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Abstract. We determine the complex-valued solutions of the following extension of the
Cosine–Sine functional equation

f(xσ(y)) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ S,

where S is a semigroup generated by its squares and σ is an involutive automorphism of S.
We express the solutions in terms of multiplicative and additive functions.
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1. Introduction

Let S be a semigroup and let σ be an involutive automorphism of S. That it
is involutive means that σ(σ(x)) = x for all x ∈ S.

The functional equation

f(xσ(y)) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ S (1.1)

includes a number of functional equations which have been treated by several
authors in the literature. The case of the sine addition law

f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ G, (1.2)

has been treated on groups, semigroups and algebras. See for example [7,
chapter 4] and [3]. Poulsen and Stetkær [5] derived the solution formulas for
the functional equations

f(xσ(y)) = f(x)g(y) + g(x)f(y), x, y ∈ G, (1.3)
f(xσ(y)) = f(x)g(y) − g(x)f(y), x, y ∈ G,

g(xσ(y)) = g(x)g(y) + f(x)f(y), x, y ∈ G,

on topological groups.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-017-0512-9&domain=pdf
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Chung et al. [2] solved the functional equation

f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y)

on groups.
We refer also to [1], [6, Section 11.7] and [7] for further contextual and

historical discussions.
Our main goal in this paper is to solve the functional equation (1.1) on

semigroups generated by their squares. We notice here that (1.1) is a simple
example of Levi-Civitá’s functional equation, and there is a general theory
about the general form of the structure of solutions of Levi-Civitá’s functional
equation on monoids, using matrix-coefficients of the right regular represen-
tation, see for example [7, Theorem 5.2]. But given a Levi-Civitá functional
equation of a special form like (1.2) the application of the general theory is not
the final word about its solutions. There will be a possible linear dependence
between the functions on the right hand side of (1.1) to take into account as
well as the internal structure of the monoid.

The remark above is illustrated by the treatment of the sine addition law
(see for example [7, Corollary 4.4]). In this paper we take a more direct ap-
proach.

Replacing the semigroup S in the functional equation (1.1) by a group we
can provide a specialization of it. In particular, our results contain the solutions
of the following functional equation

f(x − y) = f(x)g(y) + g(x)f(y) + h(x)h(y)

on abelian groups that are not in the literature.
Our main contributions to the knowledge about the Cosine–Sine functional

equation (1.1) are the following
1) We extend the setting from groups to semigroups generated by their

squares and with involutive automorphisms.
2) We relate the solutions of (1.1) to those of

f(xσ(y)) = f(x)g(y) + g(x)f(y), x, y ∈ S

and

f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ S.

3) We produce explicit solution formulas of Eq. (1.1).
It is intriguing to see that some methods of [2] carry over to the more general
situation (1.1).

2. Notation and terminology

Throughout this paper S denotes a semigroup (a set with an associative com-
position) generated by its squares. The map σ : S → S denotes an involutive
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automorphism. That σ is involutive means that σ(σ(x)) = x for all x ∈ S.
Various examples of involutive automorphisms on semigroups can be found
in [3].

Let f : S → C. We call fe := f+f◦σ
2 the even part of f and fo := f−f◦σ

2 its
odd part. We say that f is even if f = f ◦ σ and that f is odd if f = −f ◦ σ.
That is, f is even or odd with respect to σ.

A function f : S → C is said to be central if f(xy) = f(yx) for all x, y ∈ S
and f is said to be abelian if f(x1x2 · · · xn) = f(xπ(1)xπ(2) · · · xπ(n)) for all
x1, x2, . . . , xn ∈ S, all permutations π of n elements and all n = 1, 2, 3, . . . [7,
Definition B.3].

A multiplicative function on S is a homomorphism χ : S → (C, ·). If χ �= 0,
then Iχ := {x ∈ S | χ(x) = 0} is either empty or a proper subset of S. Iχ is a
two sided ideal in S if not empty and S\Iχ is a subsemigroup of S.

3. Basic results

The continuous solutions of the functional equation (1.3) were obtained on
topological groups in [5] and on monoids generated by their squares in [3,
Proposition 3.6]. We shall now extend these results to semigroups generated
by their squares.

Proposition 3.1. The solutions f, g : S → C of the functional equation (1.3)
can be listed as follows

(a) f = 0 and g is arbitrary.
(b) f = α(χ1 − χ2), g = χ1+χ2

2 , where α ∈ C\{0} is a constant and χ1, χ2 :
S → C are two multiplicative functions such that χ1 �= χ2, χ1 ◦ σ = χ1

and χ2 ◦ σ = χ2.
(c) {

f(x) = χ(x) a(x), g(x) = χ(x) for x ∈ S\Iχ

f(x) = 0, g(x) = 0 for x ∈ Iχ,

where χ : S → C is a nonzero multiplicative function and a : S\Iχ → C

is a nonzero additive function such that χ ◦ σ = χ and a ◦ σ = a.

Proof. If f = 0 then g is arbitrary. Assume that f �= 0. Let x, y, z ∈ S.
By interchanging x and y in Eq. (1.3) we get that f(yσ(x)) = f(xσ(y)),
then f ◦ σ(xy) = f(σ(x)σ(y)) = f(yx) for all x, y ∈ S. Hence f ◦ σ(xyz) =
f ◦ σ(x(yz)) = f(yzx) = f ◦ σ((zx)y) = f ◦ σ(z(xy)) = f(xyz) for all x, y, z ∈
S. Since S is generated by its squares, there exist x1, . . . , xn ∈ S such that
x = x2

1 · · · x2
n. So we have f ◦ σ(x) = f ◦ σ(x2

1 · · · x2
n). If n = 1 we obtain

f ◦σ(x) = f ◦σ(x2
1) = f(x2

1) = f(x). If n ≥ 2 we have f ◦σ(x) = f ◦σ(x1x1(x2
2 ·

· · x2
n)) = f(x1x1(x2

2 · · · x2
n)) = f(x). Hence f is even with respect to σ and
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central. By similar computations to the ones in the proof of [5, Theorem II.3]
we get, for all x, y ∈ S,

f(x)g(y) + g(x)f(y) = f(xσ(y)) = f ◦ σ(xσ(y)) = f(σ(x)y)
= f(σ(x))g(σ(y)) + g(σ(x))f(σ(y))
= f(x)g(σ(y)) + g(σ(x))f(y).

We infer

f(x)[g(σ(y)) − g(y)] = [g(x) − g(σ(x))]f(y), x, y ∈ S.

Applying [7, Exercise 1.1(b)] to the last identity we get that g ◦σ = g, because
f �= 0. So the functional equation (1.3) implies the sine addition law

f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ S. (3.1)

According to [7, Theorem 4.1] there exist two multiplicative functions χ1, χ2 :
S → C and a constant c1 ∈ C such that g = χ1+χ2

2 and 2c1f = χ1 − χ2. As
f ◦ σ = f , g ◦ σ = g, we get that χ1 ◦ σ = χ1 and χ2 ◦ σ = χ2. We split the
discussion into the cases χ1 �= χ2 or χ1 = χ2.
Case 1: χ1 �= χ2. Then c1 �= 0, and it follows that f = α(χ1 − χ2) with
α := 1

2c1
∈ C\{0} a constant.

Case 2: χ1 = χ2. Putting χ = χ1 = χ2 the functional equation (3.1) becomes

f(xy) = f(x)χ(y) + χ(x)f(y), x, y ∈ S. (3.2)

As f �= 0 and S is generated by its squares we get from (3.2) that χ �= 0. By
similar computations to the ones in the proof of [3, Lemma 3.4] we deduce
from (3.2) that there exists a nonzero additive function a : S\Iχ → C such
that a ◦ σ = a, f = χ a on S\Iχ and f = 0 on Iχ.

Conversely we check by elementary computations that the pairs (f, g)
described in Proposition 3.1 are solutions of Eq. (1.3). This completes the
proof. �

Remark 3.2. If f, g : S → C satisfy the functional equation (1.3), the formulas
in the cases (a), (b) and (c) of Proposition 3.1 reveal that if f �= 0 both f and
g are abelian and even with respect to σ.

4. Main results

Chung et al. [2] solved the functional equation f(xy) = f(x)g(y) + g(x)f(y) +
h(x)h(y) where f, g, h are unknown complex-valued functions defined on a
group. In the present section we deal with the functional equation (1.1) on a
semigroup generated by its squares. We start with the following properties.
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4.1. Key properties of the solutions

Lemma 4.1. Let f, g, h : S → C be a solution of the functional equation (1.1).

(a) f(xσ(y)) = f(yσ(x)) for all x, y ∈ S.
(b) f ◦ σ(xy) = f(yx) for all x, y ∈ S.
(c) f ◦ σ(xyz) = f(xyz) for all x, y, z ∈ S.
(d) f is even with respect to σ and central.
(e)

2f(x)go(y) + h(x)h(y) = −2f(y)go(x) + h(σ(x))h(σ(y)), (4.1)
f(x)go(y) + he(x)ho(y) = 0, (4.2)

f(xy) − f(xσ(y)) = −2ho(x)ho(y), (4.3)

for all x, y ∈ S.

Proof. (a) The right hand side of the functional equation (1.1) is invariant
under the interchange of x and y. So f(xσ(y)) = f(yσ(x)) for all x, y ∈ S.

(b) From (1) we get f ◦ σ(xy) = f(σ(x)σ(y)) = f(yx) for all x, y ∈ S.
(c) For all x, y, z ∈ S we have, using the result (b), f◦σ(xyz) = f◦σ(x(yz)) =

f(yzx) = f ◦ σ(zxy) = f(xyz).
(d) By the same computations used to prove that f is even and central in

the proof of Proposition 3.1.
(e) Using that f is even we get f(xσ(y)) = f ◦ σ(σ(x)y) = f(σ(x)y). So,

f(x)g(y) + g(x)f(y) + h(x)h(y) = f(x)g(σ(y)) + g(σ(x))f(y) + h(σ(x))
h(σ(y)), which implies Eq. (4.1).

Replacing x by σ(x) in Eq. (4.1) and taking into account that f ◦ σ =
f and go ◦ σ = −go we obtain 2f(x)go(y) − 2f(y)go(x) + h(σ(x))h(y) −
h(x)h(σ(y)) = 0. When to this we add (4.1) we obtain 4f(x)go(y)+h(x)h(y)−
h(σ(x))h(σ(y)) + h(σ(x))h(y) − h(x)h(σ(y)) = 0. From this it follows that
4f(x)go(y)+h(x)[h(y)−h(σ(y))]+h(σ(x))[h(y)−h(σ(y))] = 0, which implies
that 4f(x)go(y) + [h(x) + h(σ(x))][h(y) − h(σ(y))] = 0. This is (4.2).

