Aequat. Math. 91 (2017), 419–428 C Springer International Publishing 2017 0001-9054/17/030419-10 *published online* April 4, 2017 published online April 4, 2017
DOI 10.1007/s00010-017-0476-9 **Aequationes Mathematicae**

Extensions of Jacobson's lemma for Drazin inverses

Dijana Mosic´

Abstract. We study the generalization of Jacobson's lemma for the group inverse, Drazin inverse, generalized Drazin inverse and pseudo Drazin inverse of 1 [−] *bd* (or 1 [−] *ac*) in a ring when 1−*ac* (or 1−*bd*) has a corresponding inverse, *acd* ⁼ *dbd* and *bdb* ⁼ *bac* (or *dba* ⁼ *aca*). Thus, we recover some recent results.

Mathematics Subject Classification. 16B99, 15A09, 16U99.

Keywords. Jacobson's lemma, Group inverse, Drazin inverse, Generalized Drazin inverse, Pseudo Drazin inverse, Ring.

1. Introduction

Let R be a ring with the unit 1. We use \mathcal{R}^{-1} and \mathcal{R}^{nil} to denote the set of all invertible and nilpotent elements of R , respectively.

Recall that an element $a \in \mathcal{R}$ has a Drazin inverse [\[3\]](#page-8-0) if there exists $x \in \mathcal{R}$ such that

$$
xax = x, \quad ax = xa \quad \text{and} \quad a^k = a^{k+1}x,
$$

for some $k > 0$. The smallest such integer k is called the Drazin index of a, denoted $\mathrm{ind}(a)$. The element x above is unique if it exists and is denoted by a^D . The notation a^{π} means $1 - a a^D$ for any Drazin invertible element $a \in \mathcal{R}$. Observe that by the definition of the Drazin inverse, $aa^{\pi} \in \mathcal{R}^{nil}$ and the nilpotency index of aa^{π} is the Drazin index of a. If $ind(a) = 1$, then a is group invertible and the group inverse of a is denoted by $a^{\#}$. Thus, $a^{\#}$ satisfies $a^{\#}aa^{\#} = a^{\#}$, $a^{\#}a = aa^{\#}$ and $aa^{\#}a = a$. The subsets of R composed of Drazin invertible and group invertible elements will be denoted by \mathcal{R}^D and $\mathcal{R}^{\#}$, respectively.

B Birkhäuser

Dijana Mosić: The author is supported by the Ministry of Education and Science, Republic of Serbia, Grant No. 174007.

Lemma 1.1. [\[5\]](#page-8-1) *Let* $a \in \mathcal{R}$ *. Then* $a \in \mathcal{R}^{\#}$ *if and only if* $a \in a^2 \mathcal{R} \cap \mathcal{R}a^2$ *. Moreover, if* $a = xa^2 = a^2y$ *for some* $x, y \in \mathcal{R}$ *, then* $a^{\#} = xay = x^2a = ay^2$ *.*

Lemma 1.2. *Let* $a \in \mathcal{R}$ *. Then* a *is Drazin invertible if and only if* a^k *is group invertible for some* $k \geq 1$ *. In addition,* $a^D = a^{k-1}(a^k)^{\#} = (a^k)^{\#} a^{k-1}$ *.*

For any element $a \in \mathcal{R}$ the commutant and the double commutant of a, respectively, are defined by

$$
comm(a) = \{x \in \mathcal{R} : ax = xa\},\
$$

comm²(a) = { $x \in \mathcal{R} : xu = ux$ for all $y \in \text{comm}(a)$ }.

If $a \in \mathcal{R}^D$, then $a^D \in \text{comm}^2(a)$ [\[6](#page-8-2)].

In [\[4](#page-8-3)], quasinilpotent elements of a ring R are introduced as follows: $q \in \mathcal{R}$ is quasinilpotent, if $1 + xq \in \mathcal{R}^{-1}$ for all $x \in \text{comm}(q)$. We use \mathcal{R}^{qnil} to denote the set of all quasinilpotent elements of R .

