R
n. In Sect. 4, we present Beeson’s theorem [11] that charac-

terizes lattice angles in R
n. We also give a necessary and sufficient condition

that a pair of lattice angles is a pair of interior angles of a lattice polygon. This
result is applied to prove a theorem from Maehara [60] that describes when a
polygon and a lattice polygon have the same cyclic sequence of interior angles.
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In Sect. 5, we prove that a simplex σ is similar to a simplex whose vertices
are all lattice points if and only if cos2 ∠ABC is a rational number for every
three vertices A,B,C of the simplex σ. We also consider the smallest dimension
n such that a given lattice simplex in R

N for some N is similar to a lattice
simplex in R

n.
Further on, Sects. 6 and 7 concern mainly the two-dimensional lattice Z

2. In
Sect. 6, we introduce the notion of lattice-generic curve (see [63]), and prove
that if a region bounded by a lattice-generic curve has area n, then it can
be translated in the plane so that it contains exactly n lattice points. This
solves a slightly generalized version of Steinhaus’ circle-lattice-point problem.
Applying this result, we also prove a similar result (but this time, besides
translations, a rotation is needed) for beziergons, which are regions bounded
by finite numbers of Bézier curves.

In Sect. 7, we introduce Schinzel’s theorem (Schinzel [86], Maehara-Mat-
sumoto [66]) that states that, for any n, there is a circle in the plane that
passes through exactly n lattice points. Next, we define the Z

2-spectrum of a
curve C as the set of numbers n (including infinity ∞) such that there is a
curve similar to C that passes through exactly n lattice points. Thus, the Z

2-
spectrum of a circle is a set of all positive integers by Schinzel’s theorem. We
show here several results, obtained in Kuwata-Maehara [58], on the Z

2-spectra
of quadratic curves.

2. Lattice polygons and Pick’s formula

2.1. Lattice polygons

By a polygon in R
n, n ≥ 2, we mean a planar polygon lying on a 2-plane in

R
n. A lattice polygon in R

n is a polygon whose vertices are all lattice points in
Z

n. For example, the square in R
2 with vertices (0, 0), (1, 0), (1, 1), (0, 1) is a

lattice square. For what m > 0 does a regular lattice m-gon (besides this simple
example) exist in R

2? Let us note here the following fundamental property of
Z

n.
(∗) A translation of R

n that maps a lattice point to another lattice
point maps the whole of Z

n to Z
n.

Proposition 2.1. No equilateral lattice triangle exists in the plane R
2, and hence

no regular lattice hexagon exists in R
2.

Proof. Suppose that there is an equilateral lattice triangle ABC in the plane.
We may suppose that B = (0, 0), the origin. Put A = (a, b), C = (c, d). Since
C is obtained by rotating A around B through the angle 60◦, we have(

c
d

)
=

(
1/2 −√

3/2√
3/2 1/2

)(
a
b

)
.
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Then c = 1
2a −

√
3
2 b, d =

√
3
2 a + 1

2b, and since a, b are integers �= (0, 0), one of
c, d must be irrational, a contradiction. �
Proposition 2.2. For m ≥ 5,m �= 6, no regular lattice m-gon exists in R

n.

Proof. There is a nice proof of this fact by Scherrer [85] (see also Hadwiger and
Debrunner [43]): Let us consider the case m = 5. Suppose that there is a reg-
ular lattice pentagon in R

n. Let ABCDE be one with the smallest edge length.
Translate the vertices A,B,C,D,E through the vectors

−−→
BC,

−−→
CD,

−−→
DE,

−→
EA,

−−→
AB,

respectively, see Fig. 1. Then the translated points are lattice points in R
n by

(∗), and they are the vertices of a regular lattice pentagon with smaller edge
length, a contradiction. Similar arguments work for m > 6. (Note also that
similar arguments fail for m = 6.) �

Thus, we have the following theorem.

Theorem 2.1. In R
2, there is no regular lattice polygon other than a square.

In R
3, there is an equilateral lattice triangle (see Fig. 2), and hence there is

a regular lattice hexagon, too. Hence Proposition 2.2 implies the next theorem.

Theorem 2.2. (Schoenberg [87]) Regular lattice m-gons exist in R
n (n ≥ 3)

only for m = 3, 4, 6.

A B

C

D

E

Figure 1. A small lattice pentagon inside a lattice pentagon

Figure 2. An equilateral lattice triangle in R
3



Vol. 92 (2018) Elementary geometry on the integer lattice 767

Corollary 2.1. A regular polyhedron in R
3 whose vertices are all lattice points

is either a regular tetrahedron, or a cube, or a regular octahedron.

By a Pythagorean triangle we mean a right triangle whose edge lengths are
all integers.

Corollary 2.2. For an acute angle θ of a Pythagorean triangle, θ/π is an irra-
tional number.

Proof. Let cos θ = a/c, sin θ = b/c, where a, b, c are positive integers satisfying
a2 + b2 = c2. Suppose that θ/(2π) = l/m (irreducible fraction). Let ρ be the
rotation of R

2 around the origin through the angle θ, given by the matrix(
cos θ − sin θ
sin θ cos θ

)
=

(
a/c −b/c
b/c a/c

)
.

Let P = (cm, 0). Since l/m is an irreducible fraction, P, ρ(P ), ρ2(P ), . . . ,
ρm−1(P ) are distinct lattice points, and ρm(P ) = P . Hence these m lattice
points form a regular lattice m-gon. Then, by Theorem 2.1, we have m = 4.
Since θ < π/2, this is impossible. �

More generally, the following theorem holds; see Niven [75], Niven and
Zuckerman [76].

Theorem 2.3. If 0 < θ < π/2 and cos θ is a rational number, then either
θ = π/3 or θ/π is an irrational number.

2.2. Pick’s formula

Note that a polygon is simple if its edges have no mutual intersections other
than those of adjacent edges at the common vertices. By Pick’s classical theo-
rem the area of a simple lattice polygon is precisely determined in terms of the
number of lattice points in its interior and that of lattice points in its bound-
ary. There are many nice variants and generalizations of Pick’s theorem; we
briefly present now some of them, first mentioning the surveys [24,99]. In [41]
Pick’s theorem is extended to more general lattice polygons (allowing multi-
ple intersections and even overlapping of their edges), and similar results were
obtained in [42,91]. In [56] Pick’s theorem is used to construct the (reciprocal
of the) golden ratio as an irrational number, and in [82] a beautiful proof of
Pick’s theorem based on Minkowski’s theorem on the volume of centrally sym-
metric convex bodies embedded in a lattice is presented. Analogues of Pick’s
theorem for hexagonal and triagonal lattices (with applications in computer
graphics) are given in [23]. There are numerous generalizations of Pick’s theo-
rem to higher dimensions, staying with polygons or going up to polytopes; see,
e.g., [44,55]. Interesting relations to algebraic geometry (with respect to toric
varieties) also yield related higher dimensional theorems, see [73] and [29].
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Lemma 2.1. Let ABCD be a lattice parallelogram in R
2 that contains exactly

four lattice points, namely as its four vertices. Then it has unit area.

Proof. We may suppose that A = (0, 0), the origin. Put B = (a, b),D = (c, d).
Note that by translating ABCD repeatedly, we can tessellate the whole plane
without overlapping. Then all lattice points are obtained as the vertices of
this tessellation. It follows that every lattice point is obtained as the inte-
gral combination of (a, b), (c, d). Hence (1, 0), (0, 1) can be written as (1, 0) =
p(a, b) + q(c, d), (0, 1) = r(a, b) + s(c, d), where p, q, r, s ∈ Z. Thus(

1 0
0 1

)
=

(
p q
r s

)(
a b
c d

)
.

Since a, b, c, d, p, q, r, s are integers, we must have det
(

a b
c d

)
= ±1, which im-

plies that the area of ABCD is 1. �

A lattice triangle in R
2 that contains exactly three lattice points is called

a primitive lattice triangle.

Corollary 2.3. The area of a primitive lattice triangle in R
2 is 1/2.

Proof. Let ABC be a primitive lattice triangle. By a rotation ρ of R
2 around

the midpoint of AC through 180◦, the lattice Z
2 is mapped onto itself. Put

D = ρ(B), Then ABCD is a lattice parallelogram that contains exactly four
lattice points. Hence its area is 1 by Lemma 2.1, and hence the area of ABC
is 1/2. �

The following statement became famous as “Pick’s theorem”.

Theorem 2.4. (Pick [80]) For a simple lattice polygon Γ in R
2, let i = i(Γ )

denote the number of lattice points lying in the interior of Γ , and let b = b(Γ )
denote the number of lattice points lying on the boundary of Γ . Then the area
of Γ is equal to i + b/2 − 1.

Proof. Our proof is on the same lines as the one given by Funkenbusch [30]. It
is possible to triangulate Γ into primitive lattice triangles. (Details of this part
are omitted.) Let us regard the resulting triangulation as a connected planar
graph. The number of vertices of this graph is b + i. Let t be the number of
primitive lattice triangles. Then the number f of faces of this planar graph is
t + 1. Let e be the number of edges of this graph. There are exactly b edges
on the boundary of Γ . For each edge, put two pebbles on both sides of the
edge. Then inside each primitive lattice triangle there are three pebbles, and
outside Γ there are b pebbles. Thus, the total number of pebbles is b + 3t,
which is equal to 2e. Now, by Euler’s formula, we have v − e + f = 2. Since
v−e+f = i+b−(b+3t)/2+t+1 = i+b/2−t/2+1, we have t/2 = i+b/2−1.
Hence the area of Γ is t/2 = i + b/2 − 1. �
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Remark 2.1. Pick’s theorem can also be proved in an elementary way, without
using Euler’s formula. See, e.g., Steinhaus [97, p. 96].

For X ⊂ R
2 and a nonzero real λ, let λX = {λx ∈ R

2 : x ∈ X}. If X is a
lattice polygon and λ is a nonzero integer, then λX is also a lattice polygon.

Corollary 2.4. (Akopyan and Tagami [1]) For every lattice polygon Γ in R
2,

4Γ contains an odd number of lattice points in its interior.