On the other hand, by replacing y by σ(y) in Eq. (1.1) and taking into
account that f◦σ = f we obtain f(xy) = f(x)g(σ(y))+g(x)f(y)+h(x)h(σ(y)),
then f(xy) − f(xσ(y)) = −f(x)(g(y) − g(σ(y))) − h(x)(h(y) − h(σ(y))). This
implies f(xy) − f(xσ(y)) = −2f(x)go(y) − 2h(x)ho(y). From Eq. (4.2) we
obtain

f(xy) − f(xσ(y)) = 2he(x)ho(y) − 2h(x)ho(y)
= −2(h(x) − he(x))ho(y) = −2ho(x)ho(y).

This proves (4.3) and completes the proof. �

To solve the functional equation (1.1) we will discuss two cases according
to whether f and h are linearly independent or not.
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4.2. The solutions of (1.1) when f and h are linearly dependent

Theorem 4.2. The solutions f, g, h : S → C of the functional equation (1.1)
such that f and h are dependent can be listed as follows

(a) f = 0, g arbitrary and h = 0.
(b) f = α (χ1−χ2), g = χ1+χ2

2 −β2 χ1−χ2
2α , h = β (χ1−χ2) where α ∈ C\{0}

and β ∈ C are two constants, χ1, χ2 : S → C are two multiplicative
functions such that χ1 �= χ2, χ1 ◦ σ = χ1, χ2 ◦ σ = χ2.

(c) {
f = χ a, g = χ

(
1 − c2

2 a
)

and h = c χ a on S\Iχ

f(x) = g(x) = h(x) = 0 for x ∈ Iχ

where c ∈ C is a constant, χ : S → C is a nonzero multiplicative function
such that χ ◦ σ = χ, a : S\Iχ → C is a nonzero additive function such
that a ◦ σ = a.

Proof. Let f, g, h : S → C be a solution of the functional equation (1.1) such
that f and h are linearly dependent. If f = 0, then the functional equation
(1.1) becomes h(x)h(y) = 0 for all x, y ∈ S, so h = 0 and g is arbitrary. So
during the rest of the proof we will assume that f �= 0. Since f and h are
assumed to be linearly dependent, there exists a constant c ∈ C such that
h = cf . So Eq. (1.1) can be written as follows

f(xσ(y)) = f(x)g(y) + g(x)f(y) + c2f(x)f(y)

= f(x)
[
g(y) +

c2

2
f(y)

]
+

[
g(x) +

c2

2
f(x)

]
f(y),

which becomes

f(xσ(y)) = f(x)k(y) + k(x)f(y), x, y ∈ S, (4.4)

where k = g + c2

2 f . According to Proposition 3.1 we have two cases:
Case 1: f = α (χ1 − χ2), k = χ1+χ2

2 where α ∈ C\{0} is a constant and
χ1, χ2 : S → C are two multiplicative functions such that χ1 �= χ2, χ1◦σ = χ1

and χ2 ◦ σ = χ2. As h = c f we obtain h = β (χ1 − χ2) where β = αc ∈ C is a
constant. On the other hand we have g = k − c2

2 f = χ1+χ2
2 − αc2

2 (χ1 − χ2) =
χ1+χ2

2 − β2 χ1−χ2
2α .

Case 2: {
f(x) = χ(x) a(x), k(x) = χ(x) for x ∈ S\Iχ

f(x) = 0, k(x) = 0 for x ∈ Iχ,

where χ : S → C is a nonzero multiplicative function and a : S\Iχ → C is a
nonzero additive function such that χ ◦ σ = χ and a ◦ σ = a.
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Since h = c f and k = g + c2

2 f , we find, on S\Iχ where f = χ a, that
g = χ(1 − c2

2 a) and h = c χ a. On the other hand we obtain g = 0 and h = 0
on Iχ.

Conversely, if f , g and h are of the forms (a)-(c) in Theorem 4.2 we check
by elementary computations that f , g and h satisfy the functional equation
(1.1), and that f and h are linearly dependent. This completes the proof of
Theorem 4.2. �

4.3. The solutions of (1.1) when f and h are linearly independent

Let f, g, h : S → C satisfy the functional equation (1.1) so that f and h
are linearly independent. According to Lemma 4.1(d) we have f ◦ σ = f .
Consequently Eq. (1.1) implies that

f(xy) = f(x)g(σ(y)) + g(x)f(y) + h(x)h(σ(y)), x, y ∈ S.

Since f �= 0, according to (4.2), ho = 0 implies go = 0. So we will discuss the
following possibilities: h ◦ σ = h and h ◦ σ �= h.

We notice here that if h ◦ σ = h Eq. (1.1) can be written as follows

f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ S.

In this case we extend the results obtained in [2] on groups to semigroups
generated by their squares.

4.3.1. The case h ◦ σ = h.

Theorem 4.3. The solutions f, g, h : S → C of the functional equation (1.1)
with f and h linearly independent and h ◦ σ = h can be listed as follows
(a)

⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎜⎜⎝

χ A1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ,

f(x) = g(x) = h(x) = 0 for x ∈ Iχ

where χ : S → C is a nonzero multiplicative function and A, A1 : S\Iχ →
C are two additive functions with χ ◦ σ = χ, A ◦ σ = A, A1 ◦ σ = A1 and
A �= 0.

(b) ⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝c2 −c2 −c

0 1 0
c −c 0

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = c2 μ(x), g(x) = 0 and h(x) = c μ(x) for x ∈ Iχ,
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where c ∈ C\{0} is a constant, χ, μ : S → C are two multiplicative
functions where χ is nonzero, and A : S\Iχ → C is a nonzero additive
function such μ �= χ, χ ◦ σ = χ, μ ◦ σ = μ and A ◦ σ = A.

(c) ⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝−c1 c1 −c1c2

1
2

1
2 − 1

2c2
0 0 1

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = −c1 μ(x), g(x) = 1
2 μ(x) and h(x) = 0 for x ∈ Iχ,

where c1, c2 ∈ C\{0} are two constants satisfying 1 + c1 c22 = 0; μ, χ :
S → C are two multiplicative functions and A : S\Iχ → C is a nonzero
additive function such that χ �= 0, χ �= μ, χ ◦ σ = χ, μ ◦ σ = μ and
A ◦ σ = A.

(d) ⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝c β c (2 − β) −2 c

1
4 β 1

4 (2 − β) 1
2

1
2α − 1

2α 0

⎞
⎠

⎛
⎝χ1

χ2

χ3

⎞
⎠ ,

where α, β, c ∈ C\{0} are three constants with 2 c α2 β (2 − β) = 1;
χ1, χ2, χ3 : S → C are three multiplicative functions such that χ1 �= χ2,
χ1 �= χ3, χ2 �= χ3, χ1 ◦ σ = χ1, χ2 ◦ σ = χ2 and χ3 ◦ σ = χ3.

(e) ⎧⎨
⎩

f = F,
g = − 1

2δ2 F + G + δ H,
h = −δ F + H,

where δ ∈ C is a constant and the functions F,G,H : S → C are of the
forms (a)-(d) with the same constraints.

Proof. By using similar computations to the ones in the proof of [2, Section 3,
Theorem]. �

4.3.2. The case h ◦ σ �= h. The following lemma (due to Stetkær) will be
used later.

Lemma 4.4. Let A : S → C be an additive function and χ : S → C be a
multiplicative function on a semigroup S.

If χ A = ΣN
j=1cjχj, where cj ∈ C and χj : S → C is multiplicative for each

j = 1, 2, . . . , N , then χ A = 0.

Proof. It suffices to prove that A = 0 on the subsemigroup {x ∈ S | χ(x) �= 0},
so we may assume that S = {x ∈ S | χ(x) �= 0}. In that case we can divide by
χ(x), so we may furthermore assume that χ = 1. We can finally assume that
{χ1, χ2, . . . , χN} are different.
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Let y ∈ S be arbitrary. We shall show that A(y) = 0. The computation

A(y) = A(xy) − A(x) = ΣN
j=1cj [χj(y) − 1]χj(x) for all x ∈ S,

gives us that

−A(y) · 1 + ΣN
j=1cj [χj(y) − 1]χj(x) = 0 for all x ∈ S.

If χj = 1 for some j, then the corresponding term cj [χj(y) − 1]χj of the
identity above vanishes, so the multiplicative function 1 does not occur in the
sum. According to [7, Theorem 3.18] we obtain from the identity above that
A(y) = 0. So, y being arbitrary, we deduce that χ A = 0. This completes the
proof of Lemma 4.4. �
Theorem 4.5. The solutions f, g, h : S → C of the functional equation (1.1)
with f and h linearly independent and h ◦ σ �= h can be listed as follows:
(a)

⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
0 1 0 0
0 0 −i 0

⎞
⎠

⎛
⎜⎜⎝

χ A1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ,

f(x) = g(x) = h(x) = 0 for x ∈ Iχ,
where χ : S → C is a nonzero multiplicative function; A, A1 : S\Iχ → C

are two additive functions such that χ ◦ σ = χ, A �= 0, A ◦ σ = −A and
A1 ◦ σ = A1.

(b) ⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝−2 ρ2 −2 ρ2 4 ρ2

1
4

1
4

1
2

ρ −ρ 0

⎞
⎠

⎛
⎝ χ

χ ◦ σ
μ

⎞
⎠ ,

where ρ ∈ C\{0} is a constant; χ, μ : S → C are two multiplicative
functions satisfying χ ◦ σ �= χ and μ ◦ σ = μ.

(c) ⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝ρ2 − 1

2 ρ2 − 1
2 ρ2

0 1 0
ρ −ρ 0

⎞
⎠

⎛
⎝ χ

μ
μ ◦ σ

⎞
⎠ ,

where ρ ∈ C\{0} is a constant; χ, μ : S → C are two multiplicative
functions such that χ �= μ, χ ◦ σ = χ and μ ◦ σ �= μ.