The generalized Drazin inverse of $a \in \mathcal{R}$ is defined in [\[6](#page-8-2)] as the element $a^d = x$ satisfying:

$$
x \in \text{comm}^2(a)
$$
, $xax = x$ and $a(1 - ax) \in \mathcal{R}^{qnil}$.

If a^d exists, then it is unique [\[6](#page-8-2)]. In Banach algebras it is enough to assume $x \in \text{comm}(a)$ instead of $x \in \text{comm}^2(a)$. We use \mathcal{R}^d to denote the set of all generalized Drazin invertible elements of R.

Lemma 1.3. [\[6](#page-8-2), Theorem 4.2] *Let* $a \in \mathcal{R}$ *. Then* $a \in \mathcal{R}^d$ *if and only if there exists* $p = p^2 \in \mathcal{R}$ *such that*

 $p \in \text{comm}^2(a)$, $a + p \in \mathcal{R}^{-1}$ and $ap \in \mathcal{R}^{qnil}$.

In this case, $p = 1 - a a^d$ *is a spectral idempotent of a and will be denoted by* a^{π} .

Wang and Chen [\[7](#page-8-4)] introduced the pseudo Drazin inverse in associative rings as an intermedium between the Drazin inverse and generalized Drazin inverse. An element $a \in \mathcal{R}$ is pseudo Drazin invertible if there exists $x \in \mathcal{R}$ such that

$$
x \in \text{comm}^2(a)
$$
, $xax = x$ and $a^k - a^{k+1}x \in J(\mathcal{R})$,

for some $k \geq 0$, where $J(\mathcal{R})$ is the Jacobson radical of \mathcal{R} . Any element $x \in \mathcal{R}$ satisfying the above equations is called a pseudo Drazin inverse of a , which is unique if it exists, and is denoted by a^{p} . The set of all pseudo Drazin invertible elements of R will be denoted by \mathcal{R}^{pD} . Also, $a^{\pi} = 1 - aa^{pD}$.

Jacobson's lemma states that if $1 - ab$ is invertible, then so is $1 - ba$, i.e. the following holds:

Lemma 1.4. *Let* $a, b \in \mathcal{R}$ *. If* $1 - ab \in \mathcal{R}^{-1}$ *, then* $1 - ba \in \mathcal{R}^{-1}$ *and* $(1 - ba)^{-1} =$ $1 + b(1 - ab)^{-1}a$.

In recent years, it has been proved that Jacobson's lemma has suitable analogues for the group, Drazin and generalized Drazin inverses [\[1](#page-8-5)[,9](#page-8-6)].

Corach et al. [\[2](#page-8-7)] generalized Jacobson's lemma to the case that $aba = aca$. Precisely, they showed that if $1 - ab$ is invertible and $aba = aca$, then $1 - ba$ is invertible too and $(1 - ba)^{-1} = 1 + b(1 - ac)^{-1}a$.

In [\[8\]](#page-8-8), a new extension of Jacobson's lemma for bounded linear operators between Banach spaces, was studied whenever $acd = dbd$ and $dba = aca$. Evidently, for $d = a$, $aba = aca$.

Notice that, when $acd = dbd$, $bdb = bac$ and $1 - ac$ is invertible, then $1 - bd$ is invertible too and

$$
(1 - bd)^{-1} = 1 + b(1 - ac)^{-1}d.
$$

If $acd = dbd$, $dba = aca$ and $1 - bd$ is invertible, we observe that $1 - ac$ is invertible and

$$
(1 - ac)^{-1} = 1 + [1 + d(1 - bd)^{-1}b]ac.
$$

In this paper, we investigate the generalization of Jacobson's lemma in a ring when $acd = dbd$ and $(bdb = bac \text{ or } dba = aca)$. In the case that $acd = dbd$ and $bdb = bac$, we prove that if $1 - ac$ is group invertible, Drazin invertible, generalized Drazin invertible or pseudo Drazin invertible, then so is $1-bd$ and give expressions for the group, Drazin, generalized Drazin and pseudo Drazin inverses of $1 - bd$ in terms of the corresponding inverse of $1 - ac$. Also, we study the group and Drazin invertibility of $1 - ac$ when $acd = dbd$, $dba = aca$ and $1 - bd$ is group or Drazin invertible. As a consequence of these results, we get some results in [\[1](#page-8-5)[,9](#page-8-6)]. In the end, we state as a conjecture the generalized Drazin and pseudo Drazin invertibility of $1 - ac$ when $acd = dbd$, $dba = aca$ and $1 - bd$ is generalized Drazin or pseudo Drazin invertible.