Proof. Let i = i(Γ ), b = b(Γ ), and i′ = i(4Γ ), b′ = b(4Γ ). It is clear that
b′ = 4b, and the area of 4Γ is equal to 16 times the area of Γ . By Pick’s formula,
16(i+b/2−1) = (i′+b′/2−1) = (i′+2b−1). Hence i′ = 16i+8b−16−2b+1 =
16i + 6b − 15, which is odd. �

Remark 2.2. Consider the tetrahedron in R
3 having the four vertices

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1,m),

where m is a positive integer. This tetrahedron is known as Reeve tetrahedron of
height m. It contains exactly four lattice points for any m > 0, and its volume
is m/6. This suggests that there is no simple analogue of Pick’s formula for
the volume of a lattice polyhedron in R

3. Let Π be a lattice polyhedron in R
3.

Let I,B denote the number of lattice points interior to Π, and the number
of lattice points on the boundary of Π, respectively. Similarly, for a positive
integer m, let Im, Bm be the number of lattice points interior to mΠ, and the
number of lattice points on the boundary of mΠ, respectively. Let V be the
volume of Π. Reeve [83] proved that

2m(m2 − 1)V = 2(Im − mI) + (Bm − mB)

holds for every positive integer m.

3. Special similarities and regular simplices

3.1. Special similarities of R
2 and R

4k

For square matrices Mi, i = 1, 2, . . . , k, not necessarily of the same size, the
block matrix with diagonals M1, . . . ,Mk is denoted by M1 ⊕ M2 ⊕ · · · ⊕ Mk.

Proposition 3.1. For X ⊂ Z
2k and (a, b) ∈ Z

2\{O}, the set
√

a2 + b2 X is
isometric to a subset of Z

2k.

Proof. Let

[[a, b]] =
(

a −b
b a

)
,
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and let M be the 2k×2k-matrix defined by M = [[a, b]] ⊕ [[a, b]] ⊕ · · · ⊕ [[a, b]]︸ ︷︷ ︸
k

.

Then the linear transformation ϕ of R
2k induced by M is a similarity with ratio√

a2 + b2 and ϕ(Z2k) ⊂ Z
2k. Hence ϕ(X) ⊂ Z

2k is isometric to
√

a2 + b2X. �

Let us recall here Lagrange’s four-square theorem for later use. For its
proof, see Niven and Zuckerman [76].

Theorem 3.1. (Lagrange’s four-square theorem) Every positive integer can be
represented as the sum of four squares of integers.

Theorem 3.2. (Maehara [61]) If n = 2 or n = 4k (k ≥ 1), then for any
P ∈ Z

n\{O} there is a similarity transformation fP : R
n → R

n such that{
fP (O) = O, fP (P ) = (∗, 0, . . . , 0)
fP (Zn) ⊂ Z

n.
(3.1)

Proof. First, note that for any 1 ≤ i < j ≤ n, there is an orthogonal trans-
formation of R

n that switches the i-th coordinate and the j-th coordinate of
every point of R

n, and maps Z
n to Z

n. Such an orthogonal transformation is
called a coordinate-switching.

(i) The case n = 2. For P = (a, b) ∈ Z
2\{O}, let fP be the linear transfor-

mation induced by [[a, b]]. Then fP satisfies (3.1).
(ii) The case n = 4. For P = (x, y, z, w) ∈ Z

4\{O}, put

[[x, y, z, w]] =

⎛
⎜⎜⎝

x −y z w
y x −w z
z −w −x −y
w z y −x

⎞
⎟⎟⎠ .

This matrix induces a similarity fP of R
4 satisfying (3.1).

(iii) The case n = 8. Let P = (. . . , x, y, z, w) ∈ Z
8. By applying a suitable

coordinate-switching if necessary, we may suppose that (x, y, z, w) �= (0, 0, 0, 0).
By the linear transformation defined by the matrix [[x, y, z, w]] ⊕ [[x, y, z, w]],
P is sent to a point of the form (p, q, r, s,m, 0, 0, 0) ∈ Z

8, where m = x2 +y2 +
z2 + w2. By the matrix (

[[p, q, r, s]] −mI
mI [[p, q, r, s]]tr

)

(where I is the identity matrix, and ( )tr denotes the transpose of the matrix),
this point is sent to a point of the form (∗, 0, . . . , 0) ∈ Z

8. The product of these
two matrices is a matrix of a similarity transformation of R

8.
(vi) Now, let us show the theorem for n = 4k by induction on k. By (ii),

(iii), the assertion of the theorem is true for k = 1, 2. Suppose that the assertion
of the theorem is true in the case n = 4k for some k ≥ 2, and consider the
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case n = 4(k +1). Let P ∈ Z
4(k+1), P �= O. By applying a suitable coordinate-

switching if necessary, we may suppose that the last 4k coordinates of P are not
all 0. Hence there is an integral 4k × 4k-matrix M with MM tr = λI, λ > 0,
that sends the last 4k coordinates of P to (∗, 0, . . . , 0). (Such matrix exists
by the inductive assumption.) By Lagrange’s four square theorem, there are
integers a, b, c, d such that λ = a2 + b2 + c2 + d2. Then the 4(k + 1) × 4(k + 1)-
matrix [[a, b, c, d]] ⊕ M sends P to a point Q whose last 4(k − 1) coordinates
are all 0. Let N be an integral 4k × 4k-matrix with NN tr = μI that sends the
first 4k coordinates of this point to (∗, 0, . . . , 0). There are integers a′, b′, c′, d′

such that μ = a′2+b′2+c′2+d′2. Then the transformation by N ⊕ [[a′, b′, c′, d′]]
is a similarity transformation that sends Q to a point of the form (∗, 0, . . . , 0).
The product of these transformations is a similarity transformation of R

4(k+1)

with integer entries only, and it satisfies (3.1). �

Remark 3.1. The assertion analogous to Theorem 3.2 does not hold for 2 <
n �≡ 0 (mod 4). For the details regarding this fact see Maehara [61].

Theorem 3.3. (Maehara [61]) If a subset X ⊂ Z
4k ⊂ R

4k (k ≥ 1) lies on a
hyperplane in R

4k, then X is similar to a subset of Z
4k−1 ⊂ R

4k−1.

Proof. By translating if necessary, we may assume that X is contained in a
hyperplane H that passes through the origin. There is a normal vector P of H
having only integral coordinates. Each point of X is mapped by the similarity
fP of Theorem 3.2 to a point whose first coordinate is 0. Hence we can regard
fP (X) as a subset of Z

4k−1. �

3.2. Regular simplices

A k-dimensional simplex (simply a k-simplex) in R
n is called a lattice k-simplex

if all its vertices are lattice points. Now, for what kind of n, does R
n contain

a regular lattice n-simplex? Not for all n. For example, no equilateral lattice
triangle exists in R

2. This problem was completely solved by Schoenberg [87]
by applying Minkowski’s theory of rational equivalence of quadratic forms.
(The exact statement of his solution will be given later in Remark 3.2). Let us
show here some results on this problem in an elementary way, without invoking
Minkowski’s theory on quadratic forms.

For every n, the n points

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) ∈ R
n

span a regular (n − 1)-simplex. Hence by Theorem 3.3 we have the following
statement.

Corollary 3.1. (Schoenberg [87]) If n ≡ 3 (mod 4), then a regular lattice n-
simplex exists in R

n.
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Theorem 3.4. (1) If n ≡ 0 (mod 4) and a regular lattice n-simplex exists in
R

n, then a regular lattice (n + 1)-simplex exists in R
n+1.

(2) If n + 1 is a perfect square, then a regular lattice n-simplex exists in
R

n.

Proof. (1) Suppose that n ≡ 0 (mod 4) and there is a regular lattice n-simplex
in R

n. Since the barycenter of this simplex is a rational point, by dilating and
translating, we have a regular lattice n-simplex Δn in R

n whose barycenter is
the origin O. Let us regard Δn ⊂ R

n × {0} ⊂ R
n+1. Let P = (0, . . . , 0, h) ∈

R
n+1, h > 0, be a point such that Δn∪{P} span a regular (n+1)-simplex. For

a vertex Q of Δn, |OQ|2+h2 = |PQ|2, which is equal to the square of the edge-
length of Δn. Hence h2 is an integer. Now, by Lagrange’s four square theorem,
there are x, y, z, w ∈ Z such that h2 = x2 + y2 + z2 + w2. Let [[x, y, z, w]]
denote the 4 × 4-matrix which appeared in the proof of Theorem 3.2. Since
n ≡ 0 (mod 4), we can define the n×n-matrix [[x, y, z, w]]⊕ [[x, y, z, w]]⊕· · ·⊕
[[x, y, z, w]]. Let f : R

n → R
n be the linear transformation induced by this

matrix. Then f is a similarity transformation that magnifies each subset with
ratio

√
x2 + y2 + z2 + w2 = h. Then the vertices of f(Δn) ⊂ R

n ×{0} ⊂ R
n+1

and the point (0, . . . , 0, h2) ∈ R
n+1 are all lattice points of R

n+1, and they span
a regular (n + 1)-simplex.

(2) Suppose that n + 1 = k2. Put

A0 = (1 + k, 1 + k, . . . , 1 + k) ∈ R
n and

Ai = (0, . . . , 0,
i
n, 0, . . . , 0) ∈ R

n, i = 1, . . . , n.

Then |A1A2|2 = 2n2 and

|A0A1|2 = (n − 1 − k)2 + (n − 1)(1 + k)2 = n2 + n(1 + k)2 − 2n(1 + k)

= n2 + n(1 + k)(1 + k − 2) = n2 + n(k2 − 1) = 2n2.

Hence A0, A1, . . . , An span a regular lattice n-simplex in R
n. �

Since (2k + 1)2 = 4k(k + 1) + 1, we have the following corollary.

Corollary 3.2. If n = 4k(k + 1) or n = 4k(k + 1) ± 1, then R
n contains a

regular lattice n-simplex.

Theorem 3.5. If there is a similarity transformation ϕ of R
n such that{

ϕ(O) = O, ϕ(1, 1, . . . , 1) = (∗, 0, . . . , 0)
ϕ(Zn) ⊂ Z

n
(3.2)

then there is a regular lattice (n − 1)-simplex in R
n−1.

Proof. Let Δ denote the regular (n−1)-simplex in R
n spanned by the n points

(0, . . . , 0), (−1, 1, 0, . . . , 0), (−1, 0, 1, 0, . . . , 0), . . . , (−1, 0, . . . , 0, 1).
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This simplex is contained in a hyperplane perpendicular to the vector
(1, 1, . . . , 1). Then, ϕ(Δ) ⊂ Z

n. Since ϕ(1, . . . , 1) = (∗, 0, . . . , 0), for every
p ∈ Δ, the first coordinate of ϕ(p) is 0, that is, ϕ(p) is a point of the form
(0, x2, . . . , xn). Let π : R

n → R
n−1 be an orthogonal projection such that

π(x1, x2, . . . , xn) = (x2, . . . , xn). Then π(ϕ(Δ)) is a regular lattice (n − 1)-
simplex in R

n−1. �

Problem 3.1. Find a simple condition for n to satisfy that there is a similarity
transformation of R

n that satisfies (3.2).

