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Extensions of Jacobson’s lemma for Drazin inverses

Dijana Mosić

Abstract. We study the generalization of Jacobson’s lemma for the group inverse, Drazin
inverse, generalized Drazin inverse and pseudo Drazin inverse of 1 − bd (or 1 − ac) in a ring
when 1−ac (or 1−bd) has a corresponding inverse, acd = dbd and bdb = bac (or dba = aca).
Thus, we recover some recent results.
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1. Introduction

Let R be a ring with the unit 1. We use R−1 and Rnil to denote the set of all
invertible and nilpotent elements of R, respectively.

Recall that an element a ∈ R has a Drazin inverse [3] if there exists x ∈ R
such that

xax = x, ax = xa and ak = ak+1x,

for some k ≥ 0. The smallest such integer k is called the Drazin index of
a, denoted ind(a). The element x above is unique if it exists and is denoted
by aD. The notation aπ means 1 − aaD for any Drazin invertible element
a ∈ R. Observe that by the definition of the Drazin inverse, aaπ ∈ Rnil and
the nilpotency index of aaπ is the Drazin index of a. If ind(a) = 1, then a
is group invertible and the group inverse of a is denoted by a#. Thus, a#

satisfies a#aa# = a#, a#a = aa# and aa#a = a. The subsets of R composed
of Drazin invertible and group invertible elements will be denoted by RD and
R#, respectively.
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Lemma 1.1. [5] Let a ∈ R. Then a ∈ R# if and only if a ∈ a2R ∩ Ra2.
Moreover, if a = xa2 = a2y for some x, y ∈ R, then a# = xay = x2a = ay2.

Lemma 1.2. Let a ∈ R. Then a is Drazin invertible if and only if ak is group
invertible for some k ≥ 1. In addition, aD = ak−1(ak)# = (ak)#ak−1.

For any element a ∈ R the commutant and the double commutant of a,
respectively, are defined by

comm(a) = {x ∈ R : ax = xa},

comm2(a) = {x ∈ R : xy = yx for all y ∈ comm(a)}.

If a ∈ RD, then aD ∈ comm2(a) [6].
In [4], quasinilpotent elements of a ring R are introduced as follows: q ∈ R

is quasinilpotent, if 1+xq ∈ R−1 for all x ∈ comm(q). We use Rqnil to denote
the set of all quasinilpotent elements of R.

The generalized Drazin inverse of a ∈ R is defined in [6] as the element
ad = x satisfying:

x ∈ comm2(a), xax = x and a(1 − ax) ∈ Rqnil.

If ad exists, then it is unique [6]. In Banach algebras it is enough to assume
x ∈ comm(a) instead of x ∈ comm2(a). We use Rd to denote the set of all
generalized Drazin invertible elements of R.

Lemma 1.3. [6, Theorem 4.2] Let a ∈ R. Then a ∈ Rd if and only if there
exists p = p2 ∈ R such that

p ∈ comm2(a), a + p ∈ R−1 and ap ∈ Rqnil.

In this case, p = 1 − aad is a spectral idempotent of a and will be denoted by
aπ.

Wang and Chen [7] introduced the pseudo Drazin inverse in associative
rings as an intermedium between the Drazin inverse and generalized Drazin
inverse. An element a ∈ R is pseudo Drazin invertible if there exists x ∈ R
such that

x ∈ comm2(a), xax = x and ak − ak+1x ∈ J(R),

for some k ≥ 0, where J(R) is the Jacobson radical of R. Any element x ∈ R
satisfying the above equations is called a pseudo Drazin inverse of a, which
is unique if it exists, and is denoted by apD. The set of all pseudo Drazin
invertible elements of R will be denoted by RpD. Also, aπ = 1 − aapD.

Jacobson’s lemma states that if 1 − ab is invertible, then so is 1 − ba, i.e.
the following holds:

Lemma 1.4. Let a, b ∈ R. If 1−ab ∈ R−1, then 1−ba ∈ R−1 and (1−ba)−1 =
1 + b(1 − ab)−1a.
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In recent years, it has been proved that Jacobson’s lemma has suitable
analogues for the group, Drazin and generalized Drazin inverses [1,9].