(d) ⎧⎨
⎩

f = F0,
g = − 1

2δ2 F0 + G0 + δ H0,
h = −δ F0 + H0,

where δ ∈ C is a constant and the functions F0, G0,H0 : S → C are of
the forms (a)–(c) with the same constraints.
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Proof. Let f, g, h : S → C satisfy the functional equation (1.1) so that f and
h are linearly independent and h ◦ σ �= h. From the identity (4.2) and the fact
that ho �= 0 we deduce that there exists a constant γ ∈ C such that

he = γf, (4.5)

hence ho = h − γf . As f and h are linearly independent we have f �= 0, so we
deduce from (4.2) that

go = −γho. (4.6)

We recall that f ◦ σ = f by Lemma 4.1(d). We split the discussion into the
cases γ = 0 or γ �= 0.
Case A: γ = 0. Then he = 0 and go = 0; hence h ◦ σ = −h and g ◦ σ = g. So
the functional equation (1.1) can be written as

f(xy) = f(x)g(y) + g(x)f(y) + k(x)k(y), x, y ∈ S, (4.7)

where k = i h.
Using similar computations to the ones in the proof of [2, Section 3, Theorem]
we have one of the following cases for the solutions f , g, k of equation (4.7):
Case A.1:

⎛
⎝f

g
k

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎜⎜⎝

χA1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ,

f(x) = g(x) = k(x) = 0 for x ∈ Iχ,
where χ : S → C is a nonzero multiplicative function and A, A1 : S\Iχ → C

are two additive functions with A �= 0. Then

⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
0 1 0 0
0 0 −i 0

⎞
⎠

⎛
⎜⎜⎝

χA1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ,

f(x) = g(x) = h(x) = 0 for x ∈ Iχ.
Since f ◦σ = f , g◦σ = g and h◦σ = −h, we get that χ◦σ = χ, (χ (A1+A2))◦
σ = χ (A1 + A2) and (χ A) ◦ σ = −χ A, then A ◦ σ = −A and A1 ◦ σ = A1.
So we obtain a solution of the functional equation (1.1) of the form (a) in
Theorem 4.5.
Case A.2: ⎛

⎝f
g
k

⎞
⎠ =

⎛
⎝c2 −c2 −c

0 1 0
c −c 0

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = c2μ(x), g(x) = 0 and k(x) = cμ(x) for x ∈ Iχ,
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where c ∈ C\{0} is a constant; χ �= 0, μ : S → C are two multiplicative
functions such that μ �= χ and A : S\Iχ → C is a nonzero additive function.
Then ⎛

⎝f
g
h

⎞
⎠ =

⎛
⎝ c2 −c2 −c

0 1 0
−i c i c 0

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = c2 μ(x), g(x) = 0 and h(x) = −i cμ(x) for x ∈ Iχ.
Notice that we can write g(x) = χ(x) and h(x) = −i c (μ(x) − χ(x)) for
all x ∈ S. Since g ◦ σ = g and h ◦ σ = −h, we get that χ ◦ σ = χ and
(μ − χ) ◦ σ = −μ + χ, then μ ◦ σ + μ = 2χ. According to [7, Corollary 3.19]
either μ◦σ = χ or μ = χ, then μ = χ, hence h = 0. This contradicts the linear
independence of f and h. So the functional equation (1.1) has no solution in
this case.
Case A.3: ⎛

⎝f
g
k

⎞
⎠ =

⎛
⎝−c1 c1 −c1c2

1
2

1
2 − 1

2c2
0 0 1

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = −c1 μ(x), g(x) = 1
2 μ(x) and k(x) = 0 for x ∈ Iχ,

where c1, c2 ∈ C\{0} are two constants satisfying 1+c1c
2
2 = 0; χ �= 0, μ : S →

C are two multiplicative functions such that μ �= χ and A : S\Iχ → C is a
nonzero additive function. Then⎛

⎝f
g
h

⎞
⎠ =

⎛
⎝−c1 c1 −c1c2

1
2

1
2 − 1

2c2
0 0 −i

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = −c1 μ(x), g(x) = 1
2 μ(x) and h(x) = 0 for x ∈ Iχ.

We have σ(S\Iχ) = S\Iχ. Indeed, if there exists an element x ∈ S\Iχ such that
σ(x) ∈ Iχ, then h(x) = −i χ(x)A(x) and h(σ(x)) = 0. Since h(σ(x)) = −h(x)
and χ(x) �= 0, we get that A(x) = 0. We infer from f ◦ σ = f and g ◦ σ = g
that −μ(x)+χ(x) = −μ◦σ(x) and μ(x)+χ(x) = μ◦σ(x). So χ(x) = 0, which
contradicts that x ∈ S\Iχ. Hence σ(S\Iχ) ⊆ S\Iχ, then σ2(S\Iχ) ⊆ σ(S\Iχ).
As σ is involutive we get the converse inclusion. So σ(S\Iχ) = S\Iχ.
On the other hand, as f ◦σ = f , g ◦σ = g and h◦σ = −h, we obtain on S\Iχ:

−μ ◦ σ + χ ◦ σ − c2 χ ◦ σ A ◦ σ = −μ + χ − c2 χ A, (4.8)
μ ◦ σ + χ ◦ σ − c2 χ ◦ σ A ◦ σ = μ + χ − c2 χ A, (4.9)

χ ◦ σ A ◦ σ = −χ A. (4.10)

Subtracting (4.9) and (4.8) we get that μ◦σ = μ. Replacing μ◦σ by μ in (4.9)
and taking (4.10) into account we get that χ ◦ σ − χ = −2c2 χ A. Since c2 �= 0
and χ(x) �= 0 for all x ∈ S\Iχ, we get, according to Lemma 4.4, that A = 0,
contradicting that A is nonzero in Case A.3. So the functional equation (1.1)
has no solution in this case.
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Case A.4: ⎛
⎝f

g
k

⎞
⎠ =

⎛
⎝ c β c (2 − β) −2 c

1
4 β 1

4 (2 − β) 1
2

1
2α1

−1
2α1

0

⎞
⎠

⎛
⎝χ1

χ2

μ

⎞
⎠ ,

where α1, β, c ∈ C\{0} are three constants with 2 c α2
1 β (2−β) = 1; χ1, χ2, μ :

S → C are three multiplicative functions satisfying χ1 �= χ2, χ1 �= μ and
χ2 �= μ. Then ⎛

⎝f
g
h

⎞
⎠ =

⎛
⎝c β c (2 − β) −2 c

1
4 β 1

4 (2 − β) 1
2

1
2α

−1
2α 0

⎞
⎠

⎛
⎝χ1

χ2

μ

⎞
⎠ ,

where α := iα1, β, c ∈ C\{0} are three constants with 2 c α2 β (2 − β) = −1.
Since h ◦ σ = −h, we get that χ1 ◦ σ − χ2 ◦ σ = −χ1 + χ2, then χ1 ◦ σ + χ1 =
χ2 ◦ σ + χ2. According to [7, Corollary 3.19] and taking into account that
χ1 �= χ2 we get that χ1 ◦ σ = χ2. Since f ◦ σ = f and g ◦ σ = g, we get that

β χ1 ◦ σ + (2 − β)χ2 ◦ σ − 2μ ◦ σ = β χ1 + (2 − β)χ2 − 2μ

β χ1 ◦ σ + (2 − β)χ2 ◦ σ + 2μ ◦ σ = β χ1 + (2 − β)χ2 + 2μ.

Subtracting these identities we get that μ ◦ σ = μ. So β χ2 + (2 − β)χ1 =
β χ1 + (2 − β)χ2, then (1 − β)χ1 = (1 − β)χ2. Since χ1 �= χ2, we get that
β = 1. So 2 c α2 = −1. By putting ρ = 1

2α we obtain
⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝−2 ρ2 −2 ρ2 4 ρ2

1
4

1
4

1
2

ρ −ρ 0

⎞
⎠

⎛
⎝ χ

χ ◦ σ
μ

⎞
⎠ ,

where ρ ∈ C\{0} is a constant; χ, μ : S → C are two multiplicative functions
satisfying χ ◦ σ �= χ and μ ◦ σ = μ. As f and h are assumed to be linearly
independent, we get that μ �= 0. So we obtain a solution of the functional
equation (1.1) of the form (b) in Theorem 4.5.
Case A.5:⎧⎨

⎩
f = F1

g = − 1
2δ2 F1 + G1 + δ H1

k = −δ F1 + H1

where the functions F1, G1,H1 : S → C are of the forms in Cases A.1-A.4 and
δ ∈ C is a constant.

So

(I)

⎧⎨
⎩

f = F1

g = − 1
2δ2 F1 + G1 + δ H1

h = δi F1 − iH1.
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The conditions f ◦ σ = f , g ◦ σ = g and h ◦ σ = −h imply

(II)

⎧⎨
⎩

F1 ◦ σ = F1

(G1 + δ H1) ◦ σ = G1 + δ H1

H1 ◦ σ + H1 = 2δ F1.

Since f and h are linearly independent, so are F1 and H1. Then H1 ◦ σ �= H1.
We have the following cases
Case A.5.1:

⎛
⎝F1

G1

H1

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎜⎜⎝

χ A1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ,

F1(x) = G1(x) = H1(x) = 0, for x ∈ Iχ,
where χ : S → C is a nonzero multiplicative function and A, A1 : S\Iχ → C

are two additive functions with A �= 0.
We have σ(S\Iχ) = S\Iχ. Like in Case A.3 it suffices to check that σ(S\Iχ)

⊆ S\Iχ. Indeed, if there exists an element x ∈ S\Iχ such that σ(x) ∈ Iχ, then
the first identity of (II) implies χ(x)(A1(x) + A2(x)) = 0. Since χ(x) �= 0,
we get that A2(x) = −A1(x). As x2 ∈ S\Iχ and x2 ∈ Iχ, we have similarly
A2(x2) = −A1(x2). Since the functions A, A1 : S\Iχ → C are additive, we get
that 4A2(x) = −2A1(x) = 2A2(x), which implies A(x) = 0, so H1(x) = 0.
As σ(x) ∈ Iχ we have H1(σ(x)) = 0. From the second identity of (II) we get
that G1(x) = G1(σ(x)) = 0. Considering the formula of G1 in the present case
we get that χ(x) = 0, which contradicts the assumption x ∈ S\Iχ. We deduce
that σ(S\Iχ) ⊆ S\Iχ. So σ(S\Iχ) = S\Iχ and σ(Iχ) = Iχ.

It follows that the second identity of (II) becomes (χ◦σ)−1 χ (1+δ A) = 1+
δ (A◦σ). Then the function m (1+a)−1, defined from S\Iχ into C is additive,
where m := (χ ◦ σ)−1 χ : S\Iχ → C is multiplicative and a := δ A : S\Iχ → C

is additive. Then m(x2) (1+a(x2))−1 = 2m(x) (1+a(x))−2 for all x ∈ S\Iχ,
which implies (m(x) − 1)m(x) (1 + 2 a(x)) = m(x) − 1 for all x ∈ S\Iχ. So
m(x) = 1 for all x ∈ S\Iχ. Indeed, if not, there exists an element x ∈ S\Iχ

such that m(x) �= 1 and m(x2) �= 1 because S is generated by its squares.
Then m(x) (1+2 a(x)) = 1, which implies 2 a(x) = (m(x))−1 −1. Similarly we
have 2 a(x2) = (m(x2))−1 − 1. Using that a is additive and m is multiplicative
we get that 4 a(x) = (m(x))−2 − 1. Then (m(x))−2 − 1 = 2 (m(x))−1 − 2. It
follows that (m(x))−1 = 1, which contradicts the assumption m(x) �= 1. Hence
χ ◦ σ = χ. Since G1 = χ on S\Iχ, we derive from the second identity of (II)
that δ (H1 ◦ σ − H1) = 0 on S\Iχ. As H1 = 0 on Iχ and σ(Iχ) = Iχ we get
that δ (H1 ◦ σ − H1) = 0 on the semigroup S. Taking into account that H1

and F1 are linearly independent and satisfy the third identity of (II) we get
that H1 ◦ σ �= H1. So δ = 0 and the solution (f, g, h) of (1.1) is of the form
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in Case A.1 and fits into form (a) in Theorem 4.5. As in Case A.1 we derive
immediately that A ◦ σ = −A and A1 ◦ σ = A1.
Case A.5.2: ⎛

⎝F1

G1

H1

⎞
⎠ =

⎛
⎝c2 −c2 −c

0 1 0
c −c 0

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

F1(x) = c2 μ(x), G1(x) = 0 and H1(x) = c μ(x), for x ∈ Iχ,
where c ∈ C\{0} is a constant, χ �= 0, μ : S → C are two multiplicative
functions such that μ �= χ and A : S\Iχ → C is a nonzero additive function.

