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The Cosine—Sine functional equation on a semigroup
with an involutive automorphism
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Abstract. We determine the complex-valued solutions of the following extension of the
Cosine—Sine functional equation

f(zo(y)) = f(2)g(y) + g() f(y) + h(z)h(y), =,y€S,

where S is a semigroup generated by its squares and o is an involutive automorphism of S.
We express the solutions in terms of multiplicative and additive functions.
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1. Introduction

Let S be a semigroup and let o be an involutive automorphism of S. That it
is involutive means that o(o(z)) =« for all x € S.
The functional equation

f(zo(y)) = f(x)g(y) + g(x) f(y) + h(z)h(y), z,y€S (1.1)

includes a number of functional equations which have been treated by several
authors in the literature. The case of the sine addition law

flzy) = f(2)g(y) +9(x)f(y), z,y€G, (1.2)

has been treated on groups, semigroups and algebras. See for example [7,
chapter 4] and [3]. Poulsen and Stetkeaer [5] derived the solution formulas for
the functional equations

flza(y)) = f(x)g(y) +9(x)f(y), =z,y€G, (1.3)
flxa(y)) = f(@)g(y) — g(x)f(y), x,y€q,
g(za(y)) = g(x)g(y) + f(2)f(y), z,y€G,

on topological groups.
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Chung et al. [2] solved the functional equation

flay) = f(2)g(y) + g(x) f(y) + h(x)h(y)
on groups.

We refer also to [1], [6, Section 11.7] and [7] for further contextual and
historical discussions.

Our main goal in this paper is to solve the functional equation (1.1) on
semigroups generated by their squares. We notice here that (1.1) is a simple
example of Levi-Civitd’s functional equation, and there is a general theory
about the general form of the structure of solutions of Levi-Civitd’s functional
equation on monoids, using matrix-coefficients of the right regular represen-
tation, see for example [7, Theorem 5.2]. But given a Levi-Civitd functional
equation of a special form like (1.2) the application of the general theory is not
the final word about its solutions. There will be a possible linear dependence
between the functions on the right hand side of (1.1) to take into account as
well as the internal structure of the monoid.

The remark above is illustrated by the treatment of the sine addition law
(see for example [7, Corollary 4.4]). In this paper we take a more direct ap-
proach.

Replacing the semigroup S in the functional equation (1.1) by a group we
can provide a specialization of it. In particular, our results contain the solutions
of the following functional equation

fle—y) = f(x)g(y) + g(x) f(y) + h(x)h(y)
on abelian groups that are not in the literature.
Our main contributions to the knowledge about the Cosine—Sine functional
equation (1.1) are the following

1) We extend the setting from groups to semigroups generated by their
squares and with involutive automorphisms.
2) We relate the solutions of (1.1) to those of

f(xo(y)) = f(@)g(y) +9(x)f(y), zyeS
and
flxy) = f(@)g(y) + g(x) f(y) + h(x)h(y), @,y €S
3) We produce explicit solution formulas of Eq. (1.1).

It is intriguing to see that some methods of [2] carry over to the more general
situation (1.1).

2. Notation and terminology

Throughout this paper S denotes a semigroup (a set with an associative com-
position) generated by its squares. The map o : S — S denotes an involutive
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automorphism. That o is involutive means that o(o(z)) = z for all € S.
Various examples of involutive automorphisms on semigroups can be found
in [3].

Let f: 5 — C. We call f, := # the even part of f and f, := % its
odd part. We say that f is even if f = f oo and that fisodd if f = —foo.
That is, f is even or odd with respect to o.

A function f : S — C is said to be central if f(zy) = f(yz) for all x,y € S
and f is said to be abelian if f(z122 -+ - 2,) = f(Tr)Tr2) -+ - Tr(n)) for all
Z1,Ta,...,2, €5, all permutations 7 of n elements and alln =1,2,3,... [7,
Definition B.3].

A multiplicative function on S is a homomorphism x : S — (C,-). If x # 0,
then I, := {z € S| x(x) = 0} is either empty or a proper subset of S. I, is a
two sided ideal in S if not empty and S\I,, is a subsemigroup of S.

3. Basic results

The continuous solutions of the functional equation (1.3) were obtained on
topological groups in [5] and on monoids generated by their squares in [3,
Proposition 3.6]. We shall now extend these results to semigroups generated
by their squares.

Proposition 3.1. The solutions f,g : S — C of the functional equation (1.3)
can be listed as follows

(a) f =0 and g is arbitrary.

(b) f=alxi —x2), g =EX2 where o € C\{0} is a constant and x1, X2 :
S — C are two multiplicative functions such that x1 # X2, X1°0 = X1
and x2 00 = 2.

()

{ﬂ@x@h@% g(x) =x(zx) for xS\,
f(x)=0, g(x)=0 for zel,

where x : S — C is a nonzero multiplicative function and a : S\I,, — C
is a nonzero additive function such that xy oo = x and a oo = a.

Proof. If f = 0 then g is arbitrary. Assume that f # 0. Let z,y,z € S.
By interchanging = and y in Eq. (1.3) we get that f(yo(x)) = f(zxo(y)),
then foo(zy) = f(o(z)o(y)) = f(yz) for all z,y € S. Hence f o o(xyz) =
foo(a(yz)) = f(y=a) = foo((:2)y) = f o o(2(zy)) = f(ayz) for all z,y, = €
S. Since S is generated by its squares, there exist z1,...,z, € S such that
x =2} --22. So we have foo(x) = foo(a? - -22). If n = 1 we obtain
foo(z) = foo(z?) = f(23) = f(z). If n > 2 we have foo(x) = foo(xyz1(23-

22)) = f(x1z1 (a3 - - - 22)) = f(z). Hence f is even with respect to o and
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central. By similar computations to the ones in the proof of [5, Theorem II.3]
we get, for all z,y € S,

f(@)g(y) +g(x) f(y) =

We infer

f@)]glo(y) —9(¥)] = [9(x) — g(o(x)]f(y), x,y€S.

Applying [7, Exercise 1.1(b)] to the last identity we get that goo = g, because
f # 0. So the functional equation (1.3) implies the sine addition law

flzy) = f(x)g(y) + 9(x)f(y), z,y€S. (3.1)

According to [7, Theorem 4.1] there exist two multiplicative functions x1, X2 :
S — C and a constant ¢; € C such that g = % and 2¢1f = x1 — x2. As
foo=f,goo =g, we get that x; oo = x1 and x2 0 0 = x2. We split the
discussion into the cases x1 # x2 or x1 = X2-

Case 1: x1 # x2. Then ¢; # 0, and it follows that f = a(x1 — x2) with
= % € C\{0} a constant.

Case 2: x1 = x2. Putting x = x1 = x2 the functional equation (3.1) becomes

flzy) = f@)x(y) + x(x)f(y), =z,y€S. (3.2)

As f # 0 and S is generated by its squares we get from (3.2) that x # 0. By
similar computations to the ones in the proof of [3, Lemma 3.4] we deduce
from (3.2) that there exists a nonzero additive function a : S\I, — C such
that oo =a, f = xaon S\I, and f =0 on I,.

Conversely we check by elementary computations that the pairs (f,g)
described in Proposition 3.1 are solutions of Eq. (1.3). This completes the
proof. O

Remark 3.2. If f, g : S — C satisfy the functional equation (1.3), the formulas
in the cases (a), (b) and (c¢) of Proposition 3.1 reveal that if f # 0 both f and
g are abelian and even with respect to o.

4. Main results

Chung et al. [2] solved the functional equation f(zy) = f(x)g(y) + g(x)f(y) +
h(z)h(y) where f,g,h are unknown complex-valued functions defined on a
group. In the present section we deal with the functional equation (1.1) on a
semigroup generated by its squares. We start with the following properties.
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4.1. Key properties of the solutions

Lemma 4.1. Let f,g,h : S — C be a solution of the functional equation (1.1).

(a) f(zo(y)) = f(yo(x)) for allz,y € S.
(b) foo(zy) = f(yx) for all z,y € S.

(¢) foo(xyz) = f(ayz) for all z,y,z € S.
(d) f is even with respect to o and central.
(0)

forallz,y e S.

Proof. (a) The right hand side of the functional equation (1.1) is invariant
under the interchange of x and y. So f(zo(y)) = f(yo(x)) for all z,y € S.

(b) From (1) we get foo(zy) = f(o(x)o(y)) = f(yzx) for all z,y € S.

(c) Forallz,y,z € S we have, using the result (b), foo(zyz) = foo(xz(yz)) =
f(yzz) = f o olzay) = flay2).

(d) By the same computations used to prove that f is even and central in
the proof of Proposition 3.1.

(e) Using that f is even we get f(zo(y)) = foo ) o . So
Fora(o) o)) KOG < HDo ) & oot T oy & Mo(a)
h(o(y)), which implies Eq. (4.1).