Corach et al. [2] generalized Jacobson’s lemma to the case that aba = aca.
Precisely, they showed that if 1 − ab is invertible and aba = aca, then 1 − ba
is invertible too and (1 − ba)−1 = 1 + b(1 − ac)−1a.

In [8], a new extension of Jacobson’s lemma for bounded linear operators
between Banach spaces, was studied whenever acd = dbd and dba = aca.
Evidently, for d = a, aba = aca.

Notice that, when acd = dbd, bdb = bac and 1−ac is invertible, then 1− bd
is invertible too and

(1 − bd)−1 = 1 + b(1 − ac)−1d.

If acd = dbd, dba = aca and 1 − bd is invertible, we observe that 1 − ac is
invertible and

(1 − ac)−1 = 1 + [1 + d(1 − bd)−1b]ac.

In this paper, we investigate the generalization of Jacobson’s lemma in a
ring when acd = dbd and (bdb = bac or dba = aca). In the case that acd = dbd
and bdb = bac, we prove that if 1 − ac is group invertible, Drazin invertible,
generalized Drazin invertible or pseudo Drazin invertible, then so is 1− bd and
give expressions for the group, Drazin, generalized Drazin and pseudo Drazin
inverses of 1 − bd in terms of the corresponding inverse of 1 − ac. Also, we
study the group and Drazin invertibility of 1 − ac when acd = dbd, dba = aca
and 1 − bd is group or Drazin invertible. As a consequence of these results, we
get some results in [1,9]. In the end, we state as a conjecture the generalized
Drazin and pseudo Drazin invertibility of 1 − ac when acd = dbd, dba = aca
and 1 − bd is generalized Drazin or pseudo Drazin invertible.

2. Extensions of Jacobson’s lemma

In the first theorem of this section, if 1 − ac is group invertible, we prove that
1 − bd is group invertible under the conditions acd = dbd and bdb = bac.

Theorem 2.1. Let a, b, c, d ∈ R satisfy acd = dbd and bdb = bac. If 1−ac ∈ R#,
then 1 − bd ∈ R# and

(1 − bd)# = 1 + b[(1 − ac)# − (1 − ac)π]d. (1)

Proof. Denote by y the right hand side of (1). Then

(1 − bd)y = 1 − bd + b(1 − ac)[(1 − ac)# − (1 − ac)π]d
= 1 − b(1 − ac)πd.
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In the same way, we get y(1−bd) = 1−b(1−ac)πd. Thus, (1−bd)y = y(1−bd).
Further, we have

(1 − bd)y(1 − bd) = [1 − b(1 − ac)πd](1 − bd)
= 1 − bd − b(1 − ac)π(1 − ac)d
= 1 − bd.

Since db commutes with 1 − ac, we deduce that db commutes with (1 − ac)#

and (1 − ac)π. Now, as

y(1 − bd)y = y[1 − b(1 − ac)πd]

= y − b(1 − ac)πd − b[(1 − ac)# − (1 − ac)π](1 − ac)πdbd

= y − b(1 − ac)πd + b(1 − ac)πacd

= y − b(1 − ac)π(1 − ac)d
= y,

we conclude that 1 − bd ∈ R# and (1 − bd)# = y. �
If c = b and d = a in Theorem 2.1, we obtain [1, Theorem 3.5]:

Corollary 2.1. Let a, b ∈ R. If 1 − ab ∈ R#, then 1 − ba ∈ R# and

(1 − ba)# = 1 + b[(1 − ab)# − (1 − ab)π]a.

In a ring R with involution (which is any map ∗ : R → R satisfying
(b∗)∗ = b, (by)∗ = y∗b∗, (b+y)∗ = b∗ +y∗, for any b, y ∈ R), an element a ∈ R
is Moore–Penrose invertible if there exists a unique element x = a† ∈ R such
that axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa. Recall that an element
a is EP if a is Moore-Penrose invertible and aa† = a†a which is equivalent to
that a is group invertible and (aπ)∗ = aπ [6]. If 1 − ac is EP in a ring with
involution, the necessary and sufficient conditions for 1−bd to be EP, are given
now applying Theorem 2.1.

