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Abstract. We study incidence geometries that are thin and residually connected. These
geometries generalise abstract polytopes. In this generalised setting, guided by the ideas
from the polytope theory, we introduce the concept of chirality, a property of orderly asym-
metry occurring frequently in nature as a natural phenomenon. The main result in this paper
is that automorphism groups of regular and chiral thin residually connected geometries need
to be C-groups in the regular case and C+-groups in the chiral case.
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1. Introduction

Guided by the ideas of chirality in the polytope theory (see [29,31]), the present
paper extends the concept to a more general setting of incidence geometries.
Indeed, when an incidence geometry is thin, it is possible to define chirality, as
in the case of polytopes. It is then interesting to study how the group-theoretic
counterpart of chiral polytopes extends in this more general framework, as a
chiral polytope is a thin incidence geometry with a linear diagram. The purpose
of this paper is to explore this more general framework for chiral geometries
and also to take this opportunity to look at the regular case in a more detailed
way.

In Sect. 2, we state the basic definitions about regular and chiral hyper-
topes and generalise a result of McMullen and Schulte on strong connectivity
in polytopes (see [20, p. 298] or [27, Proposition 2A1]) to thin strongly cham-
ber connected incidence geometries which we call hypertopes and that are a
natural generalisation of polytopes as it will appear in later sections. In Sect. 3,
we recall how to construct geometries from groups (that is coset geometries)
using an algorithm due to Jacques Tits and how to check residual connect-
edness and flag-transitivity on coset geometries. In Sect. 4, we prove that the
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automorphism group of a regular hypertope is a smooth quotient of a Coxeter
group and we show that a C-group (i.e. a group generated by involution that
satisfies the intersection condition) does not necessarily give a hypertope. The
main results of this section are found in the following theorems: Theorem 4.1
shows that a natural smooth quotient of a Coxeter group can be associated to
a regular hypertope; Theorem 4.6 shows that if a geometry Γ is constructed
from a group G and a generating set of involutions satisfying an intersection
condition, Γ will be a regular hypertope provided G is flag-transitive on Γ. In
Sect. 5, we give examples of regular hypertopes of rank 3 that are not poly-
topes, that is, that do not have a linear diagram. In Sects. 6, 7 and 8, we
characterise the automorphism groups of regular and chiral hypertopes. The
main results are Theorems 7.1 and 8.2 that describe the rotational subgroup
of the automorphism group of a regular or chiral hypertope. In particular, the
new set of generators given for the automorphism group of chiral hypertopes
is an independent generating set while the previous characterisation of Schulte
and Weiss of automorphism groups of chiral polytopes (see [31]) did not use an
independent set of generators. This is extremely useful for instance if we want
to bound the rank of chiral hypertopes or polytopes with prescribed automor-
phism groups in the spirit of [22]. We also give examples and classifications of
certain types of rank four hypertopes whose sections are embeddings of maps
or hypermaps on the torus. In Sect. 9, we conclude the paper with some open
problems and acknowledgements.

2. Regular and chiral hypertopes

In [33], Jacques Tits introduced the concept of geometry as an object general-
izing the notion of incidence and established its close relation with groups (see
also [8, Chapter 3]). Following [9], we begin by defining an incidence system Γ
(also called pre geometry or incidence structure in [8,28]).

An incidence system Γ := (X, ∗, t, I) is a 4-tuple such that
• X is a set whose elements are called the elements of Γ;
• I is a set whose elements are called the types of Γ;
• t : X → I is a type function, associating to each element x ∈ X of Γ a

type t(x) ∈ I;
• ∗ is a binary relation on X, called incidence, that is reflexive, symmetric

and such that for all x, y ∈ X, if x ∗ y and t(x) = t(y) then x = y.
The incidence graph of Γ is the graph whose vertex set is X and where two
vertices are joined provided the corresponding elements of Γ are incident. A
flag is a set of pairwise incident elements of Γ, i.e. a clique of its incidence
graph. The type of a flag F is {t(x) : x ∈ F}. A chamber is a flag of type I.
An element x is incident to a flag F and we write x ∗ F for that, provided x is
incident to all elements of F . An incidence system Γ is a geometry or incidence
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geometry provided that every flag of Γ is contained in a chamber (or in other
words, every maximal clique of the incidence graph is a chamber). The rank
of Γ is the number of types of Γ, namely the cardinality of I.