Proposition 3.2. If n = 18, then there is a similarity transformation ϕ of R
n

that satisfies (3.2).

Proof. Let f be the similarity transformation of R
n with matrix H8⊕H8⊕2H2,

where H8,H2 denote Hadamard matrices of order 8 and 2. (An Hadamard
matrix Hn is a square matrix whose entries are either +1 or 1 and whose
rows are mutually orthogonal.) Then f is a similarity and f(1, 1, . . . , 1) =
(8, 0, . . . , 0, 8, 0, . . . , 0, 4, 0). There is an orthogonal transformation g of R

n such
that g maps (8, 0, . . . , 0, 8, 0, . . . , 0, 4, 0) to (8, 8, 4, 0, . . . , 0). Since 82+82+42 =
122, the linear transformation h of R

n with matrix [[8, 8, 4, 0]] ⊕ 12I, where I
denotes the 14 × 14-identity matrix, is a similarity transformation. Then the
composite transformation ϕ = h ◦ g ◦ f satisfies (3.2). �

Proposition 3.3. If n = 34, then there is a similarity transformation ϕ of R
n

that satisfies (3.2).

Proof. Let f be the linear transformation of R
n with matrix H32 ⊕ 4H2. Then

f is a similarity and f(1, . . . , 1) = (32, 0 . . . , 0, 8, 0). There is an orthogonal
transformation g that sends (32, 0, . . . , 0, 8, 0) to (32, 8, 0, . . . , 0). Let h be the
linear transformation of R

n with matrix [[32, 8]]⊕ [[32, 8]⊕· · ·⊕ [[32, 8]]. Then
the composite transformation ϕ = h ◦ g ◦ f satisfies (3.2). �

From Corollaries 3.1, 3.2 and Propositions 3.2, 3.3 it follows that R
n (n ≤

50) contains a regular lattice n-simplex if n is equal to

1, 3, 7, 8, 9, 11, 15, 17, 19, 23, 24, 25, 27, 31, 33, 35, 39, 43, 47, 48, 49 (3.3)

Remark 3.2. Concerning the existence of a regular lattice n-simplex Δn in R
n,

Schoenberg [87] obtained the following complete results by applying
Minkowski’s theory of rational equivalence of quadratic forms.

(i) If n is even, a regular lattice n-simplex exists in R
n if and only if n+1 = k2

for some k ∈ Z.
(ii) If n ≡ 3 (mod 4), then a regular lattice n-simplex always exists in R

n.
(iii) If n ≡ 1 (mod 4), a regular lattice n-simplex exists in R

n if and only if
n + 1 is not divisible to an odd exponent by a prime number of the form
4k + 3.
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Consulting this result, we can also confirm that the list (3.3) is the perfect list
of numbers n ≤ 50 for which a regular lattice n-simplex exists in R

n.

It is clear that embedding regular simplices into integral lattices is closely
related to vertex embeddings of regular polytopes into regular polytopes or
into integer lattices (particularly, to the respective simplex-cube pairing). It
is well-known that the question, in which dimensions n a vertex embedding
of the regular n-simplex into the vertex set of an n-cube exists, is equiva-
lent to the question of the existence of Hadamard matrices of suitable orders.
Regarding many results around this still unsettled problem (and its extension
to other regular polytopes) we refer to [2,79], [67, § 4], and [68, § 2.4], related
computational aspects are discussed in [35]; a recent contribution on (special
types of) Hadamard matrices is [21].

4. Lattice angles and lattice polygons

4.1. Beeson’s theorem

Recall that for lattice points A,B,C in R
n, the angle ∠ABC is called a lat-

tice angle in R
n. (Here we refer also to [51] for a related concept of lattice

trigonometry.) Let Θn denote the set of (measured) lattice angles in R
n. Thus

Θn = {θ | θ = ∠ABC, A,B,C ∈ Z
n}.

It is clear that Θn ⊂ Θn+1.

Theorem 4.1. (Beeson [11])
(1) θ ∈ Θ2 ⇔ θ = π/2 or tan θ ∈ Q,
(2) θ ∈ Θ4 ⇔ θ = π/2 or tan2 θ = (b2 + b2 + d2)/a2 (a, b, c, d ∈ Z),
(3) θ ∈ Θ5 ⇔ cos2 θ ∈ Q,
(4) Θ2 � Θ3 = Θ4 � Θ5 = Θ6 = . . . .

Preceding the proof of Beeson’s theorem, we state a lemma.

Lemma 4.1. For every m ≥ 0, there are no integers a, b, c, d that satisfy

a2(8m + 7) = b2 + c2 + d2, a �= 0.

Proof. Suppose that some integers a, b, c, d satisfy this. We may assume that
their greatest common divisor equals 1. Thus, we may assume that if a is even,
then b is odd. Note that n2 ≡ 0, 1, 4 (mod 8) for any integer n. Hence, if a
is odd, then a2(8m + 7) ≡ 7 but b2 + c2 + d2 �≡ 7 (mod 8); if a is even, then
a2(8m + 7) ≡ 0 (mod 4) but b2 + c2 + d2 �≡ 0 (mod 4). Thus, in either case we
have a contradiction. �
Corollary 4.1. An integer of the form a2(8m + 7) cannot be represented as a
sum of three squares.
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Remark 4.1. Legendre’s three-squares theorem (see, e.g., [3]) states that a
positive integer can be represented as a sum of three squares if and only if it
is not of the form 4i(8m + 7) (i,m ≥ 0).

Proof of Beeson’s theorem. In (1) and (2), the implications “⇐” are obvious.
So we show the implications “⇒” in (1) and (2).

(1) Suppose Θ2 � θ = ∠POQ, where P,O,Q ∈ Z
2 and O is the origin.

Let fP be the similarity of R
2 in Theorem 3.2, and put fP (Q) = (a, b). Since

fP (P ) lies on the x-axis and fP (P ) �= (0, 0), we have either θ = π/2 or
tan θ = b/a ∈ Q.

(2) Suppose that π/2 �= θ = ∠POQ, P,O,Q ∈ Z
4 and O = (0, 0, 0, 0). Let

fP be the similarity of Theorem 3.2. Then fP (P ) = (∗, 0, 0, 0). Put fP (Q) =
(a, b, c, d) ∈ Z

4. Then tan2(θ) = (b2 + c2 + d2)/a2.
(3) If θ ∈ Θ5, then θ = ∠ABC for some A,B,C ∈ Z

5. By the cosine
law, we have cos θ = (|AB|2 + |BC|2 − |AC|2)/(2|AB||BC|). Hence cos2 θ ∈
Q. Conversely, if θ �= π/2 and cos2 θ ∈ Q, then tan2 θ ∈ Q, and hence
tan2 θ = q/p = pq/p2 for some integers p, q �= 0. By Lagrange’s four-squares
theorem, there are integers a, b, c, d such that pq = a2 + b2 + c2 + d2. Put
A = (p, 0, 0, 0, 0), B = (p, a, b, c, d). Then ∠AOB = θ ∈ Θ5.

(4) Since tan π
3 =

√
3 �∈ Q, we have π/3 �∈ Θ2. Since π/3 ∈ Θ3, we have

Θ2 � Θ3. Since arctan
√

7 �∈ Θ4 by Lemma 4.1 and (2) of Beeson’ theorem,
and since cos2(arctan

√
7) = 1/8, we have arctan

√
7 ∈ Θ5. Hence Θ4 � Θ5. By

Corollary 3.1, we have Θ3 = Θ4. Finally, if θ ∈ Θn for n ≥ 6, then by the cosine
law we have cos2 ∈ Q, and hence θ ∈ Θ5 by (3). Thus Θ5 = Θ6 = Θ7 = . . . . �

Proposition 4.1. If π/2 �= θ ∈ Θk for some k ≥ 2, then |π/2 − θ| ∈ Θk.

Proof. If k = 2 or 5, then the assertion is clear. Let us consider the case k = 4:
If tan2 θ = (b2+c2+d2)/a2 for some a, b, c, d ∈ Z, then tan2 |π/2−θ| = a2/(b2+
c2 + d2) =

(
(ab)2 + (ac)2 + (ad)2

)
/(b2 + c2 + d2)2. Hence |π/2 − θ| ∈ Θ4. �

If the interior angles of a polygon are all equal, then the polygon is called
equiangular. It is known (see Scott [92]) that in R

2, equiangular lattice m-gons
exist only for m = 4, 8.

Theorem 4.2. For every n ≥ 3, an equiangular lattice m-gon exists in R
n if

and only if m ∈ {3, 4, 6, 8, 12}.

Proof. By Theorem 2.2, there are regular lattice m-gons in R
3 for m = 3, 4, 6.

If a regular lattice m-gon Γ exists, then an equiangular lattice 2m-gon can be
obtained from Γ by the “triple-and-truncate” method, see Fig. 3, which shows
the case m = 6. Thus, for m = 3, 4, 6, 8, 12, equiangular lattice m-gons exist
in R

3.
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Figure 3. Triple-and-truncate

Now, let Γ = A1A2 . . . Am be an equiangular lattice m-gon in R
n, n ≥ 3.

Its interior angle is equal to θ := π − 2π/m. By the cosine law, we have

cos θ =
|A1A2|2 + |A2A3|2 − |A1A3|2

2|A1A2||A2A3| .

Since the squares of the edge-lengths of Γ are all integers, we have that cos2 θ
is rational, and since cos(4π/m) = cos 2θ = 2 cos2 θ − 1 and cos2 θ ∈ Q,
cos(4π/m) is rational. It follows now by Theorem 2.3 that the possible values
of m are 3, 4, 6, 8, 12. �

4.2. Coplanar lattice angles

For a polygon Γ in R
n, the cyclic sequence of its interior angles is called

the angle-sequence of Γ . For example, the angle-sequence of the (concave)
hexagon in Fig. 4 is π/2, 3π/4, π/4, 3π/2, π/3, 2π/3. The angle-sequence of an
equiangular m-gon is (m − 2)π/m, (m − 2)π/m, . . . , (m − 2)π/m.

By generalizing the relation between a regular m-gon and an equiangular
m-gon in some way, we have the notion of angle-equivalence. Two polygons
are called angle-equivalent if they have the same angle-sequence. Thus, an
equiangular m-gon is angle-equivalent to a regular m-gon.