Replacing z by o(z) in Eq. (4.1) and taking into account that f oo =
fand g, 00 = —g, we obtain 2£(x)go(y) — 2/(5)o(x) + h(o())h(y) —
h(z)h(o(y)) = 0. When to this we add (4.1) we obtain 4f(x)g,(y) +h(x)h(y)—
h(o(z))h(o(y)) + h(o(z))h(y) — h(x)h(c(y)) = 0. From this it follows that
4f(@)g0(y) + h(x)[h(y) = h(o(y))] + h(o (2))[h(y) —h(o(y))] = 0, which implies
that 47(2)g0(y) + [h(z) + ho(@)][h(y) — h(o(y))] = 0. This is (4.2)

On the other hand, by replacing y by o(y) in Eq. (1.1) and taking into
account that foo = f we obtain f(zy) = f(2)g(o(y))+9(x) f(5)+h(x)h(o (1)),
then f(zy) — f(zo () = —F(@)(9(y) — 9o () — h(2)(h(y) — h(o(y))). This
implics o)~ flaa0) = 20anlu) ~ 20(a)0u(o) From B (12) we
obtain

flzy) — f(za(y)) = 2he(x)ho(y) — 2h(x)ho(y)
= —2(h(x) = he())ho(y) = =2ho(x)ho(y)-

This proves (4.3) and completes the proof. O

To solve the functional equation (1.1) we will discuss two cases according
to whether f and h are linearly independent or not.
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4.2. The solutions of (1.1) when f and h are linearly dependent

Theorem 4.2. The solutions f,g,h : S — C of the functional equation (1.1)
such that f and h are dependent can be listed as follows
(a) f=0, g arbitrary and h = 0.

(b) f=a(x1—xz2), g=X5X2—32X=X2 b = 3(x; —x2) where a € C\{0}
and B € C are two constants, x1, x2 : S — C are two multiplicative
functions such that x1 # X2, X1 ©0 = X1, X200 = Xa2.

()

f=xa g=x (1—§a> and h = cxa on S\I,
f(@)=g(x) =h(x) =0 for z €I,

where ¢ € C is a constant, x : S — C is a nonzero multiplicative function
such that x oo = x, a : S\I, — C is a nonzero additive function such
that aoo = a.

Proof. Let f,g,h : S — C be a solution of the functional equation (1.1) such
that f and h are linearly dependent. If f = 0, then the functional equation
(1.1) becomes h(z)h(y) = 0 for all z,y € S, so h = 0 and g is arbitrary. So
during the rest of the proof we will assume that f # 0. Since f and h are
assumed to be linearly dependent, there exists a constant ¢ € C such that
h=cf. So Eq. (1.1) can be written as follows

flza(y)) = f(x)g(y) + g(x) f(y) + f (@) f ()

— @) ot + 5 16| + [ate) + & )] 1)

which becomes
f(zo(y)) = f(x)k(y) + k(2)f(y), z,y€S, (4.4)

where k = g + % f. According to Proposition 3.1 we have two cases:

Case 1: f = a(x1 — x2), k = X5X2 where a € C\{0} is a constant and
X1, X2 : S — C are two multiplicative functions such that x; # x2, Y100 = x1

and x2 00 = x2. As h = ¢ f we obtain h = 5 (x1 — x2) where § = ac € C is a

xitxz  ac?
2

constant. On the other hand we have g = k — % f= = (X1 —Xx2) =

Xitx2 _ ﬁz X1—X2
2 2a -
Case 2:

{f(x) = x(z)a(x), k(z)=x(z) for x € S\I,
fx) =0, k(z)=0 for z €I,

where x : § — C is a nonzero multiplicative function and a : S\I,, — C is a
nonzero additive function such that y oo = xy and a oo = a.
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Since h = ¢ f and k = g + S f, we find, on S\I, where f = xa, that
g=x(1- %a) and h = ¢y a. On the other hand we obtain ¢ =0 and h =0
on I,.

Conversely, if f, g and h are of the forms (a)-(c) in Theorem 4.2 we check
by elementary computations that f, g and h satisfy the functional equation
(1.1), and that f and h are linearly dependent. This completes the proof of
Theorem 4.2. 0

4.3. The solutions of (1.1) when f and h are linearly independent

Let f,g,h : S — C satisfy the functional equation (1.1) so that f and h
are linearly independent. According to Lemma 4.1(d) we have foo = f.
Consequently Eq. (1.1) implies that

flay) = f(@)g(o(y)) + g()f(y) + h(@)h(o(y)), =,y €S.

Since f # 0, according to (4.2), h, = 0 implies g, = 0. So we will discuss the
following possibilities: hoo = h and h oo # h.
We notice here that if hoo = h Eq. (1.1) can be written as follows
flzy) = f(@)g(y) + 9(2)f(y) + h(@)h(y), =,y €5

In this case we extend the results obtained in [2] on groups to semigroups
generated by their squares.

4.3.1. The case h o o0 = h.

Theorem 4.3. The solutions f,g,h : S — C of the functional equation (1.1)
with f and h linearly independent and h o o = h can be listed as follows

(a)

f 1o oo 1\ (XA

2 2
gl=(0 1 0 0 XXA on S\Iy,
h 0 0 0/ \ e

fx)=g(x) =h(x) =0 for xz€l,

where x : S — C is a nonzero multiplicative function and A, Ay : S\I,, —
C are two additive functions with xoo = x, Aco =A, Ajoo = Ay and
A#0.

f 2 - —c 1
gl=10 1 0 X on S\I,
h c —c 0 x A

F(@) = ¢ p(x), g(x) = 0 and h(z) = cp(x) for €I,
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where ¢ € C\{0} is a constant, x, p : S — C are two multiplicative
functions where x is nonzero, and A : S\I, — C is a nonzero additive
function such p# x, xoo=x, poo =p and Aoo = A.

f —c1 €1 —CiCy 7
gl=1 3 i -l x | on S\I,
h 0 0 1 YA

f@) = —crpu(@), g(x) = 5 p(z) and h(z) =0 for € I,

where c1,co € C\{0} are two constants satisfying 1 + c1c3 = 0; p, X :
S — C are two multiplicative functions and A : S\I,, — C is a nonzero
additive function such that x # 0, x # i, X000 = X, oo = u and
Aoo = A.

f cfc(2-0) —2c¢\ [x1
h = - 0 X3

where a,3,¢ € C\{0} are three constants with 2ca®3(2 — ) = 1;
X1, X2, X3 : S — C are three multiplicative functions such that x1 # X2,

X1 7 X3: X2 # X3, X100 = X1, X200 = X2 and X300 = X3.

f=F,
g=—-38F+G+dH,
h=-0F+H,

where § € C is a constant and the functions F,G,H : S — C are of the
forms (a)-(d) with the same constraints.

Proof. By using similar computations to the ones in the proof of [2, Section 3,
Theorem]. O

4.3.2. The case h o 0 # h. The following lemma (due to Stetkeer) will be
used later.

Lemma 4.4. Let A : S — C be an additive function and x : S — C be a
multiplicative function on a semigroup S.

If YA = Zé\f:lcjxj, where c; € C and x; : S — C is multiplicative for each
j=12,...,N, then xA=0.

Proof. Tt suffices to prove that A = 0 on the subsemigroup {z € S | x(z) # 0},
so we may assume that S = {z € S| x(z) # 0}. In that case we can divide by
x(x), so we may furthermore assume that y = 1. We can finally assume that
{x1,Xx2,---,xn} are different.
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Let y € S be arbitrary. We shall show that A(y) = 0. The computation
A(y) = Azy) — Alz) = Zj21¢5x; (y) — 1x;(x) forallz € S,
gives us that
—Ay) -1+ 2520650 (y) — Uxs(x) = 0 forallz € S.

If x; = 1 for some j, then the corresponding term c;[x;(y) — 1]x; of the
identity above vanishes, so the multiplicative function 1 does not occur in the
sum. According to [7, Theorem 3.18] we obtain from the identity above that
A(y) = 0. So, y being arbitrary, we deduce that x A = 0. This completes the
proof of Lemma 4.4. O

Theorem 4.5. The solutions f,g,h : S — C of the functional equation (1.1)
with f and h linearly independent and h o o # h can be listed as follows:

(a)

f Log oo b\ (XM

2 2
gl=(0 1 0o 0 XXA on S\I,
h 00— o)\ Ve

flx)=g(x) =h(x) =0 for xe€l,,

where x : S — C is a nonzero multiplicative function; A, Ay : S\I,, — C
are two additive functions such that x oo =y, A#0, Aooc = —A and
A1 o0 = Al.

f —2p°  =2p* 4p? X
gl=1 1 i 3 | | xeoo],
h p —p 0 %

where p € C\{0} is a constant; x, p : S — C are two multiplicative
functions satisfying x oo # x and poo = p.

f P =50 —35p X
gl=10 1 0 I I
h p =P 0 poo

where p € C\{0} is a constant; x, u : S — C are two multiplicative
functions such that x # p, x oo =x and po o # .