2. Extensions of Jacobson's lemma

In the first theorem of this section, if $1 - ac$ is group invertible, we prove that $1 - bd$ is group invertible under the conditions $acd = dbd$ and $bdb = bac$.

Theorem 2.1. *Let* $a, b, c, d \in \mathcal{R}$ *satisfy* $acd = dbd$ *and* $bdb = bac$. *If* $1 - ac \in \mathcal{R}^{\#}$, *then* $1 - bd \in \mathbb{R}^{\#}$ *and*

$$
(1 - bd)^{\#} = 1 + b[(1 - ac)^{\#} - (1 - ac)^{\pi}]d.
$$
 (1)

Proof. Denote by y the right hand side of (1) . Then

$$
(1 - bd)y = 1 - bd + b(1 - ac)[(1 - ac)^{\#} - (1 - ac)^{\pi}]d
$$

= 1 - b(1 - ac)^{\pi}d.

In the same way, we get $y(1-bd)=1-b(1-ac)^{\pi}d$. Thus, $(1-bd)y = y(1-bd)$. Further, we have

$$
(1 - bd)y(1 - bd) = [1 - b(1 - ac)^{\pi}d](1 - bd)
$$

= 1 - bd - b(1 - ac)^{\pi}(1 - ac)d
= 1 - bd.

Since db commutes with $1 - ac$, we deduce that db commutes with $(1 - ac)^{\#}$ and $(1 - ac)^{\pi}$. Now, as

$$
y(1 - bd)y = y[1 - b(1 - ac)^{\pi}d]
$$

= $y - b(1 - ac)^{\pi}d - b[(1 - ac)^{\#} - (1 - ac)^{\pi}](1 - ac)^{\pi}dbd$
= $y - b(1 - ac)^{\pi}d + b(1 - ac)^{\pi}acd$
= $y - b(1 - ac)^{\pi}(1 - ac)d$
= y ,

we conclude that $1 - bd \in \mathcal{R}^{\#}$ and $(1 - bd)^{\#} = y$.

If $c = b$ and $d = a$ in Theorem [2.1,](#page-2-1) we obtain [\[1,](#page-8-5) Theorem 3.5]: **Corollary 2.1.** *Let* $a, b \in \mathcal{R}$ *. If* $1 - ab \in \mathcal{R}^{\#}$ *, then* $1 - ba \in \mathcal{R}^{\#}$ *and*

$$
(1 - ba)^{\#} = 1 + b[(1 - ab)^{\#} - (1 - ab)^{\pi}]a.
$$

In a ring R with involution (which is any map $* : \mathcal{R} \to \mathcal{R}$ satisfying $(b^*)^* = b$, $(by)^* = y^*b^*$, $(b+y)^* = b^* + y^*$, for any $b, y \in \mathcal{R}$), an element $a \in \mathcal{R}$ is Moore–Penrose invertible if there exists a unique element $x = a^{\dagger} \in \mathcal{R}$ such that $axa = a$, $xax = x$, $(ax)^* = ax$ and $(xa)^* = xa$. Recall that an element a is EP if a is Moore-Penrose invertible and $aa^{\dagger} = a^{\dagger}a$ which is equivalent to that a is group invertible and $(a^{\pi})^* = a^{\pi}$ [\[6](#page-8-2)]. If $1 - ac$ is EP in a ring with involution, the necessary and sufficient conditions for $1-bd$ to be EP, are given now applying Theorem [2.1.](#page-2-1)

Corollary 2.2. *Let* $a, b, c, d \in \mathcal{R}$ *satisfy* $acd = dbd$ *and* $bdb = bac$. If $1 - ac$ *is EP, then* $1 - bd$ *is EP if and only if* $b(1 - ac)^{\pi}d = d^*(1 - ac)^{\pi}b^*$ *. In addition,* $(1 - bd)^{\dagger}$ *is represented by* [\(1\)](#page-2-0).