Figure 4. A hexagon
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Now, it is natural to ask when a polygon is angle-equivalent to a lattice
polygon. Is the polygon shown in Fig. 4 angle-equivalent to a lattice polygon?
To answer these questions, let us first consider when a pair of lattice angles
can be realized as lattice angles lying on the same plane. Such pairs of lattice
angles are called coplanar. In other words, α, β ∈ Θn are coplanar if there
are coplanar lattice points A,B,C,X, Y, Z in R

n such that α = ∠ABC and
β = ∠XY Z.

A rational point in R
n is a point whose coordinates are all rational numbers.

If θ = ∠ABC for some three rational points A,B,C ∈ R
n, then clearly θ ∈ Θn.

A line in R
n determined by two rational points is called a rational line, and

a plane determined by three non-collinear rational points in R
n is called a

rational plane. Note that the set of rational points lying on a rational line is
everywhere dense in the line, and the set of rational points on a rational plane
is everywhere dense in the plane.

Lemma 4.2. (1) If two rational lines intersect at a point, then the point is a
rational point. (2) A line passing through a rational point and parallel to a
rational line is itself a rational line. (3) The foot of the perpendicular dropped
from a rational point to a rational line is a rational point.

Proof. Let us show only (3). Let l be a rational line determined by two rational
points A,B, and let P be a rational point not on l. Let F be the foot of the
perpendicular dropped from P to l. Then we may put F = (1−t)A+tB. Since
the lines PF and AB are perpendicular, we have

0 =
−−→
PF · −−→

BA = ((1 − t)A + tB − P ) · (A − B)

= (A − P ) · (A − B) − t(A − B) · (A − B).

Thus t is rational, and hence F = (1 − t)A + tB is a rational point. �

Lemma 4.3. Let α, β be lattice angles in R
n, and suppose that α �≡ 0 (mod π/2).

Let α = ∠BAX for A,B,X ∈ R
n, where A,B are rational points, and AX

is a rational line. Let Y be a point on the plane determined by A,B,X such
that β = ∠ABY , see Fig. 5. Then the line BY is a rational line if and only if
cos2(α + β) ∈ Q.

Proof. If the lines AX and BY are parallel, then BY is a rational line and
cos2(α + β) ∈ Q. So we consider the case that AX ∦ BY . Let C be the
intersection of the lines AX and BY . Then, in the triangle ABC, ∠A ≡
±α,∠B ≡ ±β (mod π). Thus, cos2(∠A + ∠B) is equal to one of cos2(α +
β), cos2(α − β). Now, if BY is a rational line, then the intersection point C is
a rational point, and ∠C = ∠ACB is a lattice angle. Thus, cos2(∠A + ∠B) =
cos2(π − ∠C) ∈ Q. Since cos2(α − β) ∈ Q ⇔ cos2(α + β) ∈ Q, we have
cos2(α + β) ∈ Q.
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Figure 5. Lemma 4.3

Now suppose that cos2(α + β) ∈ Q. We show that C is a rational point.
We may suppose that A = O, the origin. Let F be the foot of the perpendicu-
lar dropped from B to the line OX (= AX). Since α �≡ 0 (mod π/2), F �= O.
Hence we can put C = (1+y)F . Then |FC|2 = y2|OF |2. Since |OB|/ sin ∠C =
|OC|/ sin ∠B by the sine law, and since sin2 ∠B, sin2 ∠C, |OB|2 are all ratio-
nals, we can deduce that |OC|2 = (1 + y)2|OF |2 ∈ Q, and hence (1 + y)2 ∈ Q.
Since cot2 ∠C = |FC|2/|BF |2 = y2|OF |2/|BF |2, and cot2 ∠C, |OF |2, |BF |2
are all rationals, y2 is also rational. From (1+y)2 ∈ Q, y2 ∈ Q, we have y ∈ Q,
and hence C is a rational point. Therefore the line BC (= the line BY ) is a
rational line. �
Remark 4.2. For two angles α, β ∈ Θ2, we always have cos2(α + β) ∈ Q.
However, for two angles α, β ∈ Θ3\Θ2, we do not necessarily have cos2(α+β) ∈
Q. For example, let α = π/3 and β = arctan

√
2. Then α, β ∈ Θ3\Θ2, but

cos2(α + β) = 13/12 − 1/
√

3 is not a rational number.

Remark 4.3. In Lemma 4.3, the restriction α �≡ 0 (mod π/2) is necessary. For
example, if α = π/2, β = π/3, then cos2(α + β) ∈ Q. Let A = (0, 0, 0), B =
(0, 1, 0), and C = (2, 0, 0) ∈ R

3. The line BY on the plane of ABC is such
that ∠CBA = β intersects the line AC at the point (

√
3, 0, 0), and hence the

line BY is not a rational line.

Corollary 4.2. Let α, β be lattice angles and suppose that α �≡ 0 (mod π/2). If
α ∈ Θn, n < 5, and β ∈ Θ5\Θn, then cos2(α + β) is an irrational number.

Lemma 4.4. Suppose that cos2 α, cos2 β, cos2 γ, cos2(α + β), cos2(β + γ) are all
rationals. Then cos2(α + γ) ∈ Q if and only if cos2(α + β + γ) ∈ Q.

Proof. Since cos2(α+β) = cos2 α sin2 β+sin2 α cos2 β−2 cos α cos β sin α sinβ,
we have cos α cos β sin α sin β ∈ Q. Similarly, cosβ cos γ sinβ sin γ ∈ Q. Now,
cos2(α+β+γ) is equal to (cos α cos β cos γ−sin α sinβ cos γ−sin α cos β sin γ−
cos α sin β sin γ)2, and in the expansion of this, all the terms other than −2 cos α
cos γ sinα sin γ cos2 β, 2 cos α cos γ sin α sin γ sin2 β are rational numbers. Hence
cos2(α + β + γ) ∈ Q ⇔ cos α cos γ sin α sin γ ∈ Q. Similarly, we have cos2(α +
γ) ∈ Q ⇔ cos α cos γ sin α sin γ ∈ Q. �
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Lemma 4.5. In a lattice pentagon ABCDE, cos2(∠A + ∠C) ∈ Q.

Proof. Let α = ∠A, β = ∠B, . . . , ε = ∠E. If AE ‖ BC, then cos2(α + β) ∈ Q.
If the lines AE and BC intersect at a point P , then, since P is a rational
point, we have cos2(α + β) = cos2(∠APB) ∈ Q. Similarly, it follows that
cos2(β + γ), . . . , cos2(δ + ε), cos2(ε + α) are all rationals. Since cos2(α + β +
γ) = cos2(3π − δ − ε) = cos2(δ + ε) ∈ Q, it follows from Lemma 4.4 that
cos2(α + γ) ∈ Q. �

Remark 4.4. This lemma is true even if ABCDE is a closed polygonal curve
with self-intersections in which “interior angles” are defined suitably.

Theorem 4.3. Two lattice angles α, β are coplanar if and only if cos2(α + β)
is a rational number.

Proof. Suppose that cos2(α + β) is rational. If α ≡ β ≡ 0 (mod π/2), then
we can take lattice points A,B,C,X, Y, Z in R

2 such that α = ∠ABC and
β = ∠XY Z. So assume that α �≡ 0 (mod π/2). Let α = ∠XAB, X,A,B ∈ Z

n.
Then, by Lemma 4.3, there is a lattice point Y in the plane XAB such that
β = ∠Y BA. Hence α, β are coplanar.

Conversely, suppose that α = ∠XAY , and β is realized as the lattice angle
∠PQR in the plane XAY . Let ϕ be the translation of the plane XAY along
the vector

−−→
PY . Let B = ϕ(Q), Z = ϕ(R). Then B,Z are also lattice points,

and β = ∠Y BZ. By adding the line segment XZ, we have a (possibly self-
intersecting) lattice pentagon AY BZX. Now, by Lemma 4.5 (and Remark 4.4),
we have cos2(∠A + ∠B) ∈ Q. Hence cos2(α + β) ∈ Q. �

4.3. Angle-equivalence to lattice polygons

Theorem 4.4. (Maehara [60]) A polygon Γ is angle-equivalent to a lattice poly-
gon in R

n if and only if all interior angles of Γ are lattice angles in R
n, and

cos2(α + β) ∈ Q for every pair of interior angles α, β of Γ .

For example, since cos2(π/4+π/3) �∈ Q, the hexagon in Fig. 4 is not angle-
equivalent to a lattice hexagon by Theorem 4.3.

Proof. First, suppose that Γ is angle-equivalent to a lattice polygon in R
n.

Then all interior angles of Γ are mutually coplanar. Hence cos2(α + β) ∈ Q

for every pair α, β of interior angles of Γ by Theorem 4.3.
Now, suppose that all interior angles of Γ are lattice angles in R

n and for
every pair α, β of interior angles of Γ , cos2(α+β) is a rational number. If every
angle of Γ is either π/2 or 3π/2, then it is easy to see that there is a lattice
polygon in R

2 that is angle-equivalent to Γ . So, let us assume that there is
an interior angle α of Γ such that α �≡ 0 (mod π/2). If Γ has corners where
the angle is either π/2 or 3π/2, then we modify Γ by cutting off, or attaching,
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Figure 6. Elimination of right angles from Γ

small right triangles with one interior angle θ ≡ α (mod π/2) at such corners,
see Fig. 6.

Let Γ∗ = A1A2 . . . Am ⊂ R
n be the modified polygon, and put αi =

∠Ai, i = 1, 2, . . . ,m. Note that for every i and j, cos2(αi + αj) ∈ Q holds.
It will be enough to show that there is a rational polygon in R

n that is angle-
equivalent to the modified polygon Γ∗ = A1A2 . . . Am. Since α1 is a lattice
angle in R

n, we may, by moving Γ∗ in R
n if necessary, suppose that A1 is a

rational point, and the lines A1Am and A1A2 are rational lines in R
n. Put

B1 = A1. Since the set of rational points on a rational line is everywhere dense
in the line, we can take a rational point B2 on the line B1A2 (= A1A2) that
is very close to A2. Since cos2(α1 + α2) ∈ Q, there is a rational line B2X
on the plane of Γ∗ such that ∠B1B2X = ∠A2 by Lemma 4.3. Note that the
lines B2X and A2A3 are parallel and very close. Take a rational point B3 on
the line B2X that is near A3. Repeating similarly, we can obtain a polygonal
curve B1B2B3 . . . Bm−1. Let Bm−1Y be a rational line on the plane Γ∗ such
that ∠Bm−2Bm−1Y = αm−1. Let Bm be the intersection point of the lines
B1Am and Bm−1Y . Then Bm is a rational point and ∠B1BmBm−1 = αm.
By choosing B2 sufficiently near to A2, it is possible to choose subsequent
Bi, i = 3, 4, . . . , which are also close to Ai, i = 3, 4, . . . , so that the resulting
closed polygonal curve approximates the polygon Γ∗, and hence itself is also
a polygon. Thus there is a rational polygon in R

n that is angle-equivalent to
Γ∗. �

From Corollary 4.2 and Theorem 4.3, we have the following

Corollary 4.3. Let ABC be a triangle whose interior angles are all lattice
angles, and let ∠A = α �= π/2. Then the following statements hold.