Corollary 2.2. Let a, b, c, d ∈ R satisfy acd = dbd and bdb = bac. If 1 − ac is
EP, then 1 − bd is EP if and only if b(1 − ac)πd = d∗(1 − ac)πb∗. In addition,
(1 − bd)† is represented by (1).

To prove in a ring that 1 − ac ∈ R# in the case that 1 − bd ∈ R#, we
replace the condition bdb = bac of Theorem 2.1 with dba = aca and obtain an
expression for (1 − ac)#.

Theorem 2.2. Let a, b, c, d ∈ R satisfy acd = dbd and dba = aca. If 1−bd ∈ R#,
then 1 − ac ∈ R# and

(1 − ac)# = 1 + ac + d[(1 − bd)# − 2(1 − bd)π]bac.

Proof. If we denote y = 1 + ac + d[(1 − bd)# − (1 − bd)π]bac, then we can
check, as in the proof of Theorem 2.1, that (1 − ac)y = y(1 − ac) and (1 −
ac)y(1 − ac) = 1 − ac. Using Lemma 1.1, we obtain that 1 − ac ∈ R# and
(1 − ac)# = y(1 − ac)y = y − d(1 − bd)πbac. �
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Exchanging the roles of a and b, and c and d in Theorem 2.2, we get the
next result with a hypothesis and conclusion which are different from Theorem
2.1.

Corollary 2.3. Let a, b, c, d ∈ R satisfy bdc = cac and cab = bdb. If 1−ac ∈ R#,
then 1 − bd ∈ R# and

(1 − bd)# = 1 + bd + c[(1 − ac)# − 2(1 − ac)π]abd.

In the case that d = a in Theorem 2.2, we get the following result as a
consequence.

Corollary 2.4. Let a, b, c ∈ R satisfy aba = aca. If 1 − ba ∈ R#, then 1 − ac ∈
R# and

(1 − ac)# = 1 + ac + a[(1 − ba)# − 2(1 − ba)π]bac.

Remark. Let a, b ∈ R and 1 − ba ∈ R#. If we suppose that c = b in Corollary
2.4, then 1 − ab ∈ R# and

(1 − ab)# = 1 + ab + a[(1 − ba)# − 2(1 − ba)π]bab := X1.

Exchanging the roles of a and b in Corollary 2.1, 1 − ab ∈ R# and

(1 − ab)# = 1 + a[(1 − ba)# − (1 − ba)π]b := X2.

Notice that these two expressions X1 and X2 for (1 − ab)# are equal, since

X1 = 1 + ab + a(1 − ba)#b − a(1 − ba)#(1 − ba)b − a(1 − ba)πbab

+a(1 − ba)π(1 − ba)b − a(1 − ba)πb

= 1 + ab + a(1 − ba)#b − a(1 − ba)#(1 − ba)b − abab

+a(1 − ba)#(1 − ba)bab − a(1 − ba)πb

= 1 + a(1 − ba)b + a(1 − ba)#b − a(1 − ba)#(1 − ba)2b − a(1 − ba)πb

= X2.

Using Theorem 2.1, we verify the Drazin invertibility of 1−bd, when 1−ac is
Drazin invertible. Throughout this section, if the lower limit of a sum is greater
than its upper limit, we always define the sum to be 0. For example, the sum∑−1

k=0 ∗ = 0 and so the following theorem recovers the cases 1 − ac ∈ R−1 (for
k = 0) and 1 − ac ∈ R# (for k = 1).

Theorem 2.3. Let a, b, c, d ∈ R satisfy acd = dbd and bdb = bac. If 1−ac ∈ RD,
then 1 − bd ∈ RD and

(1 − bd)D = 1 + b[(1 − ac)D − (1 − ac)πr]d,

where r =
∑k−1

j=0 (1 − ac)j and ind(1 − ac) = k.
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Proof. Suppose that k ≥ 2, s =
∑k−1

j=0 (1−db)j . Since 1−rac = (1−ac)k ∈ R#,

racsd = racd

k−1∑

j=0

(1 − bd)j = rdbd

k−1∑

j=0

(1 − bd)j =
k−1∑

j=0

d(1 − bd)jbsd = sdbsd

and

brac =
k−1∑

j=0

(1 − bd)jbac =
k−1∑

j=0

(1 − bd)jbdb = bsdb,

by Theorem 2.1, 1 − bsd ∈ R# and

(1 − bsd)# = 1 + b[(1 − rac)# − (1 − rac)π]sd

= 1 + b[((1 − ac)D)k − (1 − ac)π]sd.