To prove in a ring that $1 - ac \in \mathbb{R}^{\#}$ in the case that $1 - bd \in \mathbb{R}^{\#}$, we replace the condition $bdb = bac$ of Theorem [2.1](#page-2-1) with $dba = aca$ and obtain an expression for $(1 - ac)^{\#}$.

Theorem 2.2. *Let* $a, b, c, d \in \mathcal{R}$ *satisfy* $acd = dbd$ *and* $dba = aca$ *. If* $1-bd \in \mathcal{R}^{\#}$ *, then* $1 - ac \in \mathcal{R}^{\#}$ *and*

$$
(1 - ac)^{\#} = 1 + ac + d[(1 - bd)^{\#} - 2(1 - bd)^{\pi}]bac.
$$

Proof. If we denote $y = 1 + ac + d[(1 - bd)^{\#} - (1 - bd)^{\pi}]bac$, then we can check, as in the proof of Theorem [2.1,](#page-2-1) that $(1 - ac)y = y(1 - ac)$ and $(1$ $ac)y(1 - ac) = 1 - ac$. Using Lemma [1.1,](#page-1-0) we obtain that $1 - ac \in \mathcal{R}^{\#}$ and $(1 - ac)^{\#} = y(1 - ac)y = y - d(1 - bd)^{\#}bc$. $(1 - ac)^{\#} = y(1 - ac)y = y - d(1 - bd)^{\pi}bac.$

Exchanging the roles of a and b , and c and d in Theorem [2.2,](#page-3-0) we get the next result with a hypothesis and conclusion which are different from Theorem [2.1.](#page-2-1)

Corollary 2.3. *Let* $a, b, c, d \in \mathcal{R}$ *satisfy* $bdc = cac$ *and* $cab = bdb$ *. If* $1 - ac \in \mathcal{R}^{\#}$ *, then* $1 - bd \in \mathcal{R}^{\#}$ *and*

$$
(1 - bd)^{\#} = 1 + bd + c[(1 - ac)^{\#} - 2(1 - ac)^{\#}]abd.
$$

In the case that $d = a$ in Theorem [2.2,](#page-3-0) we get the following result as a consequence.

Corollary 2.4. *Let* $a, b, c \in \mathcal{R}$ *satisfy* $aba = aca$ *.* If $1 - ba \in \mathcal{R}^{\#}$ *, then* $1 - ac \in$ $\mathcal{R}^{\#}$ and

 $(1 - ac)^{\#} = 1 + ac + a[(1 - ba)^{\#} - 2(1 - ba)^{\pi}]bac.$

Remark. Let $a, b \in \mathcal{R}$ and $1 - ba \in \mathcal{R}^{\#}$. If we suppose that $c = b$ in Corollary [2.4,](#page-4-0) then $1 - ab \in \mathcal{R}^{\#}$ and

$$
(1 - ab)^{\#} = 1 + ab + a[(1 - ba)^{\#} - 2(1 - ba)^{\pi}]bab := X_1.
$$

Exchanging the roles of a and b in Corollary [2.1,](#page-3-1) $1 - ab \in \mathcal{R}^{\#}$ and

$$
(1 - ab)^{\#} = 1 + a[(1 - ba)^{\#} - (1 - ba)^{\pi}]b := X_2.
$$

Notice that these two expressions X_1 and X_2 for $(1 - ab)^{\#}$ are equal, since

$$
X_1 = 1 + ab + a(1 - ba)^{\#}b - a(1 - ba)^{\#}(1 - ba)b - a(1 - ba)^{\pi}bab
$$

+a(1 - ba)^{\pi}(1 - ba)b - a(1 - ba)^{\pi}b
= 1 + ab + a(1 - ba)^{\#}b - a(1 - ba)^{\#}(1 - ba)b - abab
+a(1 - ba)^{\#}(1 - ba)bab - a(1 - ba)^{\pi}b
= 1 + a(1 - ba)b + a(1 - ba)^{\#}b - a(1 - ba)^{\#}(1 - ba)^{2}b - a(1 - ba)^{\pi}b
= X_2.