(1) ABC is similar to a lattice triangle in R
5.

(2) If α ∈ Θ4, then ABC is similar to a lattice triangle in R
4.

(3) If α ∈ Θ2, then ABC is similar to a lattice triangle in R
2.
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5. Lattice simplices

The beauty and depth of the geometry of lattice simplices might be demon-
strated by the following more recent contributions: Kantor [50] showed that
there are lattice n-simplices, having only integral vertices and no further inte-
gral points, whose width goes with n to infinity. Elegantly using barycentric
coordinates and tools from the geometry of numbers, Averkov et al. (see [4,5])
established sharp upper bounds on the volume of lattice n-simplices with ex-
actly one lattice interior point and on the volumes of their faces, thus con-
firming a known conjecture of Hensley from 1983; for the best known lower
bound see [101]. And Nill [74] studied reflexive simplices, i.e., lattice simplices
whose duals are also lattice simplices; these correspond to special toric Fano
varieties, and a generalization of the Blaschke-Santaló inequality for reflexive
simplices is also derived in [74].

5.1. Congruent embeddings

If a k-dimensional simplex σk is congruent to a lattice simplex in Z
n for some

n, then we say that σk is congruently embeddable in Z
n. Note that if a k-

dimensional simplex σk is congruently embeddable in Z
n for some n, then σk

clearly satisfies the following condition:
−−→
AB · −→

AC ∈ Z for every three vertices A,B,C. (5.1)

In (5.1), A,B,C may not be different. If B = C, then
−−→
AB · −→

AC ∈ Z implies
|AB|2 ∈ Z.

For k linearly independent vectors �a1, . . . ,�ak in R
n, the set of integral

combinations

λ1�a1 + · · · + λk�ak, λ1, . . . , λk ∈ Z

is called a k-dimensional lattice in R
n generated by �ai, i = 1, . . . , k. Moreover,

if the inner product �ai ·�aj is an integer for every 1 ≤ i, j ≤ k, then the lattice
is called a k-dimensional integral lattice. It was proved by Mordell [72] and Ko
[54] (see also Conway and Sloane [18]) that if k ≤ 5, then every k-dimensional
integral lattice is congruent to a subset of Z

k+3, but there is a 6-dimensional
integral lattice that is never congruent to a subset of Z

N for any N .
If σk is a k-dimensional simplex in R

n satisfying (5.1), and one vertex of σk

is the origin O, then the k vectors emanating from O to the other k vertices
generate a k-dimensional integral lattice in R

n. Hence we have the following
theorem.

Theorem 5.1. (Mordell [72] + Ko [54], Conway and Sloane [18]) If k ≤ 5, then
a k-dimensional simplex that satisfies (5.1) is always congruently embeddable
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Figure 7. A Dynkin digram

in Z
k+3. On the other hand, there exists a 6-dimensional simplex that satisfies

(5.1), but is not congruently embeddable in Z
n for any n.

A 6-dimensional simplex that satisfies (5.1) but is not congruently embed-
dable in any Z

n is generated by the six vectors v1, v2, . . . , v6 represented by
the graph given in Fig. 7 (which is called a Dynkin diagram). In this graph,
each vertex represents a vector of length

√
2; the inner product of two vectors

equals −1 if the corresponding vertices are adjacent, and it equals 0 otherwise.
Thus the Gram matrix A = (vi · vj) of v1, v2, . . . , v6 is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The fact that this simplex is not congruently embeddable in Z
n for any n is

also easily checked by using the computer algebra system GAP in which the
algorithm for solving the matrix equation XXtr = A over the integers (due to
Plesken [81]) is implemented.

A simplex in R
n is called a rational simplex if all its vertices are rational

points. If a simplex is congruent to a rational simplex in R
n, then we say the

simplex is congruently embeddable in Q
n. If a simplex is congruently embed-

dable in some Q
n, then it clearly satisfies the following condition:

−−→
AB · −→

AC ∈ Q for every three vertices A,B,C. (5.2)

Theorem 5.2. (Kumada [57]) If a k-dimensional simplex σk satisfies the con-
dition (5.2), then σk is congruently embeddable in Q

k+3.

It is generally impossible to reduce the dimension k+3 in this theorem. For
example, the right triangles with edge-lengths 1, 7,

√
50 satisfy the condition

(5.2) as it is easily verified, but are not congruently embeddable in Q
2+2,

because arctan 7 �∈ Θ4, by Beeson’s theorem.
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Theorem 5.2 was proved by Kumada [57] using p-adic number theory. We
show the theorem here invoking Mayer’s theorem without proof.

Theorem 5.3. (Mayer [69]) If a quadratic form of rank at least 5 with rational
coefficients has a nontrivial zero over R, then it has a nontrivial zero over Q.

For Mayer’s theorem, see also J. Milnor and D. Husemoller [70], Ch. II §3,
Cassel [17], and Serre [94]. As a direct consequence of this theorem, we have
the following

Corollary 5.1. For positive rationals a, b, c, d, e, the equation ax2 = by2 +cz2 +
du2 + dv2 has a solution (x, y, z, u, v) ∈ Q

5 with x �= 0. �

Lemma 5.1. Let σ = A1 . . . Ak be a (k − 1)-dimensional rational simplex, and
let F be a point on the affine hull of σ. If |AiF |2 ∈ Q (i = 1 . . . , k), then F is
a rational point.

Proof. Let
−−→
A1F = x2

−−−→
A1A2 + · · · + xk

−−−→
A1Ak. Then we have

x2
−−−→
A1A2 · −−−→

A1Ai + · · · + xk
−−−→
A1Ak · −−−→

A1Ai =
−−→
A1F · −−−→

A1Ai (i = 2, . . . , k). (5.3)

Since σ satisfies (5.2), and
−−→
A1F · −−−→

A1Ai = (|A1F |2 + |A1Ai|2 − |FAi|2)/2 ∈ Q,
(5.3) can be regarded as a simultaneous linear equation on x2, . . . , xk whose
coefficient-matrix is a non-singular matrix with rational entries. Therefore
x2, . . . , xk are all rationals, and hence F is a rational point. �

We denote the volume of a simplex σ by |σ|.
Lemma 5.2. If a simplex σ satisfies the condition (5.2), then |σ|2 ∈ Q.

Proof. Let σ = A0A1 . . . Ak, and for 1 ≤ i, j ≤ k let aij =
−−−→
A0Ai · −−−→

A0Aj . Then
|σ|2 = det(aij)/(k!)2. If σ satisfies (5.2), then aij ∈ Q, and hence |σ|2 ∈ Q. �

Proof of Theorem 5.2. The proof is by induction on the dimension k of the
simplex. First, consider the case k = 1. Let σ1 = A0A1. By using Lagrange’s
four-square theorem, represent |A0A1|2 ∈ Q as |A0A1|2 = p2 + q2 + r2 +
s2 (p, q, r, s ∈ Q), and put A′

0 = (0, 0, 0, 0), A′
1 = (p, q, r, s). Clearly, A′

0, A
′
1 ∈

Q
1+3. Then A′

0A
′
1 is congruent to A0A1.

Suppose that the theorem is true for k = n−1, and let σn = A0A1 . . . An be
an n-dimensional simplex that satisfies the condition (5.2). By the induction
hypothesis, the facet τ := A1 . . . An is congruently embeddable in Q

n+2. Hence
we may suppose that σn ⊂ R

n+3 and {A1, . . . , An} ⊂ Q
n+2 × {0} ⊂ Q

n+3.
Let F be the foot of the perpendicular dropped from A0 to the affine hull
of the facet τ . Then |σn| = |τ | × |FA0|/k. Hence |A0F |2 ∈ Q, and therefore
|FAi|2 = |A0Ai|2 − |FA0|2 ∈ Q for i = 1, 2, . . . , n. Thus, by Lemma 5.1,
F is a rational point. By translating if necessary, we may suppose F = O,
the origin. Then {A1, . . . , An} spans an (n − 1)-dimensional subspace of the
vector space Q

n+3 over the rational field Q. Hence there are four mutually
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orthogonal vectors �a,�b,�c, �d ∈ Q
n+3, all orthogonal to the subspace spanned by

{A1, . . . , An}. Let a = |�a|2, b = |�b|2, c = |�c|2, d = |�d|2, and e = |A0F |2. Since
a, b, c, d, e are all positive rationals, the equation ex2 = ay2 + bz2 + cu2 + dv2

has a solution (x0, y0, z0, u0, v0) ∈ Q
5 with x0 �= 0 by Corollary 5.1. Put A′

0 =
F +(y0/x0)�a+(z0/x0)�b+(u0/x0)�c+(v0/x0)�d. Then A′

0 ∈ Q
n+3, |FA′

0| = e, and−−→
FA′

0 is orthogonal to the subspace spanned by {A1, . . . , An}. Hence the simplex
A′

0A1 . . . An is congruent to the simplex σn This completes the proof. �

5.2. Similar embeddings

As stated in the previous subsection, the 6-dimensional simplex generated
by the vectors v1, . . . , v6 described by the Dynkin diagram of Fig. 7 is not
congruently embeddable in Z

n for any n. However, since this simplex satisfies
the condition (5.2), it can be congruently embeddable in Q

6+3 by Theorem 5.2,
and hence, it is similar to a 6-dimensional simplex in Z

9.
A simplex σ is said to be similarly embeddable in Z

n if there is a lattice
simplex in R

n that is similar to σ. By Theorem 5.2, a k-dimensional simplex
σk satisfying (5.2) is always similarly embeddable in Z

k+3. Note that (5.2)
implies that

cos2 ∠ABC ∈ Q for every three vertices A,B,C, (5.4)

which is simply called the angle condition. For similar embeddings, we can
relax the condition (5.2) to the angle condition (5.4).

Theorem 5.4. A k-dimensional simplex σ is similarly embeddable in Z
k+3 if

and only if σ satisfies the angle condition (5.4).

