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On certain generalizations of the Levi-Civita and Wilson
functional equations
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Abstract. We study the functional equation

m∑

i=1

fi(bix + ciy) =
n∑

k=1

uk(y)vk(x)

with x, y ∈ R
d and bi, ci ∈ GL(d,R), both in the classical context of continuous complex-

valued functions and in the framework of complex-valued Schwartz distributions, where these
equations are properly introduced in two different ways. The solution sets are, typically, ex-
ponential polynomials and, in some particular cases, related to the so called characterization
problem of the normal distribution in Probability Theory, they reduce to ordinary polyno-
mials.
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1. Introduction

The Levi-Civita functional equation (see Levi-Cività [21]) has the form

f(x + y) =
n∑

k=1

uk(y)vk(x), (1)

where f, uk, vk, (1 ≤ k ≤ n), are complex-valued functions defined on a semi-
group (G,+). This equation can be restated by claiming that τy(f) ∈ W for
all y ∈ G, where W = span{vk}n

k=1 is a finite-dimensional space of functions
defined on G and τy(f)(x) = f(x + y).

In this paper we deal with the case G = R
d and study a more general

functional equation
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m∑

i=1

fi(bix + ciy) =
n∑

k=1

uk(y)vk(x) (2)

for all x, y ∈ R
d, where fi, vk, uk, for 1 ≤ i ≤ m, 1 ≤ k ≤ n, are functions

defined on R
d, and bi, ci ∈ GL(d,R). Our main result is that all continuous

solutions of (2) are exponential polynomials. Moreover, using a result from [26]
we extend this statement to equations of the form

m∑

i=1

fi(bix + ciy) =
n∑

k=1

uk(y)vk(x) +
N∑

s=1

Ps(x)ws(y) exp 〈x, ϕs(y)〉, (3)

where Ps are polynomials and the functions ws, ϕs are arbitrary.
In the one-dimensional case, addition theorems with such a left-hand side

were studied by Wilson [33] a hundred years ago. Applying an elimination
method, which now is a classical one, he showed that all continuous solutions
of the equation

m∑

i=1

fi(αix + βiy) = f(x) + g(y)

are polynomials of degree not greater than m.
Eq. (2) includes the equations in iterated differences:

m∑

j=1

λjΔj
yf =

n∑

k=1

uk(y)vk , y ∈ R
d,

where Δy is the difference operator Δy(f)(x) = f(x + y) − f(x). Indeed

Δm
y f(x) = 1 · f(x) +

m∑

p=1

(
m

p

)
(−1)m−pf(Idx + (pId)y),

where Id denotes the identity matrix of size d. A simplest example is Frechet’s
equation Δm

y f = 0.
Eq. (2) also extends the functional equation

1
N

N−1∑

k=0

f(z + wkh) = 0, for all z, h ∈ C,

where w is any primitive N -th root of 1. This equation, characterizing harmonic
polynomials, was introduced by Kakutani and Nagumo [19], Walsh [32] in the
1930’s, and intensively studied by Haruki [15–17] in the 1970’s and 1980’s.

Another special case of (2) is the equation
m∑

i=1

fi(bix + ciy) =
m∑

i=1

fi(bix) +
m∑

i=1

fi(ciy), (4)
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which is a linearized (by taking logarithms) form of the Skitovich–Darmois
functional equation:

m∏

i=1

μ̂i(bix + ciy) =
m∏

i=1

μ̂i(bix)
m∏

i=1

μ̂i(ciy).

Here, μ̂i represents the characteristic function of a probability distribution μi.
This equation is connected to the characterization problem of normal distri-
butions. Concretely, its study leads to a proof of the following result (Linnik
[22], Ghurye–Olkin [14,18]):

Assume that Xi, i = 1, . . . , m are independent d-dimensional random vec-
tors such that the linear forms L1 = bt

1X1 + · · · + bt
mXm and L2 = ct

1X1 +
· · · + ct

mXm are independent, with bi, ci ∈ GL(d,R) for i = 1, . . . , m. Then Xi

is Gaussian for all i.
The equation (4) (with changing the matrices bi, ci by automorphisms) and

its applications to probability distributions, has been studied in great detail by
Feld’man [13], for functions defined on locally compact commutative groups.