We have σ(S\Iχ) = S\Iχ. Like in Case A.3 it suffices to check that σ(S\Iχ)
⊆ S\Iχ. Indeed, if there exists an element x ∈ S\Iχ such that σ(x) ∈ Iχ, the
first identity in (II) becomes c2 μ(x) − c2 χ(x) − c χ(x)A(x) = c2 μ(σ(x)),
which implies c (μ(σ(x)) − μ(x)) = −χ(x) (c + A(x)). The second identity in
(II) implies δ c μ(σ(x)) = χ(x)+ δ c (μ(x)−χ(x)), then δ c (μ(σ(x))−μ(x)) =
(1 − δ c)χ(x). Hence (1 − δ c)χ(x) = −δ χ(x) (c + A(x)), from which we get
that δ A(x) = −1. As x2 ∈ S\Iχ and x2 ∈ Iχ we have, similarly, δ A(x2) = −1,
then 2 δ A(x) = −1, which is a contradiction. We deduce that σ(S\Iχ) ⊆ S\Iχ.
So σ(S\Iχ) = S\Iχ and σ(Iχ) = Iχ.

On the other hand, according to the result of Case A.2 we assume that
δ �= 0. On S\Iχ the second identity of (II) implies (χ + δ c (μ − χ)) ◦ σ =
χ + δ c (μ − χ), from which we get that

(1 − δ c)χ ◦ σ − (1 − δ c)χ − δ c μ + δ c μ ◦ σ = 0. (4.11)

On Iχ we have χ ◦ σ = χ = 0 and since F1 ◦ σ = F1, we have μ ◦ σ = μ, so
the identity (4.11) is satisfied on the semigroup S. Since δ c �= 0, we derive,
according to [7, Theorem 3.18], that the multiplicative functions χ, μ, χ ◦ σ
and μ ◦ σ are not different. As χ �= μ and χ ◦ σ �= μ ◦ σ we have the following
cases
Case A.5.2.1: χ ◦ σ = χ. The identity (4.11) implies δ c (μ ◦ σ − μ) = 0, then
μ ◦ σ = μ. So H1 ◦ σ = H1. Applying the third identity of (II) we get that
H1 = δ F1, which contradicts the linear independence of F1 and H1.
Case A.5.2.2: χ ◦ σ = μ. Then μ ◦ σ = χ. So H1 ◦ σ = −H1 on S\Iχ. From
the third identity of (II) we get that F1 = 0 on S\Iχ. For all x ∈ Iχ we have
F1(x) = c2 μ(x) = c2 χ(σ(x)) = 0 because σ(Iχ) = Iχ. Hence f(x) = F1(x) = 0
for all x ∈ S, which contradicts the linear independence of f and h.
Case A.5.2.3: μ ◦ σ = μ. In this case the first identity of (II) implies c χ ◦
σ + χ ◦ σ A ◦ σ = c χ + χ A on S\Iχ. Then χ ◦ σ (c + A ◦ σ) = χ (c + A). So
1 + b = m (1 + a) where m := (χ ◦ σ)−1 χ : S\Iχ → C is a multiplicative
function, and a := c−1 A : S\Iχ → C and b := c−1 A ◦ σ : S\Iχ → C are
two additive functions. Proceeding exactly as in Case A.5.1 we derive that
χ ◦ σ = χ on S\Iχ. As χ ◦ σ = χ = 0 on Iχ we get that χ ◦ σ = χ on the
semigroup S. So we go back to Case A.5.2.1.
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We conclude that the functional equation (1.1) has no solution in Case
A.5.2.
Case A.5.3: ⎛

⎝F1

G1

H1

⎞
⎠ =

⎛
⎝−c1 c1 −c1c2

1
2

1
2 − 1

2c2
0 0 1

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

F1(x) = −c1 μ(x), G1(x) = 1
2 μ(x) and H1(x) = 0 for x ∈ Iχ,

where c1, c2 ∈ C\{0} are two constants such that 1+ c1c
2
2 = 0, χ �= 0, μ : S →

C are two multiplicative functions such that μ �= χ and A : S\Iχ → C is a
nonzero additive function.

We split the discussion into the cases δ �= 0 and δ = 0.
Case A.5.3.1: δ = 0. In this case we get⎛

⎝f
g
h

⎞
⎠ =

⎛
⎝−c1 c1 −c1c2

1
2

1
2 − 1

2c2
0 0 −i

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = −c1 μ(x), g(x) = 1
2 μ(x) and h(x) = 0 for x ∈ Iχ,

where c1, c2 ∈ C\{0}, χ �= 0, μ : S → C are two multiplicative functions and
A : S\Iχ → C is an additive function satisfying the same assumptions as the
ones above. This is Case A.3. As seen earlier this case has no solution.
Case A.5.3.2: δ �= 0. In this case σ(S\Iχ) = S\Iχ. Like in Case A.3 it suffices
to check that σ(S\Iχ) ⊆ S\Iχ. Indeed, if there exists an element x ∈ S\Iχ

such that σ(x) ∈ Iχ then we get that H1(x) = χ(x)A(x), H1(σ(x)) = 0 and
F1(σ(x)) = −c1 μ(σ(x)). Using the first and the third identities of (II) we
obtain

χ(x)A(x) = −2 δ c1 μ(σ(x)).
Since x2 ∈ S\Iχ and σ(x2) ∈ Iχ, we have similarly χ(x2)A(x2) = −2 δ c1
μ(σ(x2)). Then 2 (χ(x))2 A(x) = −2 δ c1(μ(σ(x)))2. Hence

δ c1 (μ(σ(x)))2 = 2 δ c1 χ(x)μ(σ(x)),

which implies
δ c1 μ(σ(x)) [μ(σ(x)) − 2χ(x)] = 0.

Notice that c1 �= 0 and δ �= 0.
If μ(σ(x)) = 0 then F1(σ(x)) = −c1 μ(σ(x)) = 0 because σ(x) ∈ Iχ. Using

the first identity in (II) we get that −c1 μ(x) + c1 χ(x) − c1 c2 χ(x)A(x) = 0.
As c1 �= 0 and χ(x)A(x) = −2 δ c1 μ(σ(x)) = 0 we find that χ(x) = μ(x).
Since x ∈ S\Iχ, we have G1(x) = 1

2 [μ(x)+χ(x)−c2 χ(x)A(x)] = μ(x) = χ(x).
Moreover from H1(x) = 0, H1(σ(x)) = 0 and (G1+δ H1)◦σ = G1+δ H1 we find
that G1(σ(x)) = G1(x). As σ(x) ∈ Iχ we have G1(σ(x)) = 1

2 μ(σ(x)). Hence
χ(x) = μ(x) = 1

2 μ(σ(x)) = 0, which contradicts the assumption x ∈ S\Iχ.
Hence μ(σ(x)) �= 0. Here we get that μ(σ(x)) = 2χ(x). As x2 ∈ S\Iχ

and σ(x2) ∈ Iχ, and μ(σ(x2)) �= 0 because μ(σ(x2)) = (μ(σ(x)))2, we obtain
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similarly (μ(σ(x)))2 = 2 (χ(x))2. Then 4 (χ(x))2 = 2 (χ(x))2, so χ(x) = 0,
which contradicts the assumption x ∈ S\Iχ. We conclude that σ(S\Iχ) ⊆
S\Iχ, so σ(S\Iχ) = S\Iχ and σ(Iχ) = Iχ.

On the other hand, from the first and the second identities of (II) we have,
respectively, on S\Iχ the two identities below

μ ◦ σ − μ = χ ◦ σ − χ + c2 χ A − c2 χ ◦ σ A ◦ σ.

μ − μ ◦ σ = 2 δ [χ ◦ σ A ◦ σ − χ A] + χ ◦ σ − χ + c2 χ A − c2 χ ◦ σ A ◦ σ.

It follows that
μ − μ ◦ σ = δ [χ ◦ σ A ◦ σ − χ A]. (4.12)

When we substitute this back into the first identity above we get that

δ (μ − μ ◦ σ + χ ◦ σ − χ) = c2 (μ − μ ◦ σ),

hence
(c2 − δ)μ ◦ σ + (δ − c2)μ + δ χ ◦ σ − δ χ = 0. (4.13)

Moreover on Iχ we have χ ◦ σ = χ = 0, and μ ◦ σ = μ because F1 ◦ σ = F1,
so the identity (4.13) is satisfied on the semigroup S. As δ �= 0 in the present
case we conclude, by [7, Theorem 3.18], that the multiplicative functions μ◦σ,
μ, χ ◦ σ and χ are not different. Since F1 and H1 are linearly independent, we
infer from the third identity of (II) that H1 ◦σ �= H1. Then χ ◦σ A ◦σ �= χ A.
So from (4.12) we get that μ◦σ �= μ. Since μ �= χ, we have the following cases:
Case A.5.3.2.1: μ◦σ = χ. Here the identity (4.13) implies (c2−2 δ) (χ−μ) = 0.
Since χ �= μ, we get that c2 = 2 δ. So the third identity of (II) becomes, on
S\Iχ,

χ ◦ σ A ◦ σ + χ A = c1 c2(−μ + χ − c2 χ A),

which implies

χ ◦ σ A ◦ σ + (1 + c1 c22)χ A = c1 c2(χ − μ).

As 1+c1 c22 = 0 we get that A◦σ =
1
c2

(χ◦σ)−1 μ− 1
c2

(χ◦σ)−1χ. By applying

Lemma 4.4 on the subsemigroup S\Iχ and taking into account that σ : S → S
is an involution and that σ(S\Iχ) = S\Iχ we get A = 0, which contradicts
that A is nonzero in Case A.5.3.
Case A.5.3.2.2: χ◦σ = χ. Then the identity (4.12) implies χ−1 μ−χ−1 μ◦σ =
δ (A ◦ σ − A). Since A ◦ σ − A : S\Iχ → C is an additive function, we proceed
like in Case A.5.3.2.1 above and get A◦σ = A. So H1 ◦σ = H1 on S\Iχ. Since
H1 ◦ σ = H1 = 0 on Iχ, we get that H1 ◦ σ = H1. Then the third identity of
(II) implies H1 = δ F1, which contradicts the linear independence of H1 and
F1.