Proof. The “only if” part of the theorem is clear. So we show the “if” part by
induction on the dimension m of the simplex σ. If m ≤ 1, then the assertion
is clearly true. Provided that the assertion is true for m < k, let us consider
the case m = k. Let τ be a facet of σ. Since τ is a (k − 1)-dimensional
simplex that satisfies the angle condition (5.4), τ is similarly embeddable in
Z

k+2 by the induction hypothesis. Hence there is a k-dimensional simplex σ̂
in R

k+2 that is similar to σ and in which the facet τ̂ corresponding to the
facet τ of σ is a lattice simplex. Note that σ̂ also satisfies the angle condition
(5.4). Let A be the vertex of σ̂ opposite to τ̂ , and let X,Y be any pair of
vertices of τ̂ . Then |XY |2 ∈ Q. Applying the sine law to the triangle AXY , we
have |XY |/ sin ∠A = |AX|/ sin ∠Y . Since σ̂ satisfies the angle condition (5.4),
cos2 ∠Y ∈ Q, and hence sin2 ∠Y ∈ Q. Therefore |AX|2 ∈ Q. This implies that
σ̂ also satisfies the condition (5.2). Hence σ̂ is similar to a rational simplex in
R

k+3, and hence similar to a lattice simplex in R
k+3. �

Let δ(k) denote the minimum dimension n such that every k-dimensional
simplex that satisfies the angle condition (5.4) is similarly embeddable in Z

n.
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By Theorem 5.3 we have δ(k) ≤ k +3. If k ≡ 1 (mod 4), then by Theorem 3.3
we have δ(k) ≤ k + 2. In the following, let us find δ(3).

A simplex of dimension ≥ 2 is called an orthogonal simplex if all edges
emanating from one common vertex are mutually orthogonal. This vertex is
called the pivot of the orthogonal simplex. For a given simplex σ = A0A1 . . . Ak

we have, applying the Schmidt orthogonalization method (without normaliz-
ing) to the vectors �vi :=

−−−→
A0Ai (i = 1, 2, . . . , k), mutually orthogonal vectors

�u1, �u2, . . . , �uk, where

�u1 = �v1 ,

�u2 = �v2 − �v2 · �u1

�u1 · �u1
�u1 ,

�u3 = �v3 − �v3 · �u1

�u1 · �u1
�u1 − �v3 · �u2

�u2 · �u2
�u2 ,

. . . .

Then, by putting Bi = A0 + �ui (i = 1, 2, . . . , n), we can get an orthogonal
simplex A0B1B2 . . . Bk, which is called an orthogonal simplex with pivot A0

obtained from σ by Schmidt’s method. Note that this orthogonal simplex de-
pends on the choice of a vertex that becomes pivot, and on the order of other
vertices of σ. Notice that {�v1, . . . , �vk} and {�u1, . . . , �uk} generate the same vec-
tor space over Q. If σ is a rational simplex with A0 at the origin, then the
orthogonal simplex with pivot A0 obtained from σ is contained in the vec-
tor space generated by �u1, . . . , �uk, and hence this orthogonal simplex is also a
rational simplex. Thus, we have the following

Lemma 5.3. A simplex σ of dimension ≥ 2 is similarly embeddable in Z
n if and

only if an orthogonal simplex obtained from σ by Schmidt’s method is similarly
embeddable in Z

n. �
Lemma 5.4. In a rational orthogonal tetrahedron, one of the three faces (right
triangles) around the pivot is similarly embeddable in Z

4.

Proof. By (2) of Corollary 4.3, it is enough to show that one of the three right
triangles around the pivot has an acute angle that belongs to Θ4. Let ξ, η, ζ
denote the lengths of the edges emanating from the pivot. Then ξ2, η2, ζ2 ∈ Q.
If (ξη)2 can be represented by the sum of three squares of integers, then since
(ξ/η)2 = (ξη)2/η4, an acute angle of the right triangle with arms of lengths ξ, η
belongs to Θ4 by (2) from Beeson’s theorem. Suppose that neither (ξη)2 nor
(ηζ)2 can be represented by the sum of three squares. Then both (ξη)2, (ηζ)2

are numbers of the form 4i(8m + 7) by Legendre’s three-squares theorem (see
Remark 4.1). Since 72 ≡ 1 (mod 8), the number (ξη2ζ)2 is not of the form
4i(8m + 7); it can be represented as the sum of three squares. Therefore,
(ξ/ζ)2 can be represented as (b2 + c2 + d2)/a2 (a, b, c, d ∈ Z), and an acute
angle of the right triangle with arms of lengths ξ, ζ belongs to Θ4. �
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Remark 5.1. Not every lattice tetrahedron has a planar angle that belongs to
Θ4. For example, a tetrahedron, that has a pair of opposite edges of length 2
and whose other four edges are of length

√
8, has no planar angle in Θ4.

Theorem 5.5. Every rational orthogonal tetrahedron is similarly embeddable in
Z
5.

Applying Lemma 5.3, we have the following

Corollary 5.2. Every tetrahedron that satisfies the angle condition (5.4), is
similarly embeddable in Z

5. Thus, δ(2) = δ(3) = 5.

Proof of Theorem 5.5. Let OABC be a rational orthogonal tetrahedron with
pivot O. By Lemma 5.4, one of the triangles OAB,OBC,OCA is similarly
embeddable in Z

4. So we may suppose that O,A,B ∈ Z
4 and O = (0, 0, 0, 0).

Let η = |OC|. By multiplying A,B,C by an integer if necessary, we may
suppose that η2 is an integer. By the four-squares theorem, there are x, y, z, w ∈
Z such that η2 = x2 + y2 + z2 + w2. Applying the similarity transformation
induced by the matrix [[x, y, z, w]] defined in the proof of Theorem 3.2, the
triangle OAB is transformed to a triangle OA′B′ whose size is η times the
size of OAB. Regarding O,A′, B′ ∈ Z

4 as a subset of Z
4 × {0} ⊂ Z

5, put
C ′ = (0, 0, 0, 0, η2). Then the tetrahedron OA′B′C ′ is similar to OABC and
is embedded in Z

5. �

Problem 5.1. Characterize those tetrahedra that are similarly embeddable in
Z
4 (and hence in Z

3).

Problem 5.2. Find δ(4).

6. Lattice points in a planar region

6.1. Steinhaus’ lattice point problem

To avoid confusion, the reader is warned that there is a second “Steinhaus lat-
tice problem” (see, e.g., [48]) different from the one discussed in the following.

In 1957, Steinhaus [96] posed the following problem in elementary mathe-
matics. Is there a circle in R

2 that encloses exactly m lattice points, for every
m > 0?

He also proved the following theorem (see Honsberger [47]).

Theorem 6.1. (Steinhaus) If a disk in R
2 has area m, then it can be translated

in R
2 so that it contains exactly m lattice points in its interior.

The author of [103] showed that Steinhaus’ theorem below holds for Hilbert
spaces; based on this, [49] extended the statement to certain classes of Banach
spaces, e.g., to strictly convex norms. In [58] it is shown that the circular disk
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from Steinhaus’ theorem can be replaced by any compact, convex figure in the
plane. The polygonal version of this was extended in [65] to higher dimensions:
any n-dimensional polyhedron (by which the author means a compact set
bounded by an (n − 1)-dimensional closed manifold that is contained in the
union of finitely many hyperplanes) with volume m + α, for some |α| < 1,
has a congruent copy that contains exactly m points from the n-dimensional
lattice.

Let us, in a more detailed way, generalize Theorem 6.1 to planar regions
other than the disk. First, we recall the following theorem (in which area is
meant in the Lebesgue sense).

Theorem 6.2. (Blichfeldt) If a bounded region X ⊂ R
2 has area m+α (|α| < 1),

then it is possible to translate X to a position where X covers at least m lattice
points, and it is also possible to translate X so that it covers at most m lattice
points.

We omit the proof and refer, for intuitive proofs of this result, to Honsberger
[47] and Steinhaus [97].

For a set X ⊂ R
2 and p ∈ R

2, let p + X denote the translate of X along �p.
Further on, let X∗ denote the set symmetric to X with respect to O = (0, 0),
that is, X∗ = {−x : x ∈ X}. Let us note here that

p ∈ w + X ⇒ p − w ∈ X ⇒ w − p ∈ X∗ ⇒ w ∈ p + X∗. (6.1)

A planar curve C ∈ R
2 is called lattice-generic if C ∩ (p + C) is a finite set for

every lattice point p �= (0, 0). Note that if C is a lattice-generic curve, then
(p + C) ∩ (q + C) is also a finite set for p, q ∈ Z

2, p �= q. Indeed, since p �= q,
C ∩(q−p+C) is a finite set, and hence its translate (p+C)∩(q+C) is a finite
set. If C is lattice-generic, then so is C∗, because (p + C)∗ = (−p) + C∗. Since
every circle is lattice-generic, Theorem 6.1 also follows from the next theorem.

Theorem 6.3. (Maehara [64]) If X ⊂ R
2 is a compact region of area m +

α (|α| < 1) bounded by a lattice-generic curve, then X can be translated in R
2

so that it covers exactly m lattice points.

Proof. Let X◦ denote the interior of X, and C be the boundary curve of X.
Then area(X◦) = area(X) = m + α, and C is lattice-generic. By Blichfeldt’s
theorem, there are u0, v0 ∈ R

2 such that

|(u0 + X) ∩ Z
2| ≤ m, |(v0 + X◦) ∩ Z

2| ≥ m. (6.2)

Let D be a disk that contains u0, v0 in its interior. The set S, defined by

S = {p ∈ Z
2 : (p + C∗) ∩ D �= ∅} ,

is a finite set. Since C∗ is also lattice-generic, the set F defined by

F =
⋃

{D ∩ (p + C∗) ∩ (q + C∗) : p, q ∈ S, p �= q} ,
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is also a finite set. Hence D\F is path-connected. Since X is compact, the
minimum distance δ from a lattice point in the exterior of X to X is positive.
Hence we have, for any point u in the (δ/2)-neighborhood of u0, |(u+X)∩Z

2| ≤
m. Thus, replacing u0 by a point close to it if necessary, we may suppose that
u0 ∈ D\F . Similarly, we may assume that v0 ∈ D\F . Now, since D\F is path-
connected, there is a simple curve J in D\F that connects u0 and v0. Note
that if p, q ∈ w + C for some p, q ∈ Z

2, p �= q, then w ∈ (p + C∗) ∩ (q + C∗)
by (6.1), and hence w ∈ F . Therefore, if w ∈ J , then, since J ∩ F = ∅, we
have |(w + C) ∩ Z

2| ≤ 1. Thus, when w moves from u0 to v0 along the curve
J , |(w +X)∩Z

2| changes one by one. Hence (6.2) implies that there is a point
w ∈ J such that (w + X) ∩ Z

2| = m. �

For a polynomial f(x, y) ∈ R[x, y], the set

V (f) = {(x, y) ∈ R
2 : f(x, y) = 0} ⊂ R

2

is called a plane (affine) algebraic curve. The equation f(x, y) is called its
defining polynomial. For example, quadratic curves are algebraic curves. If
C = V (f) is an algebraic curve, then so are v + C and C∗. If the defining
polynomial f(x, y) is irreducible in R[x, y], then the algebraic curve V (f) is
called an irreducible algebraic curve. If C is an irreducible algebraic curve, then
so are v + C and C∗.