From 1− bsd = (1− bd)k and Lemma 1.2, 1− bd ∈ RD and, for s′ =
∑k−2

j=0 (1−
db)j ,

(1 − bd)D = [(1 − bd)k]#(1 − bd)k−1

= (1 − bd)k−1 + b[((1 − ac)D)k − (1 − ac)π](1 − ac)k−1sd

= 1 − bs′d + b(1 − ac)D(1 + (1 − ac)s′)d − b(1 − ac)π(1 − ac)k−1d

= 1 − b[(1 − ac)D − (1 − ac)πs′ − (1 − ac)π(1 − ac)k−1]d

= 1 − b[(1 − ac)D − (1 − ac)πs]d

= 1 − b[(1 − ac)D − (1 − ac)πr]d.

�

For c = b and d = a in Theorem 2.3, we have [1, Theorem 3.6].

Corollary 2.5. Let a, b ∈ R. If 1 − ab ∈ RD, then 1 − ba ∈ RD and

(1 − ba)D = 1 + b[(1 − ab)D − (1 − ab)πr1]a,

where r1 =
∑k−1

j=0 (1 − ab)j and ind(1 − ab) = k.

Like Theorem 2.3, we prove the following result.

Theorem 2.4. Let a, b, c, d ∈ R satisfy acd = dbd and dba = aca. If 1−bd ∈ RD,
then 1 − ac ∈ RD and

(1 − ac)D = (1 + sac)(1 − ac)k−1 + s2d(1 − bd)Dbac

−2d(1 − bd)π(1 − bd)k−1bac,

where s =
∑k−1

j=0 (1 − db)j and ind(1 − bd) = k ≥ 1.

If d = a in Theorem 2.4, we get the next expression for (1 − ac)D in terms
of (1 − ba)D.
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Corollary 2.6. Let a, b, c ∈ R satisfy aba = aca. If 1 − ba ∈ RD, then 1 − ac ∈
RD and

(1 − ac)D = (1 + r1ac)(1 − ac)k−1 + r21a(1 − ba)Dbac

−2d(1 − ba)π(1 − ba)k−1bac,

where r1 =
∑k−1

j=0 (1 − ab)j and ind(1 − ba) = k ≥ 1.

Under the assumptions acd = dbd and bdb = bac, we prove that the gener-
alized Drazin invertibility of 1−ac implies the generalized Drazin invertibility
of 1 − bd in a ring.

Theorem 2.5. Let a, b, c, d ∈ R satisfy acd = dbd and bdb = bac. If 1−ac ∈ Rd,
then 1 − bd ∈ Rd and

(1 − bd)d = 1 + b[(1 − ac)d − (1 − ac)π(1 − (1 − ac)π(1 − ac))−1]d. (2)

Proof. Let y be the right hand side of (2), α = 1 − ac and β = 1 − bd. Then,
by Lemma 1.3, 1 − απα ∈ R−1 and

y(1 − bd) = 1 − bd + b[αd − απ(1 − απα)−1]αd

= 1 − bαπd − bαπ(1 − απα)−1αd

= 1 − bαπ[1 + (1 − απα)−1ααπ]d
= 1 − bαπ(1 − απα)−1d.

Since db commutes with α, we deduce that db commutes with αd, απ and
(1 − απα)−1. Hence,

y(1 − bd)y = y − bαπ(1 − απα)−1d + bdbαπ(1 − απα)−2d

= y − bαπ(1 − απα)−2(1 − απα − ac)d
= y − bαπ(1 − απα)−2(απα − απα)d
= y.

To prove that

(1 − bd) − (1 − bd)y(1 − bd) = bααπ(1 − απα)−1d ∈ Rqnil,

assume that z ∈ R satisfies bααπ(1 − απα)−1dz = zbααπ(1 − απα)−1d. Then
dbααπ(1 − απα)−1dzb = dzbααπ(1 − απα)−1db which gives, since db com-
mutes with α, ααπ(1 − απα)−1acdzb = dzbacααπ(1 − απα)−1. Now, from
acαπ = απ(1−απα), we get ααπdzb = dzbααπ. Because ααπ ∈ Rqnil and ααπ

commutes with (1 − απα)−1dzb, we have that 1 + (1 − απα)−1dzbααπ ∈ R−1.
Using Lemma 1.4, we have 1 + bααπ(1 − απα)−1dz ∈ R−1 which yields that
bααπ(1 − απα)−1d ∈ Rqnil.