A more general specialization of (2) was considered by Ghurye and Olkin
in [14]:

m∑

i=1

fi(x + ciy) = A(x, y) + B(y, x), (5)

where fi map R
d to C, and the functions A,B are such that, for each y ∈ R

d,
A(x, y) and B(x, y) are polynomials in the variable x with degrees not greater
than r and s, respectively (here r, s do not depend on y). This equation has
also proven to be a useful tool in the study of probability distributions (see,
for example, [24, Chapter 7]).

The equation (1) can be formulated also for distributions, since the shift
operator τy : f(x) �→ f(x + y) and dilation operator σb : f(x) �→ f(bx) can be
extended to the space D(Rd)′ of Schwartz complex-valued distributions (as the
adjoint of the corresponding operators on D(Rd)). Our results in this setting
extend the Anselone–Korevaar [9] theorem on finite-dimensional shift-invariant
subspaces of D(Rd)′ and the results of [20,23] (see also [1–8]). They show in
particular that the continuity restrictions on solutions and coefficients of (1)
can be weakened at least to local integrability.

It should be underlined that in all settings if the functions or distributions
uk, vk in (2) are linearly independent (which can always be assumed), then
they are linear combinations of (shifted) functions fi. Therefore, proving that
fi are exponential polynomials we simultaneously prove the same for uk and
vk.

2. Solution of Eq. (2)

Our aim here is to establish the following result:
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Theorem 1. If the functions vk are continuous, the matrices bi, ci and b−1
i ci −

b−1
j cj (for i �= j) are invertible, then all solutions fi ∈ C(Rd) of (2) are
exponential polynomials.

The condition that the matrices b−1
i ci − b−1

j cj (for i �= j) are invertible
already existed in the literature. In particular, a condition of this type is ex-
plicitly stated in [28, Theorem 3.9].

Note that the substitution f̃i(x) = fi(bix) reduces Eq. (2) to the case that
bi = Id, the identity matrix, that is to the equation

m∑

i=0

fi(x + ciy) =
n∑

k=1

uk(y)vk(x). (6)

So in what follows we mostly consider this case.
For y ∈ R

d, let τy denote the shift operator on C(Rd): τy(f)(x) = f(x+ y).
Then denoting by W the subspace generated by v1, . . . , vn, we may reformulate
(6) saying that all functions

∑m
i=1 τciy(fi) belong to W .

In the proof of Theorem 1 we will use the following result from [26]:

Proposition 2. Let π be a continuous representation of a topologically finitely
generated semigroup G on a topological linear space X. Suppose that a vec-
tor x ∈ X and a finite-dimensional subspace L ⊂ X have the property that
for any g ∈ G, there is a finite-dimensional π-invariant subspace R(g) ⊂ X
with π(g)(x) ∈ L + R(g). Then x belongs to a finite-dimensional π-invariant
subspace of X.

In this section Proposition 2 will be applied to the representation y �→ τy

of the group R
d by shifts on the space C(Rd).

By the above, Theorem 1 is equivalent to the following:

Theorem 3. Assume that {fi}m
i=1 ⊂ C(Rd) and, for all y ∈ R

d,
m∑

i=1

τciy(fi) ∈ W for all y ∈ R
d (7)

where W ⊂ C(Rd) is a finite-dimensional subspace. If all matrices ci and ci−cj

(for i �= j) are invertible, then all fi are exponential polynomials.

Proof. We use induction on m. The case m = 1 is known. Indeed, in this case
(6) is the Levi-Civita equation, its solutions on abelian groups are described,
for example, in [10, Theorem 1] (see also [29–31] and references there).

Suppose that the statement is true whenever the number of summands
appearing in the left-hand side of the equation is strictly smaller than m. Take
arbitrary h ∈ R

d and substitute in (7) y − c−1
1 h for y. Then applying the

operator τh we will obtain
m∑

i=1

τh+ci(y−c−1
1 h)(fi) ∈ τh(W ) for all y ∈ R

d. (8)
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Comparing the left-hand sides of (7) and (8), and setting W ∗ := τh(W ) + W
we obtain

m∑

i=2

(τciy+(Id−cic
−1
1 )h(fi) − τciy(fi)) ∈ W ∗, for all y ∈ R

d. (9)

Clearly dimW ∗ < ∞. Setting di = Id−cic
−1
1 , define, for a fixed h, the functions

gi by gi(x) = fi(x + dih) − fi(x). Then (9) will have the form
m∑

i=2

τciy(gi) ∈ W ∗ for all y ∈ R
d. (10)

By the induction hypothesis, we obtain that all functions gi are continuous
exponential polynomials.