By Bézout’s theorem (see, e.g., Silverman and Tate [95], Appendix A.4.),
we have that if two irreducible algebraic curves have infinitely many points in
common, then the two curves coincide completely.

Theorem 6.4. (Maehara [64]) If an irreducible algebraic curve C is not a line,
then C is lattice generic.

Proof. If C is irreducible, then p + C is also irreducible for p ∈ Z
2 − {O}.

Suppose that C ∩ (p + C) is an infinite set. Then C and p + C coincide, from
which it follows that v ∈ C ⇒ v + kp ∈ C for k = 1, 2, 3, . . . . Thus, C and the
line represented by (x, y) = v + tp, −∞ < t < ∞, have infinitely many points
in common, and hence C is a line. �

Since a line cannot bound a compact region, we have the following

Corollary 6.1. If a compact region bounded by an irreducible algebraic curve
has area m, then it is possible to translate X to a position where it covers
exactly m lattice points.

6.2. Bézier curves and beziergons

A Bézier curve is a parametric curve usually used in computer graphics. A
cubic Bézier curve is determined by four control points p1, p2, p3, p4 ∈ R

2, and
it is presented by
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Figure 8. A beziergon

(x, y) = (1 − t)3p1 + 3(1 − t)2tp2 + 3(1 − t)t2p3 + t3p4 (0 ≤ t ≤ 1).

This curve connects p1 and p4, and it is tangent to the line p1p2 at p1, and
tangent to the line p3p4 at p4. We note here that if we put

p2 = 2
3p1 + 1

3p4, p3 = 1
3p1 + 2

3p4,

then we have (x, y) = (1 − t)p1 + tp4, which is the line segment connecting
p1 and p3. A translate of a Bézier curve is also a Bézier curve. A beziergon
is a simple closed path composed of finitely many Bézier curves. Note that a
polygon is a special case of the notion of beziergon. Figure 8 shows a beziergon
composed by 28 Bézier curves.

Lemma 6.1. A curve parametrized by using polynomials ϕ(t), ψ(t) of t, such
as

(x, y) = (ϕ(t), ψ(t)) (a ≤ t ≤ b) ,

is a part of an irreducible algebraic curve. Hence, a Bézier curve is also a part
of an irreducible algebraic curve.

Though this result is classical, let us present an outline of the proof.

Proof. By eliminating t from ϕ(t)−x = 0, ψ(t)−y = 0, we can get a polynomial
equation f(x, y) = 0. (There are some algorithms to eliminate t by symbolic
calculations, see, e.g., Buchberger [15] and Trott [98], pp. 26–29.) Hence C ⊂
V (f). If f = fe1

1 fe2
2 . . . fek

k is a decomposition of f into irreducible polynomials,
then V (f) = V (f1) ∪ · · · ∪ V (fk). Since C ⊂ V (f), there is an i such that
C and V (fi) have infinitely many points in common. In this case we have
fi(ϕ(t), ψ(t)) = 0 for infinitely many t. Therefore, fi(ϕ(t), ψ(t)) = 0 holds
identically, which implies C ⊂ V (fi). �

From this, we have the following

Corollary 6.2. If two Bézier curves have infinitely many points in common,
then they are parts of the same irreducible algebraic curve.
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Lemma 6.2. Let B1, B2 be Bézier curves. If p �= O, then the number of those
ρ ∈ SO(2) that satisfy |ρ(B1) ∩ (p + ρ(B2))| = ∞ is at most two.

Proof. Let V1, V2 be irreducible algebraic curves containing B1 and B2, respec-
tively. If |ρ(B1) ∩ (p + ρ(B2))| = ∞, then by Corollary 6.2 we have ρ(V1) =
p+ρ(V2), and hence V1 = ρ−1(p)+V2. Suppose that two different ρ1, ρ2 satisfy
the equation V1 = ρ−1(p) + V2. If we put v = ρ−1

2 (p) − ρ−1
1 (p), then v �= (0, 0)

and V2 = v + V2. This implies that u ∈ V2 ⇒ u + kv ∈ V2 (k = 1, 2, . . . ).
Therefore, V2 shares infinitely many points with a line, and hence V2 itself is
a line. Further on, V1 is also a line. Now, V1 = ρ−1(p) + V2 implies that for a
fixed x ∈ V2 we have ρ−1(p) ∈ (−x)+ ∈ V1. Since {ρ−1(p) : ρ ∈ SO(2)} is a
circle, it intersects the line (−x) + V1 in at most two points. Hence there are
at most two ρ that satisfy ρ(V1) = p + ρ(V2). �

Lemma 6.3. A beziergon can be rotated so that it becomes lattice generic.

Proof. Let Ω be a beziergon consisting of m Bezier curves B1, . . . , Bm. and let
D be a disk with center O = (0, 0) that contains Ω. Let K = {p ∈ Z

2 : D∩(p+
D) �= ∅}. Then, for ρ ∈ SO(2) and q ∈ Z

2\K, we have ρ(Ω) ∩ (q + ρ(Ω)) = ∅.
If |ρ(Ω)∩(p+ρ(Ω)| = ∞ for a p ∈ K, then there must be two Bi, Bj such that
|ρ(Bi) ∩ (p + ρ(Bj))| = ∞. Hence, for each p ∈ K, the number of ρ ∈ SO(2)
such that |ρ(Ω) ∩ (p + ρ(Ω)| = ∞ is at most two by Lemma 6.3. Since K is a
finite set, the set

{ρ ∈ SO(2) : |ρ(Ω) ∩ (p + ρ(Ω)| = ∞ for some p ∈ K}

is also a finite set. Since SO(2) has infinitely many elements, there must be an
element ρ0 ∈ SO(2) such that ρ0(Ω) is lattice generic. �

From Theorem 6.3, we have the following corollary.

Corollary 6.3. If a region bounded by a beziergon has area m, then it can be
rotated and translated so that it covers exactly m lattice points.

As a special case, it follows that every polygon in the plane having area m
can be rotated and translated so that it contains exactly m lattice points.

Similarly to the proof of Lemma 6.3, it can be proved that for a convex
curve C there is a ρ ∈ SO(2) such that ρ(C) is lattice generic, see Maehara
[64].

Problem 6.1. Is there a compact planar region of area m for which it is impos-
sible to move (rotate and translate) it so that the resulting set covers exactly
m lattice points?
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7. Lattice points on quadratic curves

7.1. Schinzel’s theorem

Lemma 7.1. For an odd prime p that can be represented as the sum of two
squares, the number of lattice points on the circle x2 + y2 = pk is 4(k + 1).

Proof. Let us identify (x, y) ∈ R
2 with the complex number z = x + yi ∈ C.

Then the lattice points on the circle x2 + y2 = pk correspond to the Gaussian
integers w ∈ Z[i] satisfying ww̄ = pk. Since p is written as p = a2+b2 (a, b ∈ Z),
we have the factorization p = (a+bi)(a−bi), and ww̄ = pk = (a+bi)k(a−bi)k.
Since |a + bi|2 = |a − bi|2 = p, a prime, both a + bi, a − bi are irreducible in
Z[i]. Moreover, since Z[i] is a unique factorization domain, w is one of

u(a + bi)s(a − bi)k−s (s = 0, 1, 2, . . . , k, u = ±1,±i).

Hence the number of w’s such that ww̄ = pk is equal to 4(k + 1). �

Remark 7.1. An odd prime p can be represented as the sum of two squares
if and only if p ≡ 1 (mod 4) (Fermat’s two-squares theorem). Zagier [100]
presents a very short proof of this fact.

Theorem 7.1. For a prime p that satisfies p ≡ 1(mod 4) and pk ≡ 1 (mod 8),
the number of lattice points lying on the circle

(4x − 1)2 + (4y)2 = pk

is equal to k + 1.

Since 17 ≡ 1 (mod 8), it follows that 17k ≡ 1 (mod 8) for every k ≥ 0.
Hence we may set p = 17 in this theorem.

Proof. By Lemma 7.1, the number of those (X,Y ) ∈ Z
2 that satisfy X2+Y 2 =

pk is equal to 4(k + 1). Since (an integer)2 ≡ 0, 1, 4 (mod 8), X2 + Y 2 ≡
1 (mod 8) implies that either X2 ≡ 1, Y 2 ≡ 0 (mod 8) or X2 ≡ 0, Y 2 ≡
1 (mod 8). Therefore, X2 + Y 2 = pk implies that X ≡ ±1 , Y ≡ 0 (mod 4), or
X ≡ 0; Y ≡ ±1 (mod 4). Thus the number of lattice points (x, y) satisfying
(4x − 1)2 + (4y)2 = pk is equal to the number of (X,Y ) ∈ Z

2 satisfying

X2 + Y 2 = pk and X ≡ −1 (mod 4). (7.1)

If A2 + B2 = pk (B ≡(0 mod 4)), then (±A,B), (B,±A) are also solutions of
X2 + Y 2 = pk. Among these four solutions, just one satisfies (7.1). Therefore,
the number of lattice points on the circle (4x − 1)2 + (4y)2 = pk is equal to
4(k + 1)/4 = k + 1. �

As a corollary, we have the following statement, which was obtained by
Schinzel [86], see also Maehara-Matsumoto [66].
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Corollary 7.1. (Schinzel’s theorem) For every positive integer m, there is a
circle on which exactly m lattice points lie. �
Remark 7.2. It was also shown by Maehara [62] that for every m > k ≥ 2
there is a sphere in R

k that passes through exactly m lattice points in Z
k,

and that these m points span a k-dimensional polytope. Further results in this
direction were obtained in [6].

7.2. Z
2-spectra of quadratic curves

For a curve C ⊂ R
2, define a subset S(C) of N ∪ {∞} by

S(C) = {|Z2 ∩ ϕ(C)| : ϕ is a similarity of R
2 such that Z

2 ∩ ϕ(C) �= ∅},
where N denotes the set of positive integers. Let us call the set S(C) the Z

2-
spectrum of C. (This set S(C) is called the size-set of C in [58].) For example,
S(line segment) = N, and S(line) = {1,∞}. Since any circle passes through at
most finitely many lattice points, we have S(circle) = N by Schinzel’s theorem.