[ = Fo,

g=—%302Fy+ Gy + 6 Hy,

h = —0 Fy + Ho,
where 6 € C is a constant and the functions Fy, Gy, Hy : S — C are of
the forms (a)-(c) with the same constraints.
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Proof. Let f,g,h: S — C satisfy the functional equation (1.1) so that f and
h are linearly independent and h oo # h. From the identity (4.2) and the fact
that h, # 0 we deduce that there exists a constant v € C such that

he =7/, (4.5)

hence h, = h—~f. As f and h are linearly independent we have f # 0, so we
deduce from (4.2) that

9o = —Yho. (46)
We recall that f oo = f by Lemma 4.1(d). We split the discussion into the
cases v =0 or v # 0.
Case A: v = 0. Then h, = 0 and g, = 0; hence hoo = —h and go o = g. So
the functional equation (1.1) can be written as

flzy) = f(2)g9(y) + g(z) f(y) + k(x)k(y),  x,y€S, (4.7)

where k = i h.

Using similar computations to the ones in the proof of [2, Section 3, Theorem]
we have one of the following cases for the solutions f, g, k of equation (4.7):
Case A.1:

f 1o o 1\ (x4

2 2
gl=(0 1 0o 0 XXA on S\Iy,
k 00 1 0/ { X

flx)=g(z) =k(z)=0 for ze€l,,
where x : S — C is a nonzero multiplicative function and A, 4, : S\I,, — C
are two additive functions with A # 0. Then

f Lo oo by (XM

2 2
gl =10 1 0 XXA on S\I,,
h 00 —i o)X

flz) =g(xz) =h(z) =0 for ze€l,.

Since foo = f, goo = g and hoo = —h, we get that yoo = x, (x (A1 +4%))o
o=x(A1 +A4%) and (yA)oo = —x A, then Aoo = —A and A; 00 = Aj.
So we obtain a solution of the functional equation (1.1) of the form (a) in
Theorem 4.5.

Case A.2:
f 2 -2 —c o
gl=10 1 0 X on S\I,
k c —c 0 x A

f(x) = cAu(z), g(x) =0 and k(z) = cu(z) for =z € I,
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where ¢ € C\{0} is a constant; x # 0,u : S — C are two multiplicative
functions such that ¢ # x and A : S\I,, — C is a nonzero additive function.
Then

f c? -2 —c 1

gl=120 1 0 x | on S\I,

h —ic ic 0 x A
f(x) =2 p(x), g(x) =0 and h(z) = —icu(z) for =€ I,.
Notice that we can write g(x) = x(z) and h(z) = —ic(u(z) — x(z)) for
all x € S. Since goo = g and hoo = —h, we get that y oo = x and

(L—x)oo =—p+x, then poo+ p = 2x. According to [7, Corollary 3.19]
either poo = y or u = x, then u = x, hence h = 0. This contradicts the linear
independence of f and h. So the functional equation (1.1) has no solution in
this case.

Case A.3:
f —C1 C —C1C2 H
g|l=1| 3 i —le x | on S\I,
k 0 0 1 x A

f(@) = —c1p(z), g(z) = 3 p(z) and k(z) =0 for = € I,

where ¢;, co € C\{0} are two constants satisfying 1+cic3 = 0; x # 0, u: S —
C are two multiplicative functions such that p # x and A : S\I, — Cis a
nonzero additive function. Then

f —c1 ¢ —cic w
gl=13 35 -3 x | on S\I,,
h 0 0 —i YA

f(x) = —c1p(x), g(x) = 3 p(z) and h(z) =0 for € I,.

We have o(S\I,) = S\I,. Indeed, if there exists an element € S\I, such that
o(z) € I, then h(x) = —ix(x) A(z) and h(o(x)) = 0. Since h(o(x)) = —h(x)
and x(z) # 0, we get that A(z) = 0. We infer from foo = f and goo =g
that —u(x)+ x(z) = —poo(x) and u(x)+ x(x) = poo(x). So x(x) = 0, which
contradicts that « € S\I,.. Hence o(S\I,,) C S\I, then o?(S\I,) C o(S\I,).
As o is involutive we get the converse inclusion. So o(S\I,) = S\I.

On the other hand, as foo = f, goo = g and hoo = —h, we obtain on S\I,:

—poog+xoog—caxoogAoo=—pu+x—caxA, (4.8)
oo+ yxyoog—caxoogAoo=pu+x—caxA4, (4.9)
xoocAoo=—xA. (4.10)

Subtracting (4.9) and (4.8) we get that poo = u. Replacing poo by pin (4.9)
and taking (4.10) into account we get that y oo —x = —2¢o x A. Since ¢ # 0
and x(z) # 0 for all z € S\I,, we get, according to Lemma 4.4, that A = 0,
contradicting that A is nonzero in Case A.3. So the functional equation (1.1)
has no solution in this case.
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Case A.4:
f fﬁ §(2 ) —12 c\ [x1
gl=13i8 12-0) 3 X2 |,
k 2;1 2_0411 0 lU/

where a1, 3,¢ € C\{0} are three constants with 2ca? 8(2—) = 1; x1, X2, it :
S — C are three multiplicative functions satisfying x1 # x2, x1 # p and

X2 # . Then

f cfc(2=-p) =2¢\ [xa
o) =it 3 | ().

where « :=iay, 3,c € C\{0} are three constants with 2ca?3(2 — 3) = —1.
Since h oo = —h, we get that x1 00 —x200 = —x1 + X2, then xy1 00+ x1 =
X2 © 0 + x2. According to [7, Corollary 3.19] and taking into account that
X1 7 X2 we get that x1 00 = x2. Since foo = f and go o = g, we get that

Bxioco+(2=P)x200—2poo=0x1+(2-0)x2—2p
Bxioo+(2=PB)x200+2po0=0Fx1+(2—B)x2+2p.

Subtracting these identities we get that poo = u. So Sx2+ (2 —F)x1 =
Bx1+ (2= 0)x2, then (1 =) x1 = (1 — ) x2. Since x1 # x2, we get that

B =1.S0 2ca? = —1. By putting p = ;- we obtain
f —2p* =2p 4p? X
gl=1 & 1 3 ||xe7)
h p —p 0 Iz

where p € C\{0} is a constant; x, x : S — C are two multiplicative functions
satisfying y oo # x and poo = pu. As f and h are assumed to be linearly
independent, we get that p # 0. So we obtain a solution of the functional
equation (1.1) of the form (b) in Theorem 4.5.

Case A.5:
f=I
g = 7%§2F1 +G1 +(5H1
k=-6I1+ H;

where the functions Fy,Gq, Hy : S — C are of the forms in Cases A.1-A.4 and
6 € C is a constant.

So
f=F
() g=—-%8°F +G1+0H,;
h =4I —iH;.
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The conditions foo = f, goo =g and hoo = —h imply

Fioo =F
(II) (G1 +(5H1)OU:G1+5H1
H100'+H1 :2(5F1

Since f and h are linearly independent, so are F; and Hy. Then Hy oo # H;.
We have the following cases

Case A.5.1:
R AN S
Gi|=[0 1 0 0 XXA on S\ Iy,
H, 00 1 0/ \ e

Fi(z) =Gi(z) = Hi(z) =0, for ze€l,,
where x : § — C is a nonzero multiplicative function and A, 4, : S\I,, = C
are two additive functions with A # 0.

We have o(S\I,) = S\I,. Like in Case A.3 it suffices to check that o(S\I,)
C S\I,. Indeed, if there exists an element « € S\I, such that o(z) € I,, then
the first identity of (I7) implies x(x)(A1(x) + A%(x)) = 0. Since x(x) # 0,
we get that A%(z) = —A;(z). As 22 € S\I, and 22 € I,, we have similarly
A%(z%) = —A;(2?). Since the functions A4, A; : S\I, — C are additive, we get
that 4 A?(x) = —2 A;(x) = 2 A%(x), which implies A(x) = 0, so Hy(z) = 0.
As o(x) € I, we have Hq(o(x)) = 0. From the second identity of (II) we get
that G1(z) = G1(o(z)) = 0. Considering the formula of G; in the present case
we get that x(z) = 0, which contradicts the assumption z € S\I,. We deduce
that o(S\I,) C S\Iy. So o(S\I) = S\I and o(I) = I,.