We conclude that the functional equation (1.1) has no solution if F1, G1

and H1 are of the form in Case A.5.3.
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Case A.5.4: ⎛
⎝F1

G1

H1

⎞
⎠ =

⎛
⎝c β c (2 − β) −2 c

1
4 β 1

4 (2 − β) 1
2

1
2α − 1

2α 0

⎞
⎠

⎛
⎝χ1

χ2

χ3

⎞
⎠ ,

where α, β, c ∈ C\{0} are three constants with 2 c α2 β (2−β) = 1; χ1, χ2, χ3 :
S → C are three multiplicative functions such that χ1 �= χ2, χ1 �= χ3 and
χ2 �= χ3.

As in Case A.5.3 we split the discussion into the cases δ �= 0 and δ = 0.
Case A.5.4.1: δ = 0. Here h ◦ σ = −h and g ◦ σ = g. So we go back to Case
A.4 and the solution occurs in (b) of the list of Theorem 4.5.
Case A.5.4.2: δ �= 0. The third and the first identities of (II) imply, respec-
tively,

χ1 ◦σ−χ2 ◦σ+(1−4 c α β δ)χ1−(1+4 c α (2−β) δ)χ2+8 c α δ χ3 = 0 (4.14)

and

β χ1 ◦ σ + (2 − β)χ2 ◦ σ − 2χ3 ◦ σ − β χ1 − (2 − β)χ2 + 2χ3 = 0. (4.15)

According to [7, Theorem 3.18] we derive from (4.15) that the multiplicative
functions χ1, χ2, χ3, χ1 ◦ σ, χ2 ◦ σ and χ3 ◦ σ are not different. As χ1, χ2 and
χ3 are different, so are χ1 ◦ σ, χ2 ◦ σ and χ3 ◦ σ. Since δ �= 0 and F1 �= 0, we
derive from the third identity of (II) that H1 ◦ σ �= −H1, hence χ1 ◦ σ �= χ2.
Moreover χ3 ◦ σ �= χ3. Indeed, if χ3 ◦ σ = χ3 the identity (4.15) implies

β χ1 ◦ σ + (2 − β)χ2 ◦ σ − β χ1 − (2 − β)χ2 = 0, (4.16)

and as χ1 �= χ2 and χ1 ◦ σ �= χ2 we deduce from the identity (4.16), according
to [7, Theorem 3.18], that χ1 ◦ σ = χ1 and χ2 ◦ σ = χ2 because β (2 − β) �= 0.
Considering the formula for H1 of the present case we obtain H1 ◦ σ = H1.
Using the third equality of (II) we get H1 = δ F1, which contradicts the linear
independence of H1 and F1. Then we have the following possibilities:
Case A.5.4.2.1: χ1 ◦ σ = χ1. In this case the identity (4.15) becomes

(2 − β)χ2 ◦ σ − 2χ3 ◦ σ − (2 − β)χ2 + 2χ3 = 0. (4.17)

On the other hand since F1 and H1 are linearly independent, we get from the
third identity of (II) that H1 ◦ σ �= H1, then χ1 ◦ σ − χ2 ◦ σ �= χ1 − χ2. Since
χ1 ◦ σ = χ1, we get that χ2 ◦ σ �= χ2. As β �= 2 we derive from (4.17) that
χ2 ◦ σ = χ3. So (4.17) becomes (4 − β)χ3 − χ2 = 0. As χ3 �= χ2 we deduce
that β = 4. Since 2 c α2 β (2 − β) = 1, we get that 4α2 = − 1

4 c . With β = 4
the identity (4.14) implies

2 (1 − 8 c α δ)χ1 − (1 − 8 c α δ)χ2 − (1 − 8 c α δ)χ3 = 0.

Since the multiplicative functions χ1, χ2 and χ3 are different, we get, according
to [7, Theorem 3.18], that 1 − 8 c α δ = 0. So δ = −2α, which implies δ2 =
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4α2 = − 1
4 c . Using (I) and the expressions of F1, G1 and H1 in term of χ1, χ2

and χ3 we get that ⎧⎨
⎩

f = 4 c χ1 − 2 c χ2 − 2 c χ3

g = 1
2 χ1 + 1

4 χ2 + 1
4 χ3

h = i
4α χ2 − i

4α χ3.

Putting χ = χ2, μ = χ1 and ρ = i
4α we obtain⎛

⎝f
g
h

⎞
⎠ =

⎛
⎝−2ρ2 −2ρ2 4ρ2

1
4

1
4

1
2

ρ −ρ 0

⎞
⎠

⎛
⎝ χ

χ ◦ σ
μ

⎞
⎠ ,

which is a solution of the form (b) in Theorem 4.5.
Case A.5.4.2.2: χ1 ◦ σ = χ3. So χ3 ◦ σ = χ1 and the identity (4.15) becomes

(2 + β)χ1 + (2 − β)χ2 − (2 + β)χ3 − (2 − β)χ2 ◦ σ = 0. (4.18)

The coefficients 2 + β and 2 − β can not be zero at the same time, and we
conclude, by [7, Theorem 3.18], that the multiplicative functions χ1, χ2, χ3,
and χ2 ◦ σ are not different. As χ1, χ2 and χ3 are different, χ2 ◦ σ �= χ1 and
χ2 ◦σ �= χ3 we derive that χ2 ◦σ = χ2. Interchanging χ1 and χ2, and replacing
β by 2−β, and α by −α we go back to Case A.5.4.2.1 and the solution occurs
in (b) of the list of Theorem 4.5.
Case A.5.4.2.3: χ2◦σ = χ2. Interchanging χ1 and χ2, and replacing β by 2−β,
and α by −α we go back to Case A.5.4.2.1 and the solution occurs in (b) of
the list of Theorem 4.5.
Case A.5.4.2.4: χ2 ◦ σ = χ3. So χ3 ◦ σ = χ2 and we get from (4.15) that

β (χ1 ◦ σ) − β χ1 + (β − 4)χ2 − (β − 4)χ3 = 0. (4.19)

Since β �= 0, we deduce from (4.19), according to [7, Theorem 3.18], that the
multiplicative functions χ1, χ2, χ3, and χ1 ◦ σ are not different. As χ1, χ2, χ3

are different, χ1 ◦ σ �= χ2 and χ1 ◦ σ �= χ3 we get that χ1 ◦ σ = χ. So we go
back to Case A.5.4.2.1 and the solution occurs in (b) of the list of Theorem
4.5.
Case B: γ �= 0. Here the functional equation (4.3) becomes

f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y) − 2(h(x) − γf(x))(h(y) − γf(y))
= f(x)g(y) + g(x)f(y) + h(x)h(y)

−2[h(x)h(y) − γh(x)f(y) − γf(x)h(y) + γ2f(x)f(y)]
= f(x)[g(y) − γ2f(y) + 2γh(y)] + f(y)[g(x) − γ2f(x) + 2γh(x)]

−h(x)h(y),

for all x, y ∈ S, which implies

f(xy) = f(x)G(y) + G(x)f(y) + H(x)H(y), x, y ∈ S, (4.20)
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where

G := g − γ2 f + 2γ h, (4.21)
H := i h. (4.22)

Since f ◦ σ = f , according to Lemma 4.1(d), we get from (4.21) that

G ◦ σ = g ◦ σ − γ2f + 2γ h ◦ σ,

then

G − G ◦ σ = g − g ◦ σ + 2γ (h − h ◦ σ)
= g − g ◦ σ − 2(g − g ◦ σ) = −(g − g ◦ σ).

Using (4.6) we get that
(g + G) ◦ σ = g + G. (4.23)

On the other hand, by similar computations to the ones in the proof of [2,
Section 3, Theorem] we find that we have one of the following cases for the
solutions f,G,H of the functional equation (4.20):
Case B.1:

⎛
⎝ f

G
H

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎜⎜⎝

χ A1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ,

f(x) = G(x) = H(x) = 0 for x ∈ Iχ,
where χ : S → C is a nonzero multiplicative function and A, A1 : S\Iχ → C

are two additive functions with A �= 0. Using (4.21) and (4.22) we obtain

⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
1
2γ2 1 2γi 1

2γ2

0 0 −i 0

⎞
⎠

⎛
⎜⎜⎝

χ A1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ.

f(x) = g(x) = h(x) = 0 for x ∈ Iχ.
We have σ(S\Iχ) = S\Iχ. Like in Case A.3 it suffices to check that σ(S\Iχ) ⊆
S\Iχ. Indeed, if there exists an element x ∈ S\Iχ such that σ(x) ∈ Iχ; we
obtain, according to (4.5), g(x) + G(x) = g(σ(x)) + G(σ(x)), hence g(x) +
χ(x) = 0. This implies χ(x) [12γ2 A1(x) + 1 + 2γiA(x) + 1

2γ2 A2(x)] = −χ(x).
As χ(x) �= 0 we get that

1
2
γ2 A1(x) + 2γiA(x) +

1
2
γ2 A2(x) = −2.

Since x2 ∈ S\Iχ and σ(x2) ∈ Iχ, we also have

1
2
γ2A1(x2) + 2γiA(x2) +

1
2
γ2 A2(x2) = −2,
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then
1
2
γ2 A1(x) + 2γiA(x) + γ2 A2(x) = −1.

It follows that γ2 A2(x) = 2. As x2 ∈ S\Iχ and σ(x2) ∈ Iχ we have the
same result for x2, i.e γ2 A2(x2) = 2. Using the additivity of A we obtain
4γ2 A2(x) = 2, which contradicts the fact that γ2 A2(x) = 2. We conclude
that σ(S\Iχ) ⊆ S\Iχ, so σ(S\Iχ) = S\Iχ and σ(Iχ) = Iχ.

On the other hand, since f is even with respect to σ, we get that

χ A1 + χ A2 = χ ◦ σ A1 ◦ σ + χ ◦ σ (A ◦ σ)2. (4.24)

Using (4.23) we deduce
1
2
γ2(χ A1 + χ A2) + 2(χ + γi χ A) =

1
2
γ2(χ ◦ σ A1 ◦ σ + χ ◦ σ(A ◦ σ)2)

+ 2(χ ◦ σ + γi χ ◦ σ A ◦ σ).

Taking (4.24) into account we obtain

γi [χ A − χ ◦ σ A ◦ σ] = χ ◦ σ − χ. (4.25)

Furthermore (4.5) means that h + h ◦ σ = 2γ f , so

−γi [χ A + χ ◦ σ A ◦ σ] = γ2 [χ A1 + χ A2],

which we reformulate to

− i

γ
[A(x) + χ1(x)A(σ(x))] = A1(x) + A(x)2 for x ∈ S\Iχ,

where χ1 := χ ◦ σ/χ on S\Iχ. Replacing x by xn, where n = 1, 2, . . . , in the
identity above, and dividing by n2 we get

A(x)
n

+
χ1(x)n

n
A(σ(x)) = −γ

i

[
A1(x)

n
+ A(x)2

]
. (4.26)

We derive a contradiction from (4.26) using the elementary fact from the theory
of orders of growth that

|z
n

n
| →

{
∞ for |z| > 1
0 for |z| ≤ 1.