In this subsection, we show Z
2-spectra for some quadratic curves. Almost

all results presented in the following were obtained by Kuwata-Maehara [58].

Lemma 7.2. An irreducible quadratic curve that passes through five lattice
points can be represented by a quadratic equation with integral coefficients.

Proof. Let Ax2+Bxy+Cy2+Dx+Ey+F = 0 be the equation of an irreducible
quadratic curve that passes through five lattice points (xi, yi), i = 1, . . . , 5. We
may suppose that F is an integer. By regarding A,B,C,D,E as unknown
variables, we have simultaneous linear equations

x2
i A + xiyiB + y2

i C + xiD + yiE + F = 0, i = 1, 2, . . . , 5 , (7.2)

for the variables A,B,C,D,E. Since (7.2) has a nontrivial solution in R
5, it

has a solution in Q
5. Multiplying the rational solutions and F by a suitable

nonzero integer, we have integers A′, B′, C ′,D′, E′, F ′. Since the quadratic
curves A′x2 +B′xy +C ′y2 +D′x+E′y +F ′ = 0 and Ax2 +Bxy +Cy2 +Dx+
Ey + F = 0 have five points in common, and since the latter is an irreducible
quadratic curve, these two curves coincide. �

Recall that all parabolas in the plane are similar to each other.

Theorem 7.2. (Kuwata and Maehara [58]) S(parabola) = {1, 2, 3, 4,∞}.
Proof. First we show that if a parabola passes through five lattice points, then
it passes through infinitely many lattice points.

Suppose that a parabola Γ passes through five lattice points P1, . . . , P5. By
translating the parabola if necessary, we may suppose that P1 is the origin.
By Lemma 7.1, Γ is represented by a quadratic equation with only integral
coefficients. Let P3Q be the chord of Γ that is parallel to the chord P1P2.
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Since the slope of P1P2 is rational, so is the slope of P3Q, and we can deduce
that Q is a rational point. Therefore the slope of the line passing through the
midpoint of P1P2 and the midpoint of P3Q is also rational, say b/a (a, b ∈ Z).
Since this line is parallel to the axis of the parabola Γ , the slope of the axis of
Γ is also equal to the rational b/a. Now, by the similarity transformation ϕ of
R

2 defined by

ϕ :
(

x
y

)
�→

(
b −a
a b

)(
x
y

)
,

the point (a, b) goes to (0, a2 + b2). Hence ϕ(Γ ) is a parabola whose axis is
parallel to the y-axis. Since ϕ(Z2) ⊂ Z

2, ϕ(Γ ) also passes through (at least) five
lattice points. Hence ϕ(Γ ) can be represented by an equation Ay = Bx2 + Cx
with integral coefficients. Then all the points

Qm = (A(a2 + b2)m,AB(a2 + b2)2m2 + C(a2 + b2)m), m ∈ Z ,

are lattice points on ϕ(Γ ). Since the matrix of the inverse transformation ϕ−1

of ϕ is given by (
b/(a2 + b2) a/(a2 + b2)

−a/(a2 + b2) b/(a2 + b2)

)
,

all the images ϕ−1(Qn) are lattice points. They all lie on the parabola Γ .
Hence Γ passes through infinitely many lattice points.

Now, the parabola y =
√

2x2 passes through just one lattice point. The
parabola y =

√
2(x2 − 1) passes through exactly two lattice points. The

parabola (x − √
2y)2 = 2(x + y) passes through exactly three lattice points.

The quadratic curve

(6x + (−3 +
√

15)y)2 − 72x + (−24 + 6
√

15)y = 0

is a parabola, and it passes through the four lattice points (0, 0), (0, 1), (2, 0)
and (1, 3). Finally, the parabola y = x2 passes through infinitely many lattice
points. �

Ellipses and hyperbolas are classified in similarity classes by the eccentric-
ity e. They are also classified regarding similarity by their aspect ratio λ =
(minor axis)/(major axis). The aspect ratio λ of an ellipse x2/a2 + y2/b2 = 1
is λ = min{b/a, a/b}. The aspect ratio of a hyperbola x2/a2 − y2/b2 = 1 is
λ = a/b. The eccentricity e and the aspect ratio λ are related by e =

√
1 − λ2

in the case of ellipses, and λ =
√

1 + λ2 for hyperbolas.
If d is a positive rational such that

√
d �∈ Q, then the set {a+b

√
d : a, b ∈ Q}

is a field, which is called a quadratic extension of Q. Let us denote the ellipse
with aspect ratio λ by Eλ, and the hyperbola with aspect ratio λ by Hλ.

Lemma 7.3. If Eλ or Hλ passes through five lattice points, then λ2 belongs to
a quadratic extension of Q.
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Proof. By Lemma 7.2, the curve is represented by a quadratic equation Ax2 +
Bxy +Cy2 +Dx+Ey +F = 0 with integral coefficients A,B,C,D,E, F . This
equation changes to a form ax2 + by2 + 2px + 2qy + r = 0 (with no xy term)
by a suitable orthogonal transformation of coordinates. In this case, a, b are

eigenvalues of the matrix
(

A B/2
B/2 C

)
. Therefore a/b belongs to a quadratic

extension of Q, and since λ2 = |a/b|, also λ2 belongs to a quadratic extension
of Q. �

Theorem 7.3. If λ2 does not belong to any quadratic extension of Q, then
S(Eλ) = S(Hλ) = {1, 2, 3, 4}.
Proof. By Lemma 7.3 we have S(Eλ) ⊂ {1, 2, 3, 4} and S(Hλ) ⊂ {1, 2, 3, 4}.
Put ξ = ±λ2 (+ for the ellipse case, and − for the hyperbola case), and let η
be a transcendental number algebraically independent from ξ. The quadratic
curve ξx2 + y2 + ηx = 0 passes through just one lattice point (0, 0). The curve
ξ(x2 − 1) + y2 + ηy = 0 passes through just two lattice points (±1, 0). The
curve ξx2 + y2 − 1 + (1 − ξ)x = 0 passes through just three lattice points
(0,±1), (1, 0). Finally, the curve ξx2 + y2 = ξ + 1 passes through just four
lattice points (±1,±1). �

Theorem 7.4. (Kuwata and Maehara [58]) If λ ∈ Q, then S(Eλ) = N.

Proof. Let λ = b/a ∈ Q (an irreducible fraction). Since one of a, b is odd, let
us suppose that a is odd. Let p be a prime such that p ≡ 1 (mod 8). We show
that the ellipse with equation

(4x/a − 1)2 + (4y/b)2 = pk (7.3)

passes through exactly k + 1 lattice points. For (x0, y0) ∈ Z
2,

(4x0/a − 1)2 + (4y0/b)2 = pk

⇒ (4bx0)2 + (4ay0)2 = a2b2(pk − 1) + 8ab2x0

⇒ 8b2 | 16a2y2
0 ⇒ b | y0 ⇒ 4x0/a ∈ Z ⇒ a | x0.

Hence the number of lattice points on the ellipse (7.3) is equal to the number
of integral solutions (X,Y ) of (7.1), which is equal to k + 1. �

Proposition 7.1. The equation X2 − 2Y 2 = 1 has infinitely many integral
solutions.

Proof. Suppose (xi, yi) is a positive integral solution of the equation. Define
xi+1, yi+1 ∈ Z by

xi+1 +
√

2yi+1 = (xi +
√

2yi)2, (7.4)
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namely, xi+1 = x2
i + 2xiyi, yi+1 = 2xiyi. Then xi+1 − √

2yi+1 = (xi − √
2yi)2.

Hence

x2
i+1 − 2y2

i+1 = (xi+1 +
√

2yi+1)(xi+1 −
√

2yi+1)

= (xi +
√

2yi)2(xi −
√

2yi)2 = (x2
i − 2y2

i )2 = 1.

Thus (xi+1, yi+1) is another integral solution of the equation, and since xi > 1,
we have xi+1 > xi. Starting from an integral solution (x1, y1) := (3, 2) of the
equation, we can obtain infinitely many distinct integral solutions (xi, yi), i =
1, 2, 3, . . . , of the equation by applying (7.4). �

Remark 7.3. For an integer d > 0 which is not a square, the equation X2 −
dY 2 = 1 is a so-called Pell equation. It is known that every Pell equation has
infinitely many integral solutions.

The rectangular hyperbola is a hyperbola with aspect ratio 1.

Theorem 7.5. The Z
2-spectrum of the rectangular hyperbola is N ∪ {∞}.

Proof. Since the Pell equation X2 − 2Y 2 = 1 has infinitely many integral
solutions (see Proposition 7.1), the rectangular hyperbola (x + y)2 − 2y2 = 1
passes through infinitely many lattice points.

Let p be a prime such that p ≡ 1 (mod 6), and consider the rectangular
hyperbola (3x+1)2−(3y)2 = pm−1. If (a, b) is a lattice point on this hyperbola,
then (3a + 1 + 3b)(3a + 1 − 3b) = pm−1. Hence there is a k, 0 ≤ k ≤ m − 1,
such that {

3a + 1 + 3b = pk

3a + 1 − 3b = pm−k−1.

Thus we have {
6a + 2 = pk + pm−k−1

6b = pk − pm−k−1.

Since 0 ≤ k ≤ m − 1, the number of such lattice points (a, b) is at most
m. Conversely, since p ≡ 1 (mod 6), there is such a lattice point (a, b) for
each k, 0 ≤ k ≤ m − 1. Hence the number of lattice points on the hyperbola
(3x + 1)2 − (3y)2 = pm−1 is exactly m. Therefore, the Z

2-spectrum of the
rectangular hyperbola is N ∪ {∞}. �

For further results on the Z
2-spectra of ellipses and hyperbolas, see Kuwata

and Maehara [58]. The Z
2-spectra of ellipses and hyperbolas with general λ

are not determined, yet. Thus, we finish with the following two problems.

Problem 7.1. Determine completely the Z
2-spectra of ellipses and hyperbolas.

Problem 7.2. Consider Z
2-spectra of cubic curves.
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[37] Gruber, P.M.: Geometry of numbers. In: Handbook of Convex Geometry, vol. B, pp.
739–763 . North-Holland, Amsterdam (1993)

[38] Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin (2007)
[39] Gruber, P.M., Lekkerkerker, C.G.: Geometry of Numbers. North-Holland, Amsterdam

(1987)
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