In order to show that y ∈ comm2(1 − bd), suppose that, for z ∈ R, z(1 −
bd) = (1 − bd)z. So, zbd = bdz and dzbα = dzβb = dβzb = αdzb. Because dzb
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commutes with α, notice that dzb commutes with αd, απ and (1 − απα)−1.
From

zbαπd = zbαπ(1 − απα)(1 − απα)−1d = zbacαπ(1 − απα)−1d

= zbdbαπ(1 − απα)−1d = bdzbαπ(1 − απα)−1d

= bαπ(1 − απα)−1dzbd = bαπ(1 − απα)−1dbdz

= bacαπ(1 − απα)−1dz = bαπ(1 − απα)(1 − απα)−1dz

= bαπdz,

we have zbααdd = bααddz, that is

zbαdd − zbdbαdd = bαddz − bαddbdz.

Since zbdbαdd = bdzbαdd = bαddzbd = bαddbdz, we obtain

zbαdd = bαddz. (3)

The equalities

bαπ(1 − απα)−1dzbαπ(1 − απα)−1d = bdzbαπ(1 − απα)−1απ(1 − απα)−1d

= zbacαπ(1 − απα)−2d

= zbαπ(1 − απα)(1 − απα)−2d

= zbαπ(1 − απα)−1d

and

bαπ(1 − απα)−1dzbαπ(1 − απα)−1d = b(1 − απα)−2απdzbd

= b(1 − απα)−2απacdz

= b(1 − απα)−1απdz

imply
zbαπ(1 − απα)−1d = b(1 − απα)−1απdz. (4)

Using (3) and (4), we conclude that zy = yz. Thus, y ∈ comm2(1 − bd)
and, by the definition of the generalized Drazin inverse, 1 − bd ∈ Rd and
(1 − bd)d = y. �

In the case that c = b and d = a in Theorem 2.5, we recover [9, Theo-
rem 2.3].

Corollary 2.7. Let a, b ∈ R. If 1 − ab ∈ Rd, then 1 − ba ∈ Rd and

(1 − ba)d = 1 + b[(1 − ab)d − (1 − ab)π(1 − (1 − ab)π(1 − ab))−1]a.

We consider the pseudo Drazin invertibility of 1 − bd in the next result.

Theorem 2.6. Let a, b, c, d ∈ R satisfy acd = dbd and bdb = bac. If 1 − ac ∈
RpD, then 1 − bd ∈ RpD and

(1 − bd)pD = 1 + b[(1 − ac)pD − (1 − ac)π(1 − (1 − ac)π(1 − ac))−1]d. (5)
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Proof. If y is equal to the right hand side of (5), then we verify that y(1−bd)y =
y and y ∈ comm2(1− bd) as in the proof of Theorem 2.5. For α = 1− ac, from
αkαπ ∈ J(R), we have that

(1 − bd)kbαπ(1 − απα)−1d = bαkαπ(1 − απα)−1d ∈ J(R).

Hence, 1 − bd ∈ RpD and (1 − bd)pD = y. �
Corollary 2.8. Let a, b ∈ R. If 1 − ab ∈ RpD, then 1 − ba ∈ RpD and

(1 − ba)pD = 1 + b[(1 − ab)pD − (1 − ab)π(1 − (1 − ab)π(1 − ab))−1]a.

At the end of this section, the question is how to express the generalized
Drazin and pseudo Drazin inverses of 1 − ac when acd = dbd, dba = aca and
1 − bd is generalized Drazin or pseudo Drazin invertible. So, we state it as a
conjecture.

Conjecture. Let a, b, c, d ∈ R satisfy acd = dbd and dba = aca.
(i) If 1 − bd ∈ Rd, then 1 − ac ∈ Rd.
(ii) If 1 − bd ∈ RpD, then 1 − ac ∈ RpD.
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