It follows that the second identity of (1) becomes (yoo) ! x (1+5 A) = 1+
0 (Aoo). Then the function m (14 a) —1, defined from S\ I, into C is additive,
where m := (x o o) ~' x : S\, — C is multiplicative and a := § A : S\I,, — C
is additive. Then m(z?) (1+a(z?))—1=2m(z) (1+a(z))—2 for all z € S\I,,
which implies (m(z) — 1) m(z) (1 + 2a(z)) = m(zx) — 1 for all x € S\I,. So
m(z) = 1 for all x € S\I,. Indeed, if not, there exists an element z € S\I,
such that m(z) # 1 and m(z?) # 1 because S is generated by its squares.
Then m(x) (1+2a(z)) = 1, which implies 2 a(z) = (m(x))~! — 1. Similarly we
have 2 a(z?) = (m(2?))~! — 1. Using that a is additive and m is multiplicative
we get that 4a(x) = (m(z))™2 — 1. Then (m(z))™2 -1 =2(m(z))"! —2. It
follows that (m(x))~! = 1, which contradicts the assumption m(x) # 1. Hence
X oo = x. Since G1 = x on S\I,, we derive from the second identity of (II)
that 6 (Hy oo — Hy) = 0 on S\I,. As H; = 0 on I, and o(I,) = I, we get
that 6 (Hy o o — Hy) = 0 on the semigroup S. Taking into account that H;
and Fy are linearly independent and satisfy the third identity of (I7) we get
that Hy oo # Hy. So § = 0 and the solution (f,g,h) of (1.1) is of the form
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in Case A.1 and fits into form (a) in Theorem 4.5. As in Case A.1 we derive
immediately that Aco = —A and Ay o0 = A;.

Case A.5.2:
Fy 2 - —c W
Gi]=10 1 0 X on S\I,,
H, c —c 0 XA

Fi(z) = u(z), Gi(z) =0 and Hy(z) = cpu(z), for z €I,
where ¢ € C\{0} is a constant, x # 0, u : S — C are two multiplicative
functions such that p # x and A : S\I,, — C is a nonzero additive function.

We have o(S\I) = S\I,. Like in Case A.3 it suffices to check that o(S\I,)
C S\I,. Indeed, if there exists an element x € S\I, such that o(x) € I, the
first identity in (1) becomes c? u(z) — ¢ x(x) — cx(z) A(z) = ¢ u(o(x)),
which implies ¢ (u(o(x)) — p(z)) = —x(z) (¢ + A(x)). The second identity in
(I1) implies § ¢ p(o(x)) = x(x) + 6 ¢ (u(x) — x(x)), then b ¢ (u(o(x)) — p(x)) =
(1 —d¢)x(z). Hence (1 —dc)x(x) = = x(x) (c + A(x)), from which we get
that § A(z) = —1. As 2% € S\I, and 2? € I, we have, similarly, § A(z?) = —1,
then 260 A(z) = —1, which is a contradiction. We deduce that o(S\I,) C S\I,.
So o(S\Iy) = S\I, and o(1,) = I,.

On the other hand, according to the result of Case A.2 we assume that
d # 0. On S\I, the second identity of (II) implies (x +dc(u— x)) oo =
X+ dc(p—x), from which we get that

(I1-édc)xoo—(1—-dc)x—dcpu+dcpoo=0. (4.11)

On I, we have xy oo = x = 0 and since [} oo = F;, we have poo = p, so
the identity (4.11) is satisfied on the semigroup S. Since d ¢ # 0, we derive,
according to [7, Theorem 3.18], that the multiplicative functions x, u, x o o
and p o o are not different. As x # p and x o 0 # o o we have the following
cases

Case A.5.2.1: x o 0 = . The identity (4.11) implies d ¢ (p o o — ) = 0, then
pwoo = p. So Hy oo = Hy. Applying the third identity of (I1) we get that
H, = § F}, which contradicts the linear independence of F; and Hj.

Case A.5.2.2: xoo = p. Then ppoo = x. So Hy oo = —H; on S\I,,. From
the third identity of (II) we get that F}; = 0 on S\I,. For all z € I, we have
Fi(x) = ¢ p(z) = ¢ x(o(x)) = 0 because o(I,) = I,,. Hence f(x) = Fy(x) =0
for all x € S, which contradicts the linear independence of f and h.

Case A.5.2.3: p oo = u. In this case the first identity of (II) implies ¢x o
o+ xocAoog =cx+xAon S\I,. Then xoo(c+ Aoo) = x(c+ A). So
14+b=m(l+a) where m := (xyoo) 'y : S\I, — C is a multiplicative
function, and @ :== ¢ ' A : S\I, - Cand b := c ' Aoo : S\I, — C are
two additive functions. Proceeding exactly as in Case A.5.1 we derive that
xoo =xon S\I,. As xoo = x =0 on I, we get that x o 0 = x on the
semigroup S. So we go back to Case A.5.2.1.
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We conclude that the functional equation (1.1) has no solution in Case
A5.2.

Case A.5.3:
Fy —Cc1 €1 —CiC ,u
G1 = % % 7%62 X on S\IX,
Iid o 0 1 YA

Fi(z) = —cy1p(x), Gi(z) = L p(a) and Hy(z) =0 for z € I,
where c1, co € C\{0} are two constants such that 1+ci1c3 =0, x #0, p: S —
C are two multiplicative functions such that y # x and A : S\I, — Cis a
nonzero additive function.

We split the discussion into the cases § # 0 and § = 0.
Case A.5.3.1: 6 = 0. In this case we get

! -G (& —ac2 v
gl=(3 2z -z x| omsS\,
h 0 0 —1 XA

f(x) = —c1p(x), g(x) = 5 p(x) and h(z) =0 for = € I,

where ¢1, co € C\{0}, x # 0, p : S — C are two multiplicative functions and
A : S\I, — C is an additive function satisfying the same assumptions as the
ones above. This is Case A.3. As seen earlier this case has no solution.
Case A.5.3.2: 0 # 0. In this case o(S\I,) = S\I,. Like in Case A.3 it suffices
to check that o(S\I,) C S\I,. Indeed, if there exists an element = € S\I,
such that o(z) € I, then we get that Hi(z) = x(z) A(z), Hi(o(x)) = 0 and
Fi(o(z)) = —cq p(o(x)). Using the first and the third identities of (II) we
obtain

\(&) Alz) = ~26e1 (o ().
Since z? € S\I, and o(2?) € I, we have similarly x(2?) A(z?) = —28¢;
w(o(2?)). Then 2 (x(z))? A(z) = =28 ¢1(u(o(x)))?. Hence

§er(ulo())? =28 e1 x(@) plo(x)),
which implies
§ ey p(o(z)) [u(o(x)) —2x(x)] = 0.
Notice that ¢; # 0 and 6 # 0.

If u(o(z)) = 0 then Fi(o(x)) = —c1 p(o(z)) = 0 because o(z) € I,. Using
the first identity in (1) we get that —cy p(x) + 1 x(x) — ¢1 c2 x(x) A(z) = 0.
As ¢; # 0 and x(z) A(x) = =28 ¢; p(o(z)) = 0 we find that x(x) = u(x).
Since z € S\I, we have G1(x) = 3 [u(z)+x(z) —c2 x(z) A(z)] = p(z) = x(2).
Moreover from H; (z) = 0, Hi(o(x)) = 0 and (G146 Hy)oo = G1+6 Hy we find
that G1(o(2)) = Gi(z). As o(z) € I, we have Gy(o(z)) = 3 u(o(z)). Hence
x(z) = p(z) = & p(o(x)) = 0, which contradicts the assumption z € S\I,.

Hence u(o(z)) # 0. Here we get that u(o(z)) = 2x(z). As 22 € S\I
and o(2?) € I, and p(o(x?)) # 0 because pu(o(z?)) = (u(o(z)))?, we obtain
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similarly (u(0(2)))? = 2(x())*. Then 4 (x(z))* = 2(x(2))*, so x(
which contradicts the assumption z € S\I,. We conclude that o(S
S\Iy, so o(S\I) = S\I, and o(I,) = I,.

On the other hand, from the first and the second identities of (1) we have,
respectively, on S\, the two identities below

x) = 0,
V) <

poo—pu=xo00c—x+caxA—cyxoogAoo.
pw—poo=235yoccAococ—xAl+xoo—x+caxA—caxoogAoo.