Let x = x0 ∈ S\Iχ be arbitrary, but fixed in (4.26).

If |χ1(x0)| > 1, then we let n → ∞ and we get |z
n

n
| → ∞ by the above

mentioned elementary fact. So the sequence
χ1(x)n

n
is unbounded, while the

other terms of (4.26) are bounded. We deduce that A(σ(x0)) = 0 in this case,
which reduces the identity (4.26) to

A(x0)
n

= −γ

i

[
A1(x0)

n
+ A(x0)2

]
.
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Letting n → ∞ we obtain that A(x0) = 0.
If |χ1(x0)| ≤ 1, then we let n → ∞ in (4.26) and we get A(x0) = 0 by the

above mentioned elementary fact.
Thus A(x0) = 0 in both cases. So, x0 being arbitrary, we deduce that A = 0,

contradicting that A is nonzero in Case B.1
We conclude that the functional equation (1.1) has no solution in Case B.1.

Case B.2: ⎛
⎝ f

G
H

⎞
⎠ =

⎛
⎝c2 −c2 −c

0 1 0
c −c 0

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = c2 μ(x), G(x) = 0 and H(x) = c μ(x), for x ∈ Iχ,
where c ∈ C\{0} is a constant, χ �= 0, μ : S → C are two multiplicative
functions such that μ �= χ and A : S\Iχ → C is a nonzero additive function.
Using (4.21) and (4.22) we obtain⎛

⎝f
g
h

⎞
⎠ =

⎛
⎝ c2 −c2 −c

γ c (γ c + 2i) (γ ci − 1)2 −γ2 c
−ic ic 0

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = c2 μ(x), g(x) = γ c (γ c + 2i)μ(x) and h(x) = −ic μ(x) for x ∈ Iχ.
We have σ(S\Iχ) = S\Iχ. Like in Case A.3 it suffices to check that σ(S\Iχ) ⊆
S\Iχ. Indeed, if there exists x ∈ S\Iχ such that σ(x) ∈ Iχ, then c μ(x) −
c χ(x) − χ(x)A(x) = c μ(σ(x)) because f ◦ σ = f . Hence

χ(x)A(x) = c [μ(x) − χ(x) − μ(σ(x))]. (4.27)

By using (4.23) we get that

γc(γc + 2i)μ(σ(x)) = γc(γc + 2i)μ(x) + [(γci − 1)2 + 1]χ(x) − γ2c χ(x)A(x).

Taking (4.27) into account we derive

γ2c χ(x)A(x) = −γc(γc + 2i)μ(σ(x)) + γc(γc + 2i)μ(x)
+(−γ2c2 − 2γci + 2)χ(x)

= γc(γc + 2i) [μ(x) − χ(x) − μ(σ(x))] + 2χ(x)
= (γ2c + 2γi)χ(x)A(x) + 2χ(x).

Since γ �= 0 and χ(x) �= 0, we obtain γ A(x) = i. As x2 ∈ S\Iχ and σ(x2) ∈
Iχ we have similarly γ A(x2) = i. The function A : S\Iχ → C is additive,
so 2i = i, which is a contradiction. We conclude that σ(S\Iχ) ⊆ S\Iχ, so
σ(S\Iχ) = S\Iχ and σ(Iχ) = Iχ.

On the other hand, since the functions f and g + G are even with respect
to σ, we have on S\Iχ

c μ ◦ σ − c χ ◦ σ − χ ◦ σ A ◦ σ = c μ − c χ − χ A, (4.28)
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and

γc(γc + 2i)μ ◦ σ + [(γci − 1)2 + 1]χ ◦ σ − γ2c χ ◦ σ A ◦ σ

= γc(γc + 2i)μ + [(γci − 1)2 + 1]χ − γ2cχ A,

which implies

(γ2c2 + 2γci)μ ◦ σ + [−γ2c2 − 2γci + 2]χ ◦ σ − γ2c χ ◦ σ A ◦ σ

= (γ2c2 + 2γci)μ + [−γ2c2 − 2γci + 2]χ − γ2c χA,

so that

γ2c [c μ ◦ σ − c χ ◦ σ − χ ◦ σ A ◦ σ] + 2γci μ ◦ σ − 2i(γc + i)χ ◦ σ

= γ2c [c μ − c χ − χ A] + 2γci μ − 2i(γc + i)χ. (4.29)

It follows from (4.28) and (4.29) that

γc μ ◦ σ(x) − γc μ(x) − (γc + i)χ ◦ σ(x) + (γc + i)χ(x) = 0,

for all x ∈ S\Iχ. As f ◦ σ = f and σ(Iχ) = Iχ we get μ ◦ σ(x) = μ(x) and
χ ◦ σ(x) = χ(x) = 0 for all x ∈ Iχ. Then

γc μ ◦ σ − γc μ − (γc + i)χ ◦ σ + (γc + i)χ = 0. (4.30)

Since γc �= 0, we get, according to [7, Theorem 3.18], that the multiplicative
functions μ◦σ, μ, χ◦σ and χ are not different. So we have two cases according
to whether μ ◦ σ = μ or μ ◦ σ = χ. Notice that if χ ◦ σ = χ then (4.30) gives
μ ◦ σ = μ.
Case B.2.1: μ ◦ σ = μ. Here (4.30) becomes (γc + i) (χ ◦ σ − χ) = 0. If γc �= −i
then χ ◦ σ = χ, hence h ◦ σ = h, which contradicts the assumption on h.
If γc = −i, then (4.5) implies −ic (2μ − χ − χ ◦ σ) = 2γ f = −2 i

c f , then
c2 (2μ−χ−χ◦σ) = 2(c2 μ−c2χ−cχ A) on S\Iχ. Hence 2

c A = χ−1 (χ◦σ)−1.
Using the same computations as the ones in Case B.1 we obtain χ−1 (χ◦σ) = 1,
then χ ◦ σ = χ; so h ◦ σ = h, which contradicts the assumption on h.
Case B.2.2: μ ◦ σ = χ. In this case μ(x) = χ(x) = 0 for all x ∈ Iχ, then
f(x) = 0 for all x ∈ Iχ. Let x ∈ S\Iχ, then applying (4.5) we obtain 2γ f(x) =
h(x) + h ◦ σ(x) = −ic (μ(x) − χ(x)) − ic [μ ◦ σ(x) − χ ◦ σ(x)] = 0. So f(x) = 0
for all x ∈ S, contradicting that f and h are linearly independent.

We conclude that the functional equation (1.1) has no solution in Case B.2.
Case B.3: ⎛

⎝ f
G
H

⎞
⎠ =

⎛
⎝−c1 c1 −c1c2

1
2

1
2 − 1

2c2
0 0 1

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = −c1 μ(x), G(x) = 1
2 μ(x) and H(x) = 0 for x ∈ Iχ,



Vol. 91 (2017) The Cosine–Sine functional equation 1137

where c1, c2 ∈ C\{0} are two constants such that 1+ c1c
2
2 = 0, χ �= 0, μ : S →

C are two multiplicative functions such that μ �= χ and A : S\Iχ → C is a
nonzero additive function. Using (4.21) and (4.22) we obtain

⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝ −c1 c1 −c1c2

−γ2c1 + 1
2 γ2c1 + 1

2 −c2
(
γ2c1 + 1

2

)
+ 2γi

0 0 −i

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

f(x) = −c1 μ(x), g(x) = (−γ2c1 + 1
2 ) μ(x) and h(x) = 0 for x ∈ Iχ.

We have σ(S\Iχ) = S\Iχ. Like in Case A.3 it suffices to check that σ(S\Iχ) ⊆
S\Iχ. Indeed, if there exists x ∈ S\Iχ such that σ(x) ∈ Iχ then h(x) =
−i χ(x)A(x), h(σ(x)) = 0 and f(x) = f(σ(x)) = −c1 μ(σ(x)) because f ◦ σ =
f . So (4.5) implies

i χ(x)A(x) = 2γc1 μ(σ(x)). (4.31)

Since x2 ∈ S\Iχ and σ(x2) ∈ Iχ, we have similarly 2i (χ(x))2 A(x) = 2γc1
(μ(x))2. Then 4γc1 χ(x)μ(σ(x)) = 2γc1 (μ(σ(x)))2. As γ �= 0 and c1 �= 0 we
get

μ(σ(x)) [μ(σ(x)) − 2χ(x)] = 0. (4.32)

If μ(σ(x)) = 0, then μ(x) = χ(x) because f ◦ σ = f , hence

g(x) =
(

−γ2c1 +
1
2

)
χ(x) +

(
γ2c1 +

1
2

)
χ(x) = μ(x).

Moreover g(σ(x)) = (−γ2c1 + 1
2 )μ(σ(x)) = 0. Taking (4.6) into account we

get χ(x) = γi χ(x)A(x) = 0.
If μ(σ(x)) �= 0, then (4.32) implies μ(σ(x)) = 2χ(x). As x2 ∈ S\Iχ

and σ(x2) ∈ Iχ we have similarly μ(σ(x2)) = 2χ(x2), and it follows that
4 (χ(x))2 = 2 (χ(x))2; hence χ(x) = 0.

Thus χ(x) = 0 in both cases, which contradicts the assumption on x.
We conclude that σ(S\Iχ) ⊆ S\Iχ, so σ(S\Iχ) = S\Iχ and σ(Iχ) = Iχ.
Let x ∈ Iχ, then it follows from f ◦ σ = f and (4.5), that 2γ f(x) = 0 so

that μ(x) = 0. Hence f(x) = g(x) = h(x) = 0.
On the other hand, since f ◦ σ = f , we have

− μ + χ − c2 χ A = −μ ◦ σ + χ ◦ σ − c2 χ ◦ σ A ◦ σ, (4.33)

on the subsemigroup S\Iχ; then

− μ ◦ σ + μ + χ ◦ σ − χ = c2 [χ ◦ σ A ◦ σ − χ A]. (4.34)
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Moreover, taking (4.6) into account we get
(

−γ2c1 +
1
2

)
μ +

(
γ2c1 +

1
2

)
χ +

(
−γ2c1c2 + 2γi − 1

2
c2

)
χA

−
(

−γ2c1 +
1
2

)
μ ◦ σ −

(
γ2c1 +

1
2

)
χ ◦ σ

−
(

−γ2c1c2 + 2γi − 1
2
c2

)
χ ◦ σ A ◦ σ = γi [χ A − χ ◦ σ A ◦ σ],

and it follows that(
γ2c1 +

1
2

)
[−μ + χ − c2 χ A] + μ + 2γi χ A −

(
γ2c1 +

1
2

)

[−μ ◦ σ + χ ◦ σ − c2 χ ◦ σ A ◦ σ] − μ ◦ σ − 2γi χ ◦ σ A ◦ σ

= γi [χ A − χ ◦ σ A ◦ σ].