We now define the notion of residue, which is central in incidence geometry.
Let Γ := (X, ∗, t, I) be an incidence geometry and F be a flag of Γ. The residue
of F in Γ is the incidence geometry ΓF := (XF , ∗F , tF , IF ) where

• XF := {x ∈ X : x ∗ F, x �∈ F};
• IF := I\t(F );
• tF and ∗F are the restrictions of t and ∗ to XF and IF .
An incidence system Γ is connected if its incidence graph is connected. It

is residually connected when each residue of rank at least two of Γ (including Γ
itself) has a connected incidence graph. It is called thin (resp. firm) when every
residue of rank one of Γ contains exactly two (resp. at least two) elements.

An incidence system Γ := (X, ∗, t, I) is chamber-connected when for each
pair of chambers C and C ′, there exists a sequence of successive chambers
C =: C0, C1, . . . , Cn := C ′ such that | Ci ∩ Ci+1 |=| I | −1. An incidence
system Γ := (X, ∗, t, I) is strongly chamber-connected when all its residues of
rank at least 2 (including Γ itself) are chamber-connected.

We now state the following proposition, which is a generalisation of Propo-
sition 2A1 of [27].

Proposition 2.1. Let Γ be a firm incidence geometry. Then Γ is residually
connected if and only if Γ is strongly chamber-connected.

Proof. Observe that it is enough to prove that Γ has a connected incidence
graph if and only if Γ is chamber-connected, as this can then be applied to
every residue.

Suppose first that the incidence graph of Γ is connected. As in [27], the
proof proceeds by induction on n := rank(Γ). Let n = 2. Given a pair of
chambers C1 and Ck there is a sequence of incident elements, having alternate
types, whose first two elements are the elements of C1 and the last two are the
elements of C2. Pairs of consecutive elements in this sequence give a sequence
of chambers needed to give chamber connectedness. Let n > 2. Consider two
chambers, C and C ′, of Γ.

If C ∩ C ′ �= ∅, say C ∩ C ′ = {x1, . . . , xk} with k ≥ 1, then the residue Γx1

contains C\{x1} and C ′\{x1} as chambers. Moreover, Γx1 has a connected
incidence graph, otherwise there is a pair of elements incident to x1 in different
components of the incidence graph of Γ, implying that the geometry is not
firm, a contradiction. Hence, by induction, we can find a sequence of successive
chambers C\{x1} =: C0, C1, . . . , Cn := C ′\{x1} in Γx1 such that | Ci∩Ci+1 |=
n − 2. The sequence C =: C0 ∪ {x1}, C1 ∪ {x1}, . . . , Cn ∪ {x1} := C ′ is then
such that | (Ci ∪ {x1}) ∩ (Ci+1 ∪ {x1}) |= n − 1 as needed.

Let C ∩ C ′ = ∅. Since Γ has a connected incidence graph, we can find
a sequence of successively incident elements x0, . . . , xk such that x0 ∈ C and
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xk ∈ C ′. For each i = 1, . . . , k, there is a chamber Ci ⊇ {xi−1, xi}. Set C0 := C
and Ck := C ′. We now appeal to the first part of the proof to move Ci−1 to
Ci by a sequence of adjacent chambers containing xi for each i = 1, . . . , k;
concatenation then gives the required sequence from C to C ′.

Suppose now that Γ is chamber-connected. Connectedness is obvious as
every flag is contained in a chamber. Indeed, let x1 and x2 be two elements
of Γ. Each of them is contained in at least one chamber. Let x1 ∈ C1 and
x2 ∈ C2 where C1 and C2 are chambers of Γ. We easily get a path from x1 to
x2 using the sequence of successive chambers connecting C1 to C2. Hence Γ
has a connected incidence graph. �

A pre-hypertope is a thin incidence geometry. A hypertope is a pre-hypertope
which is strongly chamber connected or equivalently residually connected.