It follows that
p—poo=4dxoocAoo—yxA. (4.12)
When we substitute this back into the first identity above we get that

§(p—poo+xoo—x)=co(u—poo),
hence
(ca—d8)poo+(d—co)pu+dxoo—3dx=0. (4.13)
Moreover on I, we have y oo = x = 0, and oo = u because Fy oo = I,
so the identity (4.13) is satisfied on the semigroup S. As § # 0 in the present
case we conclude, by [7, Theorem 3.18], that the multiplicative functions poo,
w, x oo and x are not different. Since F; and H; are linearly independent, we
infer from the third identity of (IT) that Hy oo # Hy. Then yoo Aoo # x A.
So from (4.12) we get that poo # p. Since p # x, we have the following cases:
Case A.5.3.2.1: poo = x. Here the identity (4.13) implies (ca—20) (x —u) = 0.
Since x # p, we get that co = 26. So the third identity of (II) becomes, on
S\Iy,
xoogAoo+xA=ciea—p+x—caxA),

which implies

XOJAOU+(1+0163)XA10102(X*,U)~

1 1
As 1+c; 3 =0 we get that Aoo = - (xoo) tpu— . (xoo)~tx. By applying
2 2

Lemma 4.4 on the subsemigroup S\I, and taking into account that o : S — S
is an involution and that o(S\I,) = S\I, we get A = 0, which contradicts
that A is nonzero in Case A.5.3.
Case A.5.3.2.2: Yoo = x. Then the identity (4.12) implies x "' p—x "1 poo =
d(Aoco—A). Since Aoo — A: S\I, — C is an additive function, we proceed
like in Case A.5.3.2.1 above and get Aoo = A. So Hy 00 = H; on S\I,. Since
Hyoo=H; =0on I, we get that H; o 0 = H;. Then the third identity of
(II) implies Hy = § Fy, which contradicts the linear independence of H; and
Fi.

We conclude that the functional equation (1.1) has no solution if Fy, Gy
and H; are of the form in Case A.5.3.
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Case A.5.4:
F1 CB c (2 - ﬁ) —2c X1
Gi|=[i8 12-8) 3 xz |,
H, = - 0 X3

where a, 3, ¢ € C\{0} are three constants with 2ca? 8 (2—8) = 15 x1, X2, X3 :
S — C are three multiplicative functions such that x1 # x2, x1 # X3 and
X2 7 X3-

As in Case A.5.3 we split the discussion into the cases § # 0 and § = 0.
Case A.5.4.1: § = 0. Here hoo = —h and go o = g. So we go back to Case
A.4 and the solution occurs in (b) of the list of Theorem 4.5.

Case A.5.4.2: § # 0. The third and the first identities of (II) imply, respec-
tively,

x100—x200+(1—4dcafBd)x1—(1+4ca(2—05)0) x2+8cadxs3 =0 (4.14)

and

Bxio0+(2—=0F)x200—-2x300—0Fx1—(2—-F)x2+2x3=0. (4.15)

According to [7, Theorem 3.18] we derive from (4.15) that the multiplicative
functions x1, X2, X3, X1 ©0, X2 oo and x3 oo are not different. As x1, x2 and
x3 are different, so are x; o o, x2 0 0 and x3 o 0. Since d # 0 and F; # 0, we
derive from the third identity of (IT) that Hy o o # —Hj, hence x1 0 0 # Xa.
Moreover x3 0 0 # xs3. Indeed, if x3 0 0 = x3 the identity (4.15) implies

Bxioo+(2—=08)x200—=0x1—(2-08)x2=0, (4.16)

and as x1 # x2 and x1 00 # Y2 we deduce from the identity (4.16), according
to [7, Theorem 3.18], that y; oo = x1 and x2 0 0 = X2 because (2 — ) # 0.
Considering the formula for H; of the present case we obtain Hy o o0 = H;.
Using the third equality of (II) we get Hq = ¢ Fy, which contradicts the linear
independence of Hi and F}. Then we have the following possibilities:

Case A.5.4.2.1: x1 0 0 = x1. In this case the identity (4.15) becomes

(2=PB)x200—2x300—(2— ) x2+2x3 =0. (4.17)

On the other hand since F; and H; are linearly independent, we get from the
third identity of (IT) that Hy o o # Hy, then x1 00 — x2 00 # x1 — X2. Since
X100 = X1, we get that xo 00 # x2. As 5 # 2 we derive from (4.17) that
X2 00 = x3. So (4.17) becomes (4 — 3) x3 — x2 = 0. As x3 # x2 we deduce
that 8 = 4. Since 2ca?3(2 — 3) = 1, we get that 402 = *i' With g =4
the identity (4.14) implies

2(1—-8cad)x1 —(1—8cad)xa—(1—-8cad)xs=0.

Since the multiplicative functions x1, x2 and x3 are different, we get, according
to [7, Theorem 3.18], that 1 —8cad = 0. So § = —2«, which implies 62 =
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4a? = —i. Using (I) and the expressions of Fy, Gy and Hy in term of x1, X2
and y3 we get that

f=4dcx1—2cxe2—2cx3
92%‘X1+i><‘2+i><3
h=1>x2— 15 X3-

4

Putting x = x2, # = x1 and p = 7~ we obtain

f 20> =2p* 4p° X
gl=1 1 i 3 | [xeol,
h p —p 0 Iz

which is a solution of the form (b) in Theorem 4.5.
Case A.5.4.2.2: y1 00 = x3. S0 x3 00 = X1 and the identity (4.15) becomes

C+Bx1+2-B)x2—2+8)x3—(2-PF)x200=0. (4.18)

The coefficients 2 + # and 2 — 8 can not be zero at the same time, and we
conclude, by [7, Theorem 3.18], that the multiplicative functions x1, x2, X3,
and y2 o o are not different. As 1, x2 and x3 are different, y2 o 0 # x;1 and
X200 # x3 we derive that xo 00 = ys. Interchanging x; and x2, and replacing
B by 2— 3, and a by —a we go back to Case A.5.4.2.1 and the solution occurs
n (b) of the list of Theorem 4.5.

Case A.5.4.2.3: xo00 = xo. Interchanging x1 and x2, and replacing 3 by 2— (3,
and a by —a we go back to Case A.5.4.2.1 and the solution occurs in (b) of
the list of Theorem 4.5.

Case A.5.4.2.4: xo2 00 = x3. S0 x3 00 = X2 and we get from (4.15) that

B(xioo)=pBx1+(B—-4)x2—(8—4)x3=0. (4.19)

Since 8 # 0, we deduce from (4.19), according to [7, Theorem 3.18], that the
multiplicative functions x1, x2, X3, and x1 o o are not different. As x1, x2, x3
are different, xy1 0 0 # x2 and x; o 0 # x3 we get that xy; oo = x. So we go
back to Case A.5.4.2.1 and the solution occurs in (b) of the list of Theorem
4.5.

Case B: v # 0. Here the functional equation (4.3) becomes

f(xy) = f(2)g(y) + g(x) f(y) + h(@)h(y) — 2(h(x) — v f(2))(h(y) —7f(y))
= f(@)g(y) + 9(2) f(y) + h(z)h(y)
—2[h(z)h(y) — yh(x)f(y) = vf(@)h(y) + 7 f( )W)
= f(@)[g(y) —v f( )+ 27h(y)] + F(y)[g(x) — ¥ f(x) + 2vh()]

—h(z)h(y),

for all z,y € S, which implies
flay) = f(@)G(y) + G() f(y) + H(x)H(y),  x,y€S, (4.20)
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where
G:=g—7°f+2yh, (4.21)
H:=ih. (4.22)
Since f oo = f, according to Lemma 4.1(d), we get from (4.21) that
Goo=goo—~*f+2vhoo,
then
G—Goo=g—goo+2y(h—hoo)
=g—goo—2g—goo)=—(g—goo).
Using (4.6) we get that
(g+G)oo=g+G. (4.23)

On the other hand, by similar computations to the ones in the proof of [2,
Section 3, Theorem| we find that we have one of the following cases for the
solutions f, G, H of the functional equation (4.20):

Case B.1:
f % 0 0 % X A1
Gl=10 1 0 0 XX | on S\L
H 0 0 1 O Y A?

f() =G(x)=H(z)=0 for z€l,,
where x : S — C is a nonzero multiplicative function and A, 4; : S\I,, — C
are two additive functions with A # 0. Using (4.21) and (4.22) we obtain

X Ay

A (oo

g =|37%12yi 342 XA on S\I.

h 0 0—i 0 X '
x A?

flz) =g(x) =h(z) =0 for ze€l,.

We have o(S\I,,) = S\I. Like in Case A.3 it suffices to check that o(S\I,) C
S\I. Indeed, if there exists an element x € S\I, such that o(z) € I,; we
obtain, according to (4.5), g(z) + G(x) = g(o(z)) + G(o(zx)), hence g(z) +
x(z) = 0. This implies x(z) [37% A1 (z) + 1 + 2vi A(z) + 372 A%(2)] = —x(2).
As x(z) # 0 we get that

1 1
5’}/2 Ai(z) +2vi A(z) + 572 A%(z) = —2.

Since 2% € S\I,, and o(z?) € I, we also have

1 1
ST AL) + 21 A@?) + 397 ATe?) = -2,
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then
1
57 A(@) + 2vi Ala) +7° A%(2) = 1.