Using Theorem [2.1,](#page-2-1) we verify the Drazin invertibility of $1-bd$, when $1-ac$ is Drazin invertible. Throughout this section, if the lower limit of a sum is greater than its upper limit, we always define the sum to be 0. For example, the sum $\sum_{k=0}^{-1}$ * = 0 and so the following theorem recovers the cases $1 - ac \in \mathcal{R}^{-1}$ (for $k = 0$) and $1 - ac \in \mathcal{R}^{\#}$ (for $k = 1$).

Theorem 2.3. *Let* $a, b, c, d \in \mathcal{R}$ *satisfy* $acd = dbd$ *and* $bdb = bac$ *. If* $1 - ac \in \mathcal{R}^D$ *, then* $1 - bd \in \mathcal{R}^D$ *and*

$$
(1 - bd)^{D} = 1 + b[(1 - ac)^{D} - (1 - ac)^{\pi}r]d,
$$

where $r = \sum_{j=0}^{k-1} (1 - ac)^j$ *and* $\text{ind}(1 - ac) = k$ *.*

Proof. Suppose that $k \ge 2$, $s = \sum_{j=0}^{k-1} (1 - db)^j$. Since $1 - rac = (1 - ac)^k \in \mathcal{R}^{\#}$,

$$
racsd = racd \sum_{j=0}^{k-1} (1 - bd)^j = rdbd \sum_{j=0}^{k-1} (1 - bd)^j = \sum_{j=0}^{k-1} d(1 - bd)^j bsd = sdbsd
$$

and

$$
brac = \sum_{j=0}^{k-1} (1 - bd)^j bac = \sum_{j=0}^{k-1} (1 - bd)^j bdb = bsdb,
$$

by Theorem [2.1,](#page-2-1) $1 - bsd \in \mathcal{R}^{\#}$ and

$$
(1 - bsd)^{\#} = 1 + b[(1 - rac)^{\#} - (1 - rac)^{\pi}]sd
$$

= 1 + b[((1 - ac)^{D})^{k} - (1 - ac)^{\pi}]sd.

From $1 - bsd = (1 - bd)^k$ and Lemma [1.2,](#page-1-1) $1 - bd \in \mathcal{R}^D$ and, for $s' = \sum_{j=0}^{k-2} (1$ $db)^j$,

$$
(1 - bd)^D = [(1 - bd)^k]^{\#} (1 - bd)^{k-1}
$$

= $(1 - bd)^{k-1} + b[((1 - ac)^D)^k - (1 - ac)^{\pi}](1 - ac)^{k-1}sd$
= $1 - bs'd + b(1 - ac)^D(1 + (1 - ac)s')d - b(1 - ac)^{\pi}(1 - ac)^{k-1}d$
= $1 - b[(1 - ac)^D - (1 - ac)^{\pi}s' - (1 - ac)^{\pi}(1 - ac)^{k-1}]d$
= $1 - b[(1 - ac)^D - (1 - ac)^{\pi}s]d$
= $1 - b[(1 - ac)^D - (1 - ac)^{\pi}r]d$.

For $c = b$ and $d = a$ in Theorem [2.3,](#page-4-1) we have [\[1,](#page-8-5) Theorem 3.6].

Corollary 2.5. *Let* $a, b \in \mathcal{R}$ *. If* $1 - ab \in \mathcal{R}^D$ *, then* $1 - ba \in \mathcal{R}^D$ *and* $(1 - ba)^D = 1 + b[(1 - ab)^D - (1 - ab)^{m}r_1]a,$

where $r_1 = \sum_{j=0}^{k-1} (1 - ab)^j$ *and* $\text{ind}(1 - ab) = k$ *.*

Like Theorem [2.3,](#page-4-1) we prove the following result.