Let Γ := (X, ∗, t, I) be an incidence system. An automorphism of Γ is a
mapping α : (X, I) → (X, I) : (x, t(x)) �→ (α(x), t(α(x))) where

• α is a bijection on X;
• for each x, y ∈ X, x ∗ y if and only if α(x) ∗ α(y);
• for each x, y ∈ X, t(x) = t(y) if and only if t(α(x)) = t(α(y)).

Note that α induces a bijection on I.
An automorphism α of Γ is called type preserving when for each x ∈ X,

t(α(x)) = t(x) (i.e. α maps each element on an element of the same type).
The set of type-preserving automorphisms of Γ is a group denoted by

AutI(Γ). The set of automorphisms of Γ is a group denoted by Aut(Γ).
A correlation is a non-type-preserving automorphism, that is an element of
Aut(Γ)\AutI(Γ).

An incidence geometry Γ is flag-transitive if AutI(Γ) is transitive on all
flags of a given type J for each type J ⊆ I. An incidence geometry Γ is
chamber-transitive if AutI(Γ) is transitive on all chambers of Γ. Finally, an
incidence geometry Γ is regular if AutI(Γ) acts regularly on the chambers (i.e.
the action is semi-regular and transitive). The following proposition is folklore
in incidence geometry. We recall it here as our paper makes bridges between
different subjects.

Proposition 2.2. Let Γ be an incidence geometry. Γ is chamber-transitive if
and only if Γ is flag-transitive.

Proof. It is obvious that if Γ is flag-transitive, then Γ is chamber-transitive.
Suppose Γ is chamber-transitive. Let F1 and F2 be two flags of the same type.
Each of them is contained in at least one chamber as Γ is a geometry. Let Ci be
a chamber containing Fi (i = 1, 2). Since Γ is chamber-transitive, there exists
an element g ∈ AutI(Γ) such that g(C1) = C2. In particular, as g preserves
the types of the elements of Γ, we have g(F1) = F2.

�
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A regular pre-hypertope is a flag-transitive pre-hypertope. A regular hyper-
tope is a flag-transitive hypertope. We use the adjective “regular” here because,
if Γ is a pre-hypertope, it is thin and hence the action of AutI(Γ) is necessarily
free. Indeed, if g ∈ AutI(Γ) fixes a chamber C then, as there is exactly one
chamber Ci differing from C in the i-element, for each i ∈ I, g also fixes Ci.
As the geometry is residually connected g must be the identity.

We can also extend the notion of chirality in abstract polytopes to the more
general framework of incidence geometries. Although thinness is not necessary
in order to define what is a regular geometry, it is needed to define chiral
geometries.

Two chambers C and C ′ of an incidence geometry of rank r are called i-
adjacent if C and C ′ differ only in their i-elements. We then denote C ′ by Ci.
Let Γ(X, ∗, t, I) be a thin incidence geometry. We say that Γ is chiral if AutI(Γ)
has two orbits on the chambers of Γ such that any two adjacent chambers lie
in distinct orbits. Moreover, if Γ is residually connected, we call Γ a chiral
hypertope.

When Γ is a chiral hypertope, if Aut(Γ) �= AutI(Γ), correlations may either
interchange the two orbits or preserve them. A correlation that interchanges
the two orbits is said to be improper and a correlation that preserves them is
said to be proper. Correlations, in the case of polytopes, are called dualities
in [26,31]. In these papers, it is shown that if a chiral polytope has a duality
of one kind, all its dualities will be of the same kind (see [26, Lemma 3.1]).
This result does not extend to chiral hypertopes.

A rank one hypertope is a geometry with two elements. The polygons are
precisely the hypertopes of rank two. Abstract regular polytopes are regular
hypertopes. More details about this correspondence will be given in Sect. 5.
In rank three and higher there are (regular) hypertopes that are not abstract
(regular) polytopes. More generally there are examples of regular geometries
that are not thin (see for instance geometry number 2 of Sym(3) in [10]).

3. Regular hypertopes as coset geometries

Given an incidence system