It follows that 2 A%*(x) = 2. As 2? € S\I, and o(2?) € I, we have the
same result for 22, i.e v2 A%(2%) = 2. Using the additivity of A we obtain
442 A%(x) = 2, which contradicts the fact that 2 A%(x) = 2. We conclude
that o(S\I,) C S\Iy, so a(S\Iy) = S\I, and o(I,) = I,.
On the other hand, since f is even with respect to o, we get that
XA +xA*=xo00A 00+ xo00(Aoo)> (4.24)
Using (4.23) we deduce
%72(XA1 +XA%) +20x +yix A) = %VQ(XOUAl oo +xo0(Aoa)?)
+2(xoo+yixoogAoo).
Taking (4.24) into account we obtain
vi[xyA—xoogAoag]=xoo—x. (4.25)
Furthermore (4.5) means that h +hoo = 27 f, so
—vilxA+xooAos] =" [x A +x A%,

which we reformulate to
2 [A@) + 1 (0) Alo(@)] = Ar(o) + Al for @€ S\,

where x1 := x oo/x on S\I,. Replacing = by 2", where n = 1,2,..., in the
identity above, and dividing by n? we get

A8 0 o) - -2 [ awp].

We derive a contradiction from (4.26) using the elementary fact from the theory
of orders of growth that

|—|—
0 for |z]<1.

Z" oo for |z]>1
n

Let ¢ = ¢ € S\I, be arbitrary, but fixed in (4.26).

n
If |x1(x0)| > 1, then we let n — oo and we get |Z—\ — 00 by the above
n

. xi(@)"
mentioned elementary fact. So the sequence

n
other terms of (4.26) are bounded. We deduce that A(c(zo)) = 0 in this case,
which reduces the identity (4.26) to

Azo) _ v [Ai(zo)

= A 20,
n ) n + A(@o)

is unbounded, while the
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Letting n — oo we obtain that A(zg) = 0.

If |x1(zo)| < 1, then we let n — oo in (4.26) and we get A(zg) = 0 by the
above mentioned elementary fact.

Thus A(zp) = 0 in both cases. So, 2 being arbitrary, we deduce that A = 0,
contradicting that A is nonzero in Case B.1

We conclude that the functional equation (1.1) has no solution in Case B.1.
Case B.2:

f 2 - —c 1
Gl=1|0 1 0 x | on S\I,
H c —c 0 x A

f(z) = p(x), G(x) =0 and H(z) = cu(z), for z €1,

where ¢ € C\{0} is a constant, x # 0, u : S — C are two multiplicative
functions such that p # x and A : S\I,, — C is a nonzero additive function.
Using (4.21) and (4.22) we obtain

f c? —c? —c I
o) = [vetrer2n Ge-12 2| [ x | on s\,
h —ic ic 0 x A

f(x) = p(x), g(x) =vc(ye+ 2i) p(x) and h(z) = —icp(z) for =z € I,.
We have o(S\I,) = S\I,. Like in Case A.3 it suffices to check that o(S\I,) C
S\I. Indeed, if there exists x € S\I, such that o(x) € I, then cu(z) —
cex(z) — x(z) A(x) = cu(o(z)) because f oo = f. Hence

x(x) Az) = c[p(x) — x(z) — plo(x))]. (4.27)

By using (4.23) we get that

ve(ye + 2i) plo(x)) = ye(ye + 2i) p(w) + [(vei = 1)* + 1] x(2) — 7% x() A(x).
Taking (4.27) into account we derive

Yex(x) Alx) = —ye(ye +2i) p(o(@)) + ye(ye + 20) ()
+(=72c? = 2yci + 2) x(x)

= ye(ye + 20) [u(x) = x(2) — p(o(2))] + 2 x(2)

= (v’ + 2yi) x(2) A(z) + 2x ().
Since v # 0 and x(x) # 0, we obtain v A(z) = i. As 2® € S\I,, and o(2?) €
I, we have similarly v A(2?) = 4. The function A : S\I, — C is additive,
so 2i = i, which is a contradiction. We conclude that o(S\I,) C S\I, so
o(S\I) = S\I, and o(I,) = I,.

On the other hand, since the functions f and g + G are even with respect

to o, we have on S\I,

—_

cppoog—cxoog—xoogAoo=cu—cxy—x4, (4.28)
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and

ye(ye+2i oo+ [(yei — 1) + 1] x oo —y%cxoc Aoa
= ye(ye +2i) p+ [(yei = 1)* + 1] x = y*ex 4,

which implies

(Y22 + 2vci)po o + [—73c? — 2yci + 2] x oo — Y cxoo Aoo
= (V¢ + 2yci) p+ [P — 29ci + 2] x — e x A,

so that
y2clepoo —cxoo—xooAoa]+2ycipoo —2i(yc+i)xoo
=%clep —cx — x Al + 2vci g — 2i(ye + i) x. (4.29)
It follows from (4.28) and (4.29) that

vepoo(x) —yep(x) — (ve+1) x o o(x) + (ye +14) x(z) =0,

for all x € S\I. As foo = f and o(I,) = I, we get poo(x) = pu(z) and
xoo(zx) =x(xz) =0 for all x € I,. Then

yepoo —yepu— (ye+i)xoo+ (ye+1i)x =0. (4.30)

Since e # 0, we get, according to [7, Theorem 3.18], that the multiplicative
functions poo, p, xoo and x are not different. So we have two cases according
to whether g oo = p or oo = x. Notice that if x o 0 = x then (4.30) gives
oo =pu.
Case B.2.1: oo = p. Here (4.30) becomes (yc+1i) (xoo—x) =0. If ye # —i
then x o 0 = x, hence h o ¢ = h, which contradicts the assumption on h.
If y¢c = —i, then (4.5) implies —ic (2 — x — x 0 0) = 2y f = —2% f, then
A (2p—x—xo00) =2(c* p—c*x—cx A) on S\I. Hence 2 A = ™! (yoo)—1.
Using the same computations as the ones in Case B.1 we obtain x ! (yoo) =1,
then xy o 0 = x; so h oo = h, which contradicts the assumption on h.
Case B.2.2: 100 = x. In this case pu(z) = x(z) = 0 for all € I, then
f(z) =0for all x € I,,. Let x € S\I, then applying (4.5) we obtain 27 f(x) =
h(z) +hoo(x) = —ic(u(z) — x(2)) —ic[poo(r) —xoo(x)] = 0. S0 f(z) =0
for all x € S, contradicting that f and h are linearly independent.

We conclude that the functional equation (1.1) has no solution in Case B.2.
Case B.3:

f —c1 €1 —CiCa 1
Gl=1| 3 i i x | on S\I,
H 0 0 1 YA
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where c1, co € C\{0} are two constants such that 1+cjc3 =0, x #0, p: S —
C are two multiplicative functions such that y # x and A : S\I, — Cis a
nonzero additive function. Using (4.21) and (4.22) we obtain

f —A A —Ci1C2 w
g | =|-Pa+ira+z (e +3)+2yi x | on S\I,
h 0 0 —1i x A

f(@) = —c1p(z), g(x) = (—7%c1 + 3) p(z) and h(z) =0 for z € I,.

We have o(S\I,) = S\I,. Like in Case A.3 it suffices to check that o(S\I,) C
S\Iy. Indeed, if there exists x € S\I, such that o(z) € I, then h(z) =
—ix(z) A(x), h(o(x)) =0 and f(x) = f(o(z)) = —c1 p(o(z)) because foo =
f. So (4.5) implies

ix(@) A@) = 2ve1 plo(a)). (4.31)

Since 2? € S\I, and o(2?) € I, we have similarly 2i (x(z))? A(z) = 2v¢;
(u(x))?. Then 4vyc; x(x) p(o(x)) = 2ver (u(o(x)))?. As v # 0 and ¢ # 0 we
get

plo(2)) [u(o(2)) = 2x(2)] = 0. (4.32)

If pu(o(x)) =0, then p(x) = x(x) because f oo = f, hence
ol0) = (7% + 5) xlo) + (e + 3) x(0) = o)

Moreover g(o(z)) = (—v?c1 + %) p(o(z)) = 0. Taking (4.6) into account we
get x(z) = vix(z) A(z) = 0.

If u(o(z)) # 0, then (4.32) implies p(o(z)) = 2x(x). As 2?2 € S\I,
and o(z?) € I, we have similarly u(o(2?)) = 2x(2?), and it follows that
4(x(2))* = 2(x(x))?; hence x(z) = 0.

Thus x(x) = 0 in both cases, which contradicts the assumption on x.

We conclude that o(S\I,) C S\I, so o(S\Iy) = S\I, and o(I) = I,.

Let z € I, then it follows from f oo = f and (4.5), that 2 f(z) = 0 so
that p(z) = 0. Hence f(x) = g(x) = h(z) = 0.