Theorem 2.4. *Let* $a, b, c, d \in \mathcal{R}$ *satisfy* $acd = dbd$ *and* $dba = aca$ *. If* $1-bd \in \mathcal{R}^D$ *, then* $1 - ac \in \mathcal{R}^D$ *and*

$$
(1 - ac)D = (1 + sac)(1 - ac)k-1 + s2d(1 - bd)Dbac
$$

$$
-2d(1 - bd)\pi(1 - bd)k-1bac,
$$

where $s = \sum_{j=0}^{k-1} (1 - db)^j$ *and* $\text{ind}(1 - bd) = k \ge 1$ *.*

If $d = a$ in Theorem [2.4,](#page-5-0) we get the next expression for $(1 - ac)^D$ in terms of $(1 - ba)^D$.

$$
\Box
$$

Corollary 2.6. *Let* $a, b, c \in \mathcal{R}$ *satisfy* $aba = aca$ *.* If $1 - ba \in \mathcal{R}^D$ *, then* $1 - ac \in \mathcal{R}$ ^R^D *and*

$$
(1 - ac)D = (1 + r1ac)(1 - ac)k-1 + r12a(1 - ba)Dbac
$$

$$
-2d(1 - ba)\pi(1 - ba)k-1bac,
$$

where $r_1 = \sum_{j=0}^{k-1} (1 - ab)^j$ *and* $\text{ind}(1 - ba) = k \ge 1$ *.*

Under the assumptions $acd = dbd$ and $bdb = bac$, we prove that the generalized Drazin invertibility of $1-ac$ implies the generalized Drazin invertibility of $1 - bd$ in a ring.

Theorem 2.5. *Let* $a, b, c, d \in \mathcal{R}$ *satisfy* $acd = dbd$ *and* $bdb = bac$. If $1 - ac \in \mathcal{R}^d$. *then* $1 - bd \in \mathbb{R}^d$ *and*

$$
(1 - bd)^d = 1 + b[(1 - ac)^d - (1 - ac)^{\pi}(1 - (1 - ac)^{\pi}(1 - ac))^{-1}]d.
$$
 (2)

Proof. Let y be the right hand side of [\(2\)](#page-6-0), $\alpha = 1 - ac$ and $\beta = 1 - bd$. Then, by Lemma [1.3,](#page-1-2) $1 - \alpha^{\pi} \alpha \in \mathcal{R}^{-1}$ and

$$
y(1 - bd) = 1 - bd + b[\alpha^d - \alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}]\alpha d
$$

= 1 - b\alpha^{\pi}d - b\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}\alpha d
= 1 - b\alpha^{\pi}[1 + (1 - \alpha^{\pi}\alpha)^{-1}\alpha\alpha^{\pi}]d
= 1 - b\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}d.

Since db commutes with α , we deduce that db commutes with α^d , α^{π} and $(1 - \alpha^{\pi} \alpha)^{-1}$. Hence,

$$
y(1 - bd)y = y - b\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}d + bdb\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-2}d
$$

= $y - b\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-2}(1 - \alpha^{\pi}\alpha - ac)d$
= $y - b\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-2}(\alpha^{\pi}\alpha - \alpha^{\pi}\alpha)d$
= y .

To prove that

$$
(1 - bd) - (1 - bd)y(1 - bd) = b\alpha\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}d \in \mathcal{R}^{qnil},
$$

assume that $z \in \mathcal{R}$ satisfies $b\alpha\alpha^{\pi}(1-\alpha^{\pi}\alpha)^{-1}dz = zb\alpha\alpha^{\pi}(1-\alpha^{\pi}\alpha)^{-1}d$. Then $db\alpha\alpha^{\pi}(1-\alpha^{\pi}\alpha)^{-1}dzb = dzb\alpha\alpha^{\pi}(1-\alpha^{\pi}\alpha)^{-1}db$ which gives, since db commutes with α , $\alpha \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} acdzb = dzbac\alpha \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1}$. Now, from $ac\alpha^{\pi} = \alpha^{\pi}(1-\alpha^{\pi}\alpha)$, we get $\alpha\alpha^{\pi}dzb = dzb\alpha\alpha^{\pi}$. Because $\alpha\alpha^{\pi} \in \mathcal{R}^{qnil}$ and $\alpha\alpha^{\pi}$ commutes with $(1 - \alpha^{\pi} \alpha)^{-1} dzb$, we have that $1 + (1 - \alpha^{\pi} \alpha)^{-1} dzb\alpha\alpha^{\pi} \in \mathcal{R}^{-1}$. Using Lemma [1.4,](#page-1-3) we have $1 + b\alpha\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}dz \in \mathcal{R}^{-1}$ which yields that $b\alpha\alpha^{\pi}(1-\alpha^{\pi}\alpha)^{-1}d \in \mathcal{R}^{qnil}.$