The matrices di = Id − cic
−1
1 are invertible, since

ker di = c1 ker(ci − c1) = {0}.

Thus, the condition “fi(x+dih)−fi(x) is a continuous exponential polynomial
for all h” can be written as “fi(x + y) − fi(x) is a continuous exponential
polynomial for all y”. Since any exponential polynomial is contained in an
invariant finite-dimensional subspace, we see that each function τyfi belongs
to the sum of the one-dimensional subspace Cfi and some invariant finite-
dimensional subspace. By Proposition 2, fi is contained in an invariant finite-
dimensional subspace, so fi is an exponential polynomial. Here i = 2, . . . , m,
but clearly the same is true for f1 by symmetry. �

3. A more general class of equations

Here we consider Eq. (3). Since the second term in the right-hand side of (3) is
an exponential polynomial in x for each y, the study of this equation reduces
to the following extension of Theorem 3.

Theorem 4. Let {fk}m
k=1 ⊂ C(Rd), W be a finite-dimensional subspace of

C(Rd), ci ∈ GL(d,R). Suppose that, for each y ∈ R
d, there is a finite-

dimensional translation invariant space R(y) ⊂ C(Rd) with
m∑

i=1

τciy(fi) ∈ W + R(y). (11)

If all matrices ci − cj (for i �= j) are invertible, then all fi are exponential
polynomials.

Proof. We proceed by induction on m. The case m = 1 is solved by Proposition
2, since c1 is invertible. Take m > 1 and let y ∈ R

d, so (11) holds for a finite-
dimensional invariant subspace R(y) of C(Rd). Choosing h ∈ R

d, we apply the
assumption to y − c−1

1 h:
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m∑

i=1

τciy(fi) ∈ W + R(y − c−1
1 h). (12)

Applying the operator τh to both sides of (12) one obtains
m∑

i=1

τh+ci(y−c−1
1 h)(fi) ∈ τh(W ) + R(y − c−1

1 h). (13)

Subtracting (12) from (13) we get
m∑

i=2

(τciy+(Id−cic
−1
1 )h(fi) − τciy(fi)) ∈ W1 + R1(y), (14)

where W1 = τh(W ) + W and R1(y) = R(y) + R(y − c−1
1 h). Clearly W1 and

R1(y) are finite-dimensional and R1(y) is translation invariant.
Setting di = Id−cic

−1
1 define the functions gi by gi(x) = fi(x+dih)−fi(x).

Then (14) will have the form
m∑

i=2

τciy(gi) ∈ W1 + R1(y), for all y ∈ R
d.

Thus, the induction step confirms that all functions gi, for i = 2, . . . , m, are
exponential polynomials. Since h is arbitrary, the proof can be finished in the
same way as the proof of Theorem 3. �
Corollary 5. If the functions vk are continuous, the matrices bi, ci and b−1

i ci −
b−1
j cj (for i �= j) are invertible, then all continuous solutions fi of (3) are
exponential polynomials.

4. Distributions

The functions which are the coefficients of the equation (2) (as well as its
solutions) could a priori belong to a more general class than C(Rd). To handle
a more wide variety of situations we will now study it in the distributional
setting.

We will distinguish two variants of the distributional view of Eq. (2). If uk

are usual (arbitrary!) functions while vk are distributions then the equation
means that the sum in the left-hand side for every y belongs to the linear span
of the distributions vk. So we come to the following setting:

Theorem 6. Assume that {fk}m
k=1 ⊂ D(Rd)′ and, for all y ∈ R

d,
m∑

i=1

τciy(fi) ∈ W for all y ∈ R
d

for an n-dimensional subspace W of D(Rd)′. If all matrices ci and ci − cj (for
i �= j) are invertible, then all fk are continuous exponential polynomials.
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Proof. The proof is similar to the proof of Theorem 3 and uses, in a funda-
mental form, the distributional part of the Anselone–Korevaar theorem [9].
In particular, the case m = 1 follows from that result. The induction step
goes as above with the only distinction that we apply Proposition 2 to the
representation of Rd by shifts on the space D(Rd)′. �

Corollary 7. The statements of Theorem 1 and Corollary 5 extend to the case
that vk and fi are locally summable.