On the other hand, since f oo = f, we have

—p+x—caxA=—poo+yooc—cyxooAoo, (4.33)
on the subsemigroup S\, ; then

—poo+put+xoo—x=ca[xoocAooc—xA. (4.34)
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Moreover, taking (4.6) into account we get

2 1 2 1 2 - 1
—Yatg)pt|vats | xt|-raet+2yi-ge | xA

2 1 2 1
—(—a+s)poo—(Fea+5) xoo
2 2
2 o1 )
— = clcg+2’yzf§cQ xooAoo=xi[yA—xooAoo],

and it follows that

1 . 1
(72(31 + 2) [—p+x—coaxAl+pu+2vixA— (7201 + 2)

[~poo+xooc—caxoogAoog|—poo—2yixoogAoo
=7i[xA—xooAoo].

Taking (4.33) into account we get that
p—poo=xilxooAoo —xAl. (4.35)
(4.34) and (4.35) imply ¢ (u —poo) =~i(—poo+pu+ xoo—x). Hence

(vi—co)poo—(yi—ca)u—~yixoo—+yix=0. (4.36)

As vi # 0 we get, according to [7, Theorem 3.18], that the multiplicative
functions p o o, p, x o 0 and x are not different. Since h o ¢ # h, we have
xooAoo # x A and we get, from (4.35), that oo # pu. As u # x we have
two cases according to whether oo = x or yoo = x.
Case B.3.1: poo = x. Then (4.36) becomes (2vi—cz) (x —p) = 0. Since pu # X,
we get that 2vi — co = 0. Using (4.5) and taking into account that 1+cjc3 = 0
we find by elementary computations that co Aco = (xyoo) tu—(xoo) tx.
Proceeding exactly like in Case A.5.3.2.1 we get that A = 0, which contradicts
that A is nonzero in Case B.3.
Case B.3.2: Yoo = x. In this case (4.35) becomes poo—p = co (Y A—x Aoo).
Then x ! poo—x"! = co (A—Aoc). As A—Aoo is an additive function on the
subsemigroup S\ I, we get, by Lemma 4.4, that Aoo = A. So x A = xoo Aco.
Hence h(o(z)) = h(z) for all x € S\I,. Moreover h(o(z)) = h(z) = 0 for all
z € I, so hoo = h, which contradicts the assumption on h.

We conclude that the functional equation (1.1) has no solution in Case B.3.

Case B.4:

f ¢ c(2-p8) -2\ [x1
G| = ilﬂ 1(2 - B i X2 |,
H 5q —3g 0 X3
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where «a, 3, ¢ € C\{0} are three constants with 2ca?8(2—3) = 1; x1, X2, X3 :
S — C are three multiplicative functions. Using (4.21) and (4.22) we obtain

f B (2 - P) —2c X1
g| = cﬂny—i—%ﬂ’—i— %i—(cﬁny—i—%ﬁ—ﬁl %i)+2726+%—2’)/26+% x2 | -

h 75@ %Z 0 X3

From (4.5) we deduce x1 — x2 + x1 00 — x2 0 0 = 4yai f. Since v, a € C\{0}
and f # 0, we get that y; o 0 # x2. Since f and h are linearly independent,
so are f and H. Then we get that x2 # x3 and x1 # Xx3.

On the other hand, since f oo = f, we get that

Bxi+@2=PB)x2—-2x3—Bxic0—-(2—-PB)x200+2x300=0. (4.37)

Since 3 # 0, we deduce from (4.37), according to [7, Theorem 3.18], that the
multiplicative functions x1, X2, X3, X1 ©0, X2 ©c and x3 o ¢ are not different.
Since x1 # X2, X1 7 X3, X2 7 X3 and x1 # X2 0o we have two cases according
to whether y; 00 = x1 or x1 00 = x3.

Using [7, Theorem 3.18] we check that the remaining cases xa = x2 o o,
X2 = x3 oo and x3 = X3 o 0 can be subsumed within the first two ones
X100 =Yx1 and x1 00 = x3.

Case B.4.1: x1 o0 = x1. In this case x3 = x2 00 and § = 4. Putting p =
— i € C\{0} we obtain

f P’ 1 —3p° T X1
gl=1r=1% 3(=p¥+4dpy—-1) 3(=p**+1) X2
h p —p 0 X200
Using (4.23) we find, by elementary computations, that py = 1. Hence
f PP =zt =30’ X1
g|l=120 1 0 X2
h p —p 0 X200

So we obtain a solution of the form (c) in Theorem 4.5.
Case B.4.2: x1 0o 0 = x3. In this case x3 = x1 00, xa = x200 and g = —2.
Putting A = 5~ € C\{0} we obtain

f —1A2 A2 —1A2 X1
g =32+ -1 (=12 (=27 +1) X2
h —-A A 0 X100
Using (4.23) we find, by elementary computations, that Ay = 1. Hence
R SR
9| = 1 0 0 x2 |,

h - A 0 X100
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which can be written as

f )\2 _%)\2 _%)\2 X2
gl=10 1 0 X1
h A=A 0 X100
So we obtain a solution of the form (c) in Theorem 4.5.
Case B.5:
f=F

G:—%(52F1+G1+(5H1
H=-0F +H

where the functions Fi, G, Hy : S — C are of the forms in cases B.1-B.4 and
6 € C is a constant.
From (4.21) and (4.22) we derive

f=F
(IT1)§ 9= [30> = 0*] Fi+ Gy + (n+ i) Hi
hiéiFlfiHl

where 1 = § + i.
On the other hand the properties f oo = f, (4.5), (4.6) and (4.23) imply

Fioo =I
(IV) (G1+T]H1)OO':G1+7]H1
H100+H1 :2’17F1
We have the following cases
Case B.5.1:
R 1o g 1\ (XM
Gi|=[0 1 0 0 XXA on S\Iy,
H, 0 0o 1 0 Y A2

Fi(z) =Gi(z) =Hi(x) =0 for =z €I,
where x : S — C is a nonzero multiplicative function and A, 4, : S\I,, — C
are two additive functions with A # 0.

By the same computations as used in Case B.1 we prove that o(S\I,) =

S\I, o(I,) = I, and x o0 = x. Then G; 0 0 = G;. We split the discussion
into the cases n # 0 and n = 0.
Case B.5.1.1: ) # 0. As (G1+n Hy)oo = G1+n Hy we get that n Hyoo = n Hy,
so Hy o 0 = H;. Taking into account that Hy o 0 + H1 = 2n F; we get that
Hy = nFy. Then h = (§ — n)if, contradicting that f and h are linearly
independent.
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Case B.5.1.2: n = 0. Then § = —vi and the conditions (I'V') become

FloU:Fl
G100':G1
H100':—H1.

By the same method as the one in Case A.1 we get that Aoo = —A and
Ay o0 = A;. Moreover by putting Fy = Fy, Gy = Gy and Hy = —iH; and
writing 67 instead of § in (I1I) we obtain that

[ =F
g=—30"Fy+Go+3H ,
h=—6Fy+ Hy
where
Fo AN
Go|=(0 1 0 0 XXA on S\I,
Hy 00 =i o)\

Fyo(x) = Go(z) = Ho(x) =0 for =z €I,
is a solution of the form (a) in Theorem 4.5. The solutions occur in (d) of the
list of Theorem 4.5.

Case B.5.2:
P 2 —c —¢ 0
Gi|=10 1 0 X on S\I,
H, c —c 0 x A

Fi(z) = pu(z), Gi(z) =0 and Hy(z) = cpu(z), for z € I,,
where ¢ € C\{0} is a constant, x # 0, u : S — C are two multiplicative
functions such that p # x and A : S\I,, — C is a nonzero additive function.
We have o(S\I,,) = S\I. Like in Case A.3 it suffices to check that o(S\I,)
C S\I,. Indeed, if there exists an element = € S\I,, such that o(x) € I,, then
the first and the second identities of (IV) imply ¢ u(o(x)) = ¢ (u(z) —cx(z)) —
x(x) A(z) and x(z) + ne(p(z) — x(x)) = nep(o(x)). Hence nx(z) A(z) =
—x(z). Since x(x) # 0, we get that n A(z) = —1. As 22 € S\I, and o(2?) €
I, we get similarly that n A(z?) = —1. Using the additivity of A we obtain
27 A(z?*) = —1, which is a contradiction. We deduce that o(S\I,,) = S\I, and
o(I) = I.
On the other hand, using the third identity of (IV), we obtain, on S\I,,
cpoo—cxoot+ecu—cx=2nclcp—cx—xA4),
so that
2nxA=(1-2nc)x—(1—-2nc)p+xo0oc—poo.
Applying Lemma 4.4 on the last identity, on the subsemigroup S\I,, we get
that 2nx A = 0.
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If n # 0, then A = 0, which contradicts that A is nonzero in Case B.5.2.