In order to show that $y \in \text{comm}^2(1 - bd)$, suppose that, for $z \in \mathcal{R}$, $z(1$ bd = $(1 - bd)z$. So, $zbd = bdz$ and $dzb\alpha = dz\beta b = d\beta zb = \alpha dzb$. Because dzb commutes with α , notice that dzb commutes with α^d , α^{π} and $(1 - \alpha^{\pi} \alpha)^{-1}$. From

$$
z b \alpha^{\pi} d = z b \alpha^{\pi} (1 - \alpha^{\pi} \alpha)(1 - \alpha^{\pi} \alpha)^{-1} d = z b a c \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d
$$

= $z b d b \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d = b d z b \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d$
= $b \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d z b d = b \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d b d z$
= $b a c \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d z = b \alpha^{\pi} (1 - \alpha^{\pi} \alpha)(1 - \alpha^{\pi} \alpha)^{-1} d z$
= $b \alpha^{\pi} d z$,

we have $z b \alpha \alpha^d d = b \alpha \alpha^d dz$, that is

$$
z b \alpha^d d - z b d b \alpha^d d = b \alpha^d d z - b \alpha^d d b d z.
$$

Since $z b d b \alpha^d d = b dz b \alpha^d d = b \alpha^d dz b d = b \alpha^d d b dz$, we obtain $zba^d d = b\alpha^d dz.$ (3)

The equalities

$$
b\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}dzb\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}d = bdzb\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}d
$$

= $zbac\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-2}d$
= $zb\alpha^{\pi}(1 - \alpha^{\pi}\alpha)(1 - \alpha^{\pi}\alpha)^{-2}d$
= $zb\alpha^{\pi}(1 - \alpha^{\pi}\alpha)^{-1}d$

and

$$
b\alpha^{\pi}(1-\alpha^{\pi}\alpha)^{-1}dzb\alpha^{\pi}(1-\alpha^{\pi}\alpha)^{-1}d = b(1-\alpha^{\pi}\alpha)^{-2}\alpha^{\pi}dzbd
$$

= $b(1-\alpha^{\pi}\alpha)^{-2}\alpha^{\pi}acdz$
= $b(1-\alpha^{\pi}\alpha)^{-1}\alpha^{\pi}dz$

imply

$$
z b \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d = b (1 - \alpha^{\pi} \alpha)^{-1} \alpha^{\pi} dz.
$$
 (4)

Using [\(3\)](#page-7-0) and [\(4\)](#page-7-1), we conclude that $zy = yz$. Thus, $y \in \text{comm}^2(1 - bd)$ and, by the definition of the generalized Drazin inverse, $1 - bd \in \mathbb{R}^d$ and $(1 - bd)^d = u$. $(1 - bd)^d = y.$

In the case that $c = b$ and $d = a$ in Theorem [2.5,](#page-6-1) we recover [\[9,](#page-8-6) Theorem 2.3].

Corollary 2.7. *Let* $a, b \in \mathcal{R}$ *. If* $1 - ab \in \mathcal{R}^d$ *, then* $1 - ba \in \mathcal{R}^d$ *and*

$$
(1 - ba)d = 1 + b[(1 - ab)d - (1 - ab)\pi(1 - (1 - ab)\pi(1 - ab))-1]a.
$$

We consider the pseudo Drazin invertibility of $1 - bd$ in the next result.