On the other hand one can consider (2) in the case that both uk and vk

are distributions. In this setting we should regard both sides of the equation
as elements of D(Rd × R

d)′.

Theorem 8. Assume that

m∑

i=1

fi(x + ciy) =
n∑

k=1

uk(y)vk(x), (15)

where fi, uk, vk ∈ D(Rd)′, ci ∈ GL(d,R) and both sides of (15) are considered
as elements of D(Rd × R

d)′. If all matrices ci − cj (for i �= j) are invertible,
then fk is a continuous exponential polynomial for k = 1, . . . , m.

Proof. Let us denote by Δ(h,k) the general difference operator in D(Rd ×R
d)′

given by:

〈Δ(h,k)F (x, y), φ(x, y)〉 := 〈F (x, y), φ(x − h, y − k) − φ(x, y)〉,

where φ ∈ D(Rd ×R
d) denotes an arbitrary test function. We will use the fact

that the equality

Δ(h,k)(f(x + cy)) = (Δh+ck(f))(x + cy) (16)

holds for all f ∈ D(Rd)′, h, k ∈ R
d, and c ∈ GL(d,R); its validity can be

checked by direct calculation.
As above we proceed by induction on m, the number of summands in the

left-hand side of the equation (15). As we have already noticed, the case m = 1
of this equation is known (see, e.g., [11,12] for d = 1 and [25,27] for domains of
R

d). Assume the result holds true whenever we have less than m summands.
Let fi, uk, vk satisfy (15).

Let us apply the operator Δ(h,−c−1
1 h) to both sides of the Eq. (this is equiv-

alent to substituting x by x+h and y by y − c−1
1 h in the equation). Then (16)

implies that
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Δ(h,−c−1
1 h)

[
m∑

i=1

fi(x + ciy)

]
=

m∑

i=1

Δ(h,−c−1
1 h)fi(x + ciy)

=
m∑

i=1

(Δh−cic
−1
1 h(fi))(x + ciy)

=
m∑

i=2

(Δ(Id−cic
−1
1 )h(fi))(x + ciy)

=
m∑

i=2

gi(x + ciy),

with gi = Δ(Id−cic
−1
1 )h(fi) ∈ D(Rd)′ for i = 2, . . . , m. Hence, after applying

the operator Δ(h,−c−1
1 h) to the left-hand side of the equation, we reduce by 1

the number of summands in the equation. On the other hand, in the right-hand
side of the equation we get

Δ(h,−c−1
1 h)

(
n∑

k=1

uk(y)vk(x)

)
=

n∑

k=1

τ−c−1
1 h(uk)(y)τh(vk)(x) −

n∑

k=1

uk(y)vk(x),

which is an expression of the form
2n∑

k=1

Uk(y)Vk(x)

with Uk, Vk ∈ D(Rd)′ for k = 1, . . . , 2n. Hence we can use the induction hy-
pothesis to conclude that gi = Δ(Id−cic

−1
1 )h(fi) ∈ D(R)′ is a continuous expo-

nential polynomial for i = 2, . . . , m. As in the proof of Theorem 6 we conclude,
using Proposition 2, that all fi are continuous exponential polynomials. �

Corollary 9. Assume that
m∑

i=1

fi(bix + ciy) =
n∑

k=1

uk(y)vk(x),

where fi, uk, vk ∈ D(Rd)′ and bi, ci ∈ GL(d,R). If all matrices b−1
i ci − b−1

j cj

(for i �= j) are invertible, then fk is a continuous exponential polynomial for
k = 1, . . . , m.

As a consequence, the results of Kakutani-Nagumo, Walsh, Ghurie-Olkin
and others mentioned in the Introduction, extend to distributions. For exam-
ple, we have

Theorem 10. Assume that fi, aα, bβ ∈ D(Rd)′ for 1 ≤ i ≤ m, 0 ≤ |α| ≤ r and
0 ≤ |β| ≤ s, and equation (5) is satisfied with A(x, y) =

∑
|α|≤r xα · aα(y) and

B(y, x) =
∑

|β|≤s bβ(x) · yβ. Assume, furthermore, that all matrices ci (for all
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i) and ci − cj (for i �= j) are invertible. Then all fi are (in the distributional
sense) ordinary polynomials.

Proof. It follows from Theorem 6 that fi are continuous exponential polynomi-
als, which implies immediately the same about bβ(x). Therefore one can apply
results of [14] where the statement was proved for continuous functions. �
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