Taking (4.33) into account we get that

μ − μ ◦ σ = γi [χ ◦ σ A ◦ σ − χ A]. (4.35)

(4.34) and (4.35) imply c2 (μ − μ ◦ σ) = γi (−μ ◦ σ + μ + χ ◦ σ − χ). Hence

(γi − c2)μ ◦ σ − (γi − c2)μ − γi χ ◦ σ + γi χ = 0. (4.36)

As γi �= 0 we get, according to [7, Theorem 3.18], that the multiplicative
functions μ ◦ σ, μ, χ ◦ σ and χ are not different. Since h ◦ σ �= h, we have
χ ◦ σ A ◦ σ �= χ A and we get, from (4.35), that μ ◦ σ �= μ. As μ �= χ we have
two cases according to whether μ ◦ σ = χ or χ ◦ σ = χ.
Case B.3.1: μ◦σ = χ. Then (4.36) becomes (2γi−c2) (χ−μ) = 0. Since μ �= χ,
we get that 2γi− c2 = 0. Using (4.5) and taking into account that 1+c1c

2
2 = 0

we find by elementary computations that c2 A ◦ σ = (χ ◦ σ)−1 μ − (χ ◦ σ)−1χ.
Proceeding exactly like in Case A.5.3.2.1 we get that A = 0, which contradicts
that A is nonzero in Case B.3.
Case B.3.2: χ◦σ = χ. In this case (4.35) becomes μ◦σ−μ = c2 (χ A−χ A◦σ).
Then χ−1 μ◦σ−χ−1 μ = c2 (A−A◦σ). As A−A◦σ is an additive function on the
subsemigroup S\Iχ we get, by Lemma 4.4, that A◦σ = A. So χ A = χ◦σ A◦σ.
Hence h(σ(x)) = h(x) for all x ∈ S\Iχ. Moreover h(σ(x)) = h(x) = 0 for all
x ∈ Iχ, so h ◦ σ = h, which contradicts the assumption on h.

We conclude that the functional equation (1.1) has no solution in Case B.3.
Case B.4:

⎛
⎝ f

G
H

⎞
⎠ =

⎛
⎝cβ c(2 − β) −2c

1
4β 1

4 (2 − β) 1
2

1
2α − 1

2α 0

⎞
⎠

⎛
⎝χ1

χ2

χ3

⎞
⎠ ,
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where α, β, c ∈ C\{0} are three constants with 2cα2β(2−β) = 1; χ1, χ2, χ3 :
S → C are three multiplicative functions. Using (4.21) and (4.22) we obtain
⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝ cβ c(2− β) −2c

cβγ2 + 1
4β + γ

α i − (
cβγ2 + 1

4β + γ
α i

)
+ 2γ2c + 1

2 −2γ2c + 1
2

− 1
2α i 1

2α i 0

⎞
⎠

⎛
⎝χ1

χ2

χ3

⎞
⎠ .

From (4.5) we deduce χ1 − χ2 + χ1 ◦ σ − χ2 ◦ σ = 4γαi f . Since γ, α ∈ C\{0}
and f �= 0, we get that χ1 ◦ σ �= χ2. Since f and h are linearly independent,
so are f and H. Then we get that χ2 �= χ3 and χ1 �= χ3.

On the other hand, since f ◦ σ = f , we get that

β χ1 + (2 − β)χ2 − 2χ3 − β χ1 ◦ σ − (2 − β)χ2 ◦ σ + 2χ3 ◦ σ = 0. (4.37)

Since β �= 0, we deduce from (4.37), according to [7, Theorem 3.18], that the
multiplicative functions χ1, χ2, χ3, χ1 ◦ σ, χ2 ◦ σ and χ3 ◦ σ are not different.
Since χ1 �= χ2, χ1 �= χ3, χ2 �= χ3 and χ1 �= χ2 ◦σ we have two cases according
to whether χ1 ◦ σ = χ1 or χ1 ◦ σ = χ3.

Using [7, Theorem 3.18] we check that the remaining cases χ2 = χ2 ◦ σ,
χ2 = χ3 ◦ σ and χ3 = χ3 ◦ σ can be subsumed within the first two ones
χ1 ◦ σ = χ1 and χ1 ◦ σ = χ3.
Case B.4.1: χ1 ◦ σ = χ1. In this case χ3 = χ2 ◦ σ and β = 4. Putting ρ =
− 1

2α i ∈ C\{0} we obtain
⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝ ρ2 − 1

2ρ2 − 1
2ρ2

(ργ − 1)2 1
2 (−ρ2γ2 + 4ργ − 1) 1

2 (−ρ2γ2 + 1)
ρ −ρ 0

⎞
⎠

⎛
⎝ χ1

χ2

χ2 ◦ σ

⎞
⎠ .

Using (4.23) we find, by elementary computations, that ργ = 1. Hence⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝ρ2 − 1

2ρ2 − 1
2ρ2

0 1 0
ρ −ρ 0

⎞
⎠

⎛
⎝ χ1

χ2

χ2 ◦ σ

⎞
⎠ .

So we obtain a solution of the form (c) in Theorem 4.5.
Case B.4.2: χ1 ◦ σ = χ3. In this case χ3 = χ1 ◦ σ, χ2 = χ2 ◦ σ and β = −2.
Putting λ = 1

2α i ∈ C\{0} we obtain
⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝ − 1

2λ2 λ2 − 1
2λ2

1
2 (−λ2γ2 + 4λγ − 1) (λγ − 1)2 1

2 (−λ2γ2 + 1)
−λ λ 0

⎞
⎠

⎛
⎝ χ1

χ2

χ1 ◦ σ

⎞
⎠ .

Using (4.23) we find, by elementary computations, that λγ = 1. Hence⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝− 1

2λ2 λ2 − 1
2λ2

1 0 0
−λ λ 0

⎞
⎠

⎛
⎝ χ1

χ2

χ1 ◦ σ

⎞
⎠ ,
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which can be written as⎛
⎝f

g
h

⎞
⎠ =

⎛
⎝λ2 − 1

2λ2 − 1
2λ2

0 1 0
λ −λ 0

⎞
⎠

⎛
⎝ χ2

χ1

χ1 ◦ σ

⎞
⎠ .

So we obtain a solution of the form (c) in Theorem 4.5.
Case B.5:⎧⎨

⎩
f = F1

G = − 1
2δ2 F1 + G1 + δ H1

H = −δ F1 + H1

where the functions F1, G1,H1 : S → C are of the forms in cases B.1-B.4 and
δ ∈ C is a constant.

From (4.21) and (4.22) we derive

(III)

⎧⎨
⎩

f = F1

g =
[
1
2δ2 − η2

]
F1 + G1 + (η + γi)H1

h = δi F1 − iH1

,

where η = δ + γi.
On the other hand the properties f ◦ σ = f , (4.5), (4.6) and (4.23) imply

(IV )

⎧⎨
⎩

F1 ◦ σ = F1

(G1 + η H1) ◦ σ = G1 + η H1

H1 ◦ σ + H1 = 2η F1.

We have the following cases
Case B.5.1:

⎛
⎝F1

G1

H1

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎜⎜⎝

χ A1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ,

F1(x) = G1(x) = H1(x) = 0 for x ∈ Iχ,
where χ : S → C is a nonzero multiplicative function and A, A1 : S\Iχ → C

are two additive functions with A �= 0.
By the same computations as used in Case B.1 we prove that σ(S\Iχ) =

S\Iχ, σ(Iχ) = Iχ and χ ◦ σ = χ. Then G1 ◦ σ = G1. We split the discussion
into the cases η �= 0 and η = 0.
Case B.5.1.1: η �= 0. As (G1+η H1)◦σ = G1+η H1 we get that η H1◦σ = η H1,
so H1 ◦ σ = H1. Taking into account that H1 ◦ σ + H1 = 2η F1 we get that
H1 = η F1. Then h = (δ − η)if , contradicting that f and h are linearly
independent.
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Case B.5.1.2: η = 0. Then δ = −γi and the conditions (IV ) become⎧⎨
⎩

F1 ◦ σ = F1

G1 ◦ σ = G1

H1 ◦ σ = −H1.

By the same method as the one in Case A.1 we get that A ◦ σ = −A and
A1 ◦ σ = A1. Moreover by putting F0 = F1, G0 = G1 and H0 = −iH1 and
writing δi instead of δ in (III) we obtain that⎧⎨

⎩
f = F0

g = − 1
2δ2F0 + G0 + δ H0

h = −δ F0 + H0

,

where ⎛
⎝F0

G0

H0

⎞
⎠ =

⎛
⎝

1
2 0 0 1

2
0 1 0 0
0 0 −i 0

⎞
⎠

⎛
⎜⎜⎝

χ A1

χ
χ A
χ A2

⎞
⎟⎟⎠ on S\Iχ,

F0(x) = G0(x) = H0(x) = 0 for x ∈ Iχ,
is a solution of the form (a) in Theorem 4.5. The solutions occur in (d) of the
list of Theorem 4.5.
Case B.5.2: ⎛

⎝F1

G1

H1

⎞
⎠ =

⎛
⎝c2 −c2 −c

0 1 0
c −c 0

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

F1(x) = c2 μ(x), G1(x) = 0 and H1(x) = c μ(x), for x ∈ Iχ,
where c ∈ C\{0} is a constant, χ �= 0, μ : S → C are two multiplicative
functions such that μ �= χ and A : S\Iχ → C is a nonzero additive function.

We have σ(S\Iχ) = S\Iχ. Like in Case A.3 it suffices to check that σ(S\Iχ)
⊆ S\Iχ. Indeed, if there exists an element x ∈ S\Iχ such that σ(x) ∈ Iχ, then
the first and the second identities of (IV ) imply c μ(σ(x)) = c (μ(x)−c χ(x))−
χ(x)A(x) and χ(x) + η c(μ(x) − χ(x)) = η c μ(σ(x)). Hence η χ(x)A(x) =
−χ(x). Since χ(x) �= 0, we get that η A(x) = −1. As x2 ∈ S\Iχ and σ(x2) ∈
Iχ we get similarly that η A(x2) = −1. Using the additivity of A we obtain
2 η A(x2) = −1, which is a contradiction. We deduce that σ(S\Iχ) = S\Iχ and
σ(Iχ) = Iχ.

On the other hand, using the third identity of (IV ), we obtain, on S\Iχ,

c μ ◦ σ − c χ ◦ σ + c μ − c χ = 2 η c(c μ − c χ − χ A),

so that

2 η χ A = (1 − 2 η c)χ − (1 − 2 η c)μ + χ ◦ σ − μ ◦ σ.