Theorem 2.6. *Let* $a, b, c, d \in \mathcal{R}$ *satisfy* $acd = dbd$ *and* $bdb = bac$. *If* $1 - ac \in \mathcal{R}$ \mathcal{R}^{pD} , then $1 - bd \in \mathcal{R}^{pD}$ and

$$
(1 - bd)^{p} = 1 + b[(1 - ac)^{p}] - (1 - ac)^{\pi}(1 - (1 - ac)^{\pi}(1 - ac))^{-1}]d.
$$
 (5)

Proof. If y is equal to the right hand side of [\(5\)](#page-7-2), then we verify that $y(1-bd)y =$ y and $y \in \text{comm}^2(1 - bd)$ as in the proof of Theorem [2.5.](#page-6-1) For $\alpha = 1 - ac$, from $\alpha^k \alpha^{\pi} \in J(\mathcal{R})$, we have that

$$
(1 - bd)^k b\alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d = b\alpha^k \alpha^{\pi} (1 - \alpha^{\pi} \alpha)^{-1} d \in J(\mathcal{R}).
$$

Hence, $1 - bd \in \mathcal{R}^{pD}$ and $(1 - bd)^{pD} = y$.

Corollary 2.8. Let
$$
a, b \in \mathcal{R}
$$
. If $1 - ab \in \mathcal{R}^{pD}$, then $1 - ba \in \mathcal{R}^{pD}$ and
\n
$$
(1 - ba)^{pD} = 1 + b[(1 - ab)^{pD} - (1 - ab)^{\pi}(1 - (1 - ab)^{\pi}(1 - ab))^{-1}]a.
$$

At the end of this section, the question is how to express the generalized Drazin and pseudo Drazin inverses of $1 - ac$ when $acd = dbd$, $dba = aca$ and ¹ [−] bd is generalized Drazin or pseudo Drazin invertible. So, we state it as a conjecture.

Conjecture. Let $a, b, c, d \in \mathcal{R}$ satisfy $acd = dbd$ and $aba = aca$.

- (i) If $1 bd \in \mathbb{R}^d$, then $1 ac \in \mathbb{R}^d$.
- (ii) If $1 bd \in \mathcal{R}^{pD}$, then $1 ac \in \mathcal{R}^{pD}$.

Acknowledgements

The author is grateful to the referee for constructive comments and careful reading of the paper.

References

- [1] Castro-González, N., Mendes Araújo, C., Patrício, P.: Generalized inverses of a sum in rings. Bull. Aust. Math. Soc. **82**, 156–164 (2010)
- [2] Corach, G., Duggal, B., Harte, R.E.: Extensions of Jacobson's lemma. Commun. Algebra **41**, 520–531 (2013)
- [3] Drazin, M.P.: Pseudoinverse in associative rings and semigroups. Am. Math. Mon. **65**, 506–514 (1958)
- [4] Harte, R.E.: On quasinilpotents in rings. Panamer. Math. J. **1**, 10–16 (1991)
- [5] Hartwig, R.E., Luh, J.: A note on the group structure of unit regular ring elements. Pac. J. Math. **71**(2), 449–461 (1977)
- [6] Koliha, J.J., Patrício, P.: Elements of rings with equal spectral idempotents. J. Aust. Math. Soc. **72**, 137–152 (2002)
- [7] Wang, Z., Chen, J.: Pseudo Drazin inverses in associative rings and Banach algebras. Linear Algebra Appl. **437**, 1332–1345 (2012)
- [8] Yan, K., Fang, X.C.: Common properties of the operator products in local spectral theory. Acta Math. Sin. (Engl. Ser.) **31**, 1715–1724 (2015)
- [9] Zhuang, G., Chen, J., Cui, J.: Jacobsons lemma for the generalized Drazin inverse. Linear Algebra Appl. **436**(3), 742–746 (2012)

Dijana ${\rm Mosi}\acute{c}$ Faculty of Sciences and Mathematics University of Niš P. O. Box 224, Nis 18000 Serbia e-mail: dijana@pmf.ni.ac.rs

Received: August 1, 2016 Revised: January 20, 2017