If n = 0, then the identity above gives x oo+ x = oo+ p while the second
identity of (I'V) becomes x o o = x, 80 2x = o o + p on the subsemigroup
S\I. According to [7, Corollary 3.19] we get that x = p on the subsemigroup
S\ I, then Hq(z) =0 for all x € S\I,. Moreover, for all z € I, the first and
the third identities of (IV) imply u(o(x)) = u(x) and p(o(z)) = —p(x), so
p(z) = 0. Hence Hy(x) = 0 for all x € S\I,, so H; = 0. Considering the first
and the third identities of (I11) we get that h = i f, which contradicts the
linear independence of f and h.
We conclude that the functional equation (1.1) has no solution in Case B.5.2.
Case B.5.3:

Fy —c1 1 —C1e o
G| = % % —%62 X on S\I,
H,y 0 0 1 XA

Fi(z) = —cy p(z), Gi(z) = L p(z) and Hy(z) =0 for z € I,
where ¢1, ca € C\{0} are two constants such that 1+cic3 =0, x #0, u: S —
C are two multiplicative functions such that p # x and A : S\I,, — C is a
nonzero additive function.

We have o(S\I,) = S\I,. Like in Case A.3 it suffices to check that o(S\I,)
C S\I,. Indeed, if there exists an element « € S\I, such that o(z) € I, then
the first and the second identities of (V') imply

() + x(2) — 2 X(2) A() = —p(o(2)
and
p(@) + x(x) = (e = 2n) x(2) A(z) = p(o(x)).
Adding the two last identities we obtain 2 x(x) —2 (c2 —n) x(x) A(x) = 0. Since
x(z) # 0, we get that (co —n) A(z) = 1. As 2? € S\I,, and o(2?) € I, we get
similarly that (c2—n) A(z?) = 1. Since A is additive, we get 2 (ca—n) A(z) = 1,
which is a contradiction. We deduce that o(S\I,) = S\I,, and o(I) = I.
On the other hand the first and the second identities of (I'V') imply, on
S\
—poo+xoog—caxoogAoo=—pu+x—caxA (4.38)
and
poo+xoo—(ca—2n)xoocAoo=p+x—(c2—2n) x4, (4.39)
and subtracting (4.38) from (4.39) we derive
nxA—nxoocAooc=poo—p. (4.40)
Moreover, using the third identity of (IV') we get
xoocAoo+ (14+2nciea)xA=2nc (x — p). (4.41)
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Multiplying both sides of (4.41) by 1 and adding the identity obtained to (4.40)
we get

2n(1+ncie)xA=2n0*cix— (1 +20c))u+poo. (4.42)

Applying Lemma 4.4 on the subsemigroup S\I, and taking into account that
x(z) # 0 for all z € S\I, we get that

n(l+ncrea) A=0. (4.43)

If n = 0, then we get, from (4.40) and (4.41) respectively, that poo = p
and yoo Aoo = —x A. Taking (4.39) into account it follows that x oo — x =
—2¢ x A. Since ¢o # 0 and x(x) # 0 for all x € S\I,,, we get, according to
Lemma 4.4, that A = 0, contradicting that A is nonzero in Case B.5.3.

If n 20 and 1+ ncyea # 0, then we get from (4.43) that A = 0, which
contradicts that A is nonzero in Case B.5.3.

If 1 +ncice =0, then n = ¢y because 1+ ¢; c% = 0. Replacing n by ¢y in
(4.42) we get that 2 x = 4+ p oo on the subsemigroup S\I,. According to [7,
Corollary 3.19] we get that x = p = p oo on the subsemigroup S\I,. Using
(4.38) we get that Yoo Aoo = x A, so Hy oo = H; on the subsemigroup
S\Iy. As Hi(z) = 0 for all € I,, and o(I,,) = I, we get that Hy oo = Hj.
It follows, from the third identity of (IV'), that H; = n F} = co F;. Using the
first and the third identities of (I1I) we get that h = (§ — c2)if, contradicting
that f and h are linearly independent.

We conclude that the functional equation (1.1) has no solution in Case
B.5.3.

Case B.5.4:
F cf c2-B) —2c\ [x1
Gl = iﬁ % (2 - 6) % X2 1>
Hy ﬁ *i 0 X3

where «a, 3, ¢ € C\{0} are three constants with 2ca?8(2—3) = 1; x1, X2, X3 :
S — C are three multiplicative functions such that x; # x2, x1 # X3 and
X2 7# X3-

We split the discussion into the cases n # 0 and n = 0.
Case B.5.4.1: n = 0. Then § = —vi and the conditions (I'V') become

Fioo=F;
Gl o0 = Gl
H1 o0 = —Hl.
So, writing « instead of «i, Fj := Fy, Gy := G and Hy := —iH; is a solution
of the functional equation (1.1) of the form
Fo cfc(2-0) —2¢\ [x1
Go|=(18 12-5) 3 X2 |
Hy = -5 0 X3
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where a, 3, c € C\{0} are three constants with 2ca? 3 (2 — 3) = —1; x1, X2,
X3 : S — C are three different multiplicative functions. Indeed, for all z,y € S
we have

Fi(zy) = Fi(2)G1(y) + Gi(z) Fi(y) + Hi () Hi(y),
so that

Fi(zo(y)) = Fi(z)G1(o(y)) + Gi(z) Fi(o(y)) + Hi(z)Hi(o(y))

= Fi(2)G1(y) + G1(2)Fi(y) — Hi(x)Hi(y)

= Fi(2)Gi(y) + Gi(2) Fi(y) + (—iHy(2))(—iH1 (y)),
hence Fo(zo(y)) = Fo(z)Go(y) + Go(x)Fo(y) + Ho(z)Ho(y) for all z,y € S.
On the other hand Hy o o0 = —Hj. Since f and h are linearly independent,
so are Fy and Hy. It follows, according to the result of Case A.4, that Fy, Gy
and Hy are of the form (b) in Theorem 4.5. Moreover taking into account that
Fy=Fi, Gy =Gy, Hy= —iHy, n =0 and § = —vi we obtain, by writing —§
instead of §i in (I1T),

f=1I
g=—%30Fy+Go+ 0 Hy.
h:—6F0+H0

The solutions occur in (d) of the list of Theorem 4.5.
Case B.5.4.2: n # 0. By similar computations to the ones in Case B.4 now
applied to (F1,G1, Hy) we prove that

Py —0* 50" 3%\ [ X
Gl = 1 _% % 14 )
H, p —p 0 oo

where p € C\{0} is a constant such that pn = —1 and x,u : S — C are two
multiplicative functions such that Yoo = x and x # u. Using (I1T) we deduce

1 .
g= {252 - 772] Fi 4+ Gy + (n+~i)H,y
1 .
= 552F1 — 0By + Gy + (n+ i) Hy
1 1
= 562F1 + (pn)*x — §(p77)2u
1, 11 .
—s(em) poo+x — spu+spoo+ (n+vyi)H

2 2 2
1 .
= 552F1+2(X—M)+M+(77+’72)H1-

Since Hy = p(x — p) and pn = —1, we get x — u = —nH;. Hence

1 1
= 552F1 +u+(yi—n)H = 552F1 +pu—0H;.
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By putting Fy = F1, Go = p and Hy = —iH; and writing —¢ instead of 47 in
(III) we obtain

f=F
g=—%0°Fy+ Go+ 0 Hy
h = —0Fy+ Hoy,
with
Fy -0 30t 3\ [ X
Go | = 0 1 0 I ,
Hy —pi ol 0 pnoo
which can be written as
Fy Tt T W Y
Go|l =10 1 0 I ,
Hy P —p 0 poo

where p € C\{0}, so Fy, Gy and Hy are of the form (c¢) in Theorem 4.5 and
the solutions occur in (d) of the list of Theorem 4.5.

Conversely if f, g and h are of the forms (a)-(d) in Theorem 4.5 we check by
elementary computations that f, g and h satisfy the functional equation (1.1),
and f and h are linearly independent and that h o o # h. This completes the
proof of Theorem 4.5. g

Remark 4.6. Let S be a semigroup generated by its squares and o : S — S be
an involutive automorphism. We consider the variant

flo(y)z) = f(z)g(y) + g(x) f(y) + h(z)h(y), z,y€S (4.44)

of the functional equation (1.1).

Let f,g,h : S — C satisfy the functional equation (4.44). The right hand
side of (4.44) is invariant under the interchange of z and y. So f(o(y)z) =
f(o(z)y) for all ,y € S. By the same computations as the ones in the proof
of Proposition 3.1 we derive that f is central. Then f,g and h satisfy the
functional equation (1.1). Conversely we check similarly that if f,g,h: S — C
satisfy the functional equation (1.1) then they satisfy (4.44). Thus the func-
tional equation (1.1) and its variant (4.44) have the same solutions.
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