Applying Lemma 4.4 on the last identity, on the subsemigroup S\Iχ, we get
that 2 η χ A = 0.
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If η �= 0, then A = 0, which contradicts that A is nonzero in Case B.5.2.
If η = 0, then the identity above gives χ◦σ+χ = μ◦σ+μ while the second

identity of (IV ) becomes χ ◦ σ = χ, so 2χ = μ ◦ σ + μ on the subsemigroup
S\Iχ. According to [7, Corollary 3.19] we get that χ = μ on the subsemigroup
S\Iχ, then H1(x) = 0 for all x ∈ S\Iχ. Moreover, for all x ∈ Iχ, the first and
the third identities of (IV ) imply μ(σ(x)) = μ(x) and μ(σ(x)) = −μ(x), so
μ(x) = 0. Hence H1(x) = 0 for all x ∈ S\Iχ, so H1 = 0. Considering the first
and the third identities of (III) we get that h = δi f , which contradicts the
linear independence of f and h.
We conclude that the functional equation (1.1) has no solution in Case B.5.2.
Case B.5.3: ⎛

⎝F1

G1

H1

⎞
⎠ =

⎛
⎝−c1 c1 −c1c2

1
2

1
2 − 1

2c2
0 0 1

⎞
⎠

⎛
⎝ μ

χ
χ A

⎞
⎠ on S\Iχ,

F1(x) = −c1 μ(x), G1(x) = 1
2 μ(x) and H1(x) = 0 for x ∈ Iχ,

where c1, c2 ∈ C\{0} are two constants such that 1+ c1c
2
2 = 0, χ �= 0, μ : S →

C are two multiplicative functions such that μ �= χ and A : S\Iχ → C is a
nonzero additive function.

We have σ(S\Iχ) = S\Iχ. Like in Case A.3 it suffices to check that σ(S\Iχ)
⊆ S\Iχ. Indeed, if there exists an element x ∈ S\Iχ such that σ(x) ∈ Iχ, then
the first and the second identities of (IV ) imply

−μ(x) + χ(x) − c2 χ(x)A(x) = −μ(σ(x))

and

μ(x) + χ(x) − (c2 − 2 η)χ(x)A(x) = μ(σ(x)).

Adding the two last identities we obtain 2χ(x)−2 (c2−η)χ(x)A(x) = 0. Since
χ(x) �= 0, we get that (c2 − η)A(x) = 1. As x2 ∈ S\Iχ and σ(x2) ∈ Iχ we get
similarly that (c2−η)A(x2) = 1. Since A is additive, we get 2 (c2−η)A(x) = 1,
which is a contradiction. We deduce that σ(S\Iχ) = S\Iχ and σ(Iχ) = Iχ.

On the other hand the first and the second identities of (IV ) imply, on
S\Iχ,

− μ ◦ σ + χ ◦ σ − c2 χ ◦ σ A ◦ σ = −μ + χ − c2 χ A (4.38)

and

μ ◦ σ + χ ◦ σ − (c2 − 2 η)χ ◦ σ A ◦ σ = μ + χ − (c2 − 2 η)χ A, (4.39)

and subtracting (4.38) from (4.39) we derive

η χ A − η χ ◦ σ A ◦ σ = μ ◦ σ − μ. (4.40)

Moreover, using the third identity of (IV ) we get

χ ◦ σ A ◦ σ + (1 + 2 η c1 c2)χ A = 2 η c1 (χ − μ). (4.41)
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Multiplying both sides of (4.41) by η and adding the identity obtained to (4.40)
we get

2 η (1 + η c1 c2)χ A = 2 η2 c1 χ − (1 + 2 η2 c1)μ + μ ◦ σ. (4.42)

Applying Lemma 4.4 on the subsemigroup S\Iχ and taking into account that
χ(x) �= 0 for all x ∈ S\Iχ we get that

η (1 + η c1 c2)A = 0. (4.43)

If η = 0, then we get, from (4.40) and (4.41) respectively, that μ ◦ σ = μ
and χ ◦ σ A ◦ σ = −χ A. Taking (4.39) into account it follows that χ ◦ σ − χ =
−2c2 χ A. Since c2 �= 0 and χ(x) �= 0 for all x ∈ S\Iχ, we get, according to
Lemma 4.4, that A = 0, contradicting that A is nonzero in Case B.5.3.

If η �= 0 and 1 + η c1 c2 �= 0, then we get from (4.43) that A = 0, which
contradicts that A is nonzero in Case B.5.3.

If 1 + η c1 c2 = 0, then η = c2 because 1 + c1 c22 = 0. Replacing η by c2 in
(4.42) we get that 2χ = μ + μ ◦ σ on the subsemigroup S\Iχ. According to [7,
Corollary 3.19] we get that χ = μ = μ ◦ σ on the subsemigroup S\Iχ. Using
(4.38) we get that χ ◦ σ A ◦ σ = χ A, so H1 ◦ σ = H1 on the subsemigroup
S\Iχ. As H1(x) = 0 for all x ∈ Iχ and σ(Iχ) = Iχ we get that H1 ◦ σ = H1.
It follows, from the third identity of (IV ), that H1 = η F1 = c2 F1. Using the
first and the third identities of (III) we get that h = (δ − c2)if , contradicting
that f and h are linearly independent.

We conclude that the functional equation (1.1) has no solution in Case
B.5.3.
Case B.5.4: ⎛

⎝F1

G1

H1

⎞
⎠ =

⎛
⎝c β c (2 − β) −2 c

1
4 β 1

4 (2 − β) 1
2

1
2α − 1

2α 0

⎞
⎠

⎛
⎝χ1

χ2

χ3

⎞
⎠ ,

where α, β, c ∈ C\{0} are three constants with 2cα2β(2−β) = 1; χ1, χ2, χ3 :
S → C are three multiplicative functions such that χ1 �= χ2, χ1 �= χ3 and
χ2 �= χ3.

We split the discussion into the cases η �= 0 and η = 0.
Case B.5.4.1: η = 0. Then δ = −γi and the conditions (IV ) become⎧⎨

⎩
F1 ◦ σ = F1

G1 ◦ σ = G1

H1 ◦ σ = −H1.

So, writing α instead of αi, F0 := F1, G0 := G1 and H0 := −iH1 is a solution
of the functional equation (1.1) of the form⎛

⎝F0

G0

H0

⎞
⎠ =

⎛
⎝c β c (2 − β) −2 c

1
4 β 1

4 (2 − β) 1
2

1
2α − 1

2α 0

⎞
⎠

⎛
⎝χ1

χ2

χ3

⎞
⎠ ,
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where α, β, c ∈ C\{0} are three constants with 2 c α2 β (2 − β) = −1; χ1, χ2,
χ3 : S → C are three different multiplicative functions. Indeed, for all x, y ∈ S
we have

F1(xy) = F1(x)G1(y) + G1(x)F1(y) + H1(x)H1(y),

so that

F1(xσ(y)) = F1(x)G1(σ(y)) + G1(x)F1(σ(y)) + H1(x)H1(σ(y))
= F1(x)G1(y) + G1(x)F1(y) − H1(x)H1(y)
= F1(x)G1(y) + G1(x)F1(y) + (−iH1(x))(−iH1(y)),

hence F0(xσ(y)) = F0(x)G0(y) + G0(x)F0(y) + H0(x)H0(y) for all x, y ∈ S.
On the other hand H0 ◦ σ = −H0. Since f and h are linearly independent,
so are F0 and H0. It follows, according to the result of Case A.4, that F0, G0

and H0 are of the form (b) in Theorem 4.5. Moreover taking into account that
F0 = F1, G0 = G1, H0 = −iH1, η = 0 and δ = −γi we obtain, by writing −δ
instead of δi in (III), ⎧⎨

⎩
f = F0

g = − 1
2δ2F0 + G0 + δ H0

h = −δ F0 + H0

.

The solutions occur in (d) of the list of Theorem 4.5.
Case B.5.4.2: η �= 0. By similar computations to the ones in Case B.4 now
applied to (F1, G1,H1) we prove that⎛

⎝F1

G1

H1

⎞
⎠ =

⎛
⎝−ρ2 1

2ρ2 1
2ρ2

1 − 1
2

1
2

ρ −ρ 0

⎞
⎠

⎛
⎝ χ

μ
μ ◦ σ

⎞
⎠ ,

where ρ ∈ C\{0} is a constant such that ρη = −1 and χ, μ : S → C are two
multiplicative functions such that χ◦σ = χ and χ �= μ. Using (III) we deduce

g =
[
1
2
δ2 − η2

]
F1 + G1 + (η + γi)H1

=
1
2
δ2F1 − η2F1 + G1 + (η + γi)H1

=
1
2
δ2F1 + (ρη)2χ − 1

2
(ρη)2μ

−1
2
(ρη)2 μ ◦ σ + χ − 1

2
μ +

1
2

μ ◦ σ + (η + γi)H1

=
1
2
δ2F1 + 2 (χ − μ) + μ + (η + γi)H1.

Since H1 = ρ (χ − μ) and ρη = −1, we get χ − μ = −ηH1. Hence

g =
1
2
δ2F1 + μ + (γi − η)H1 =

1
2
δ2F1 + μ − δH1.
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By putting F0 = F1, G0 = μ and H0 = −iH1 and writing −δ instead of δi in
(III) we obtain ⎧⎨

⎩
f = F0

g = − 1
2δ2F0 + G0 + δ H0

h = −δ F0 + H0,

with ⎛
⎝F0

G0

H0

⎞
⎠ =

⎛
⎝−ρ2 1

2ρ2 1
2ρ2

0 1 0
−ρi ρi 0

⎞
⎠

⎛
⎝ χ

μ
μ ◦ σ

⎞
⎠ ,

which can be written as⎛
⎝F0

G0

H0

⎞
⎠ =

⎛
⎝ρ2 − 1

2ρ2 − 1
2ρ2

0 1 0
ρ −ρ 0

⎞
⎠

⎛
⎝ χ

μ
μ ◦ σ

⎞
⎠ ,

where ρ ∈ C\{0}, so F0, G0 and H0 are of the form (c) in Theorem 4.5 and
the solutions occur in (d) of the list of Theorem 4.5.

Conversely if f, g and h are of the forms (a)-(d) in Theorem 4.5 we check by
elementary computations that f, g and h satisfy the functional equation (1.1),
and f and h are linearly independent and that h ◦ σ �= h. This completes the
proof of Theorem 4.5. �

Remark 4.6. Let S be a semigroup generated by its squares and σ : S → S be
an involutive automorphism. We consider the variant

f(σ(y)x) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ S (4.44)

of the functional equation (1.1).
Let f, g, h : S → C satisfy the functional equation (4.44). The right hand

side of (4.44) is invariant under the interchange of x and y. So f(σ(y)x) =
f(σ(x)y) for all x, y ∈ S. By the same computations as the ones in the proof
of Proposition 3.1 we derive that f is central. Then f, g and h satisfy the
functional equation (1.1). Conversely we check similarly that if f, g, h : S → C

satisfy the functional equation (1.1) then they satisfy (4.44). Thus the func-
tional equation (1.1) and its variant (4.44) have the same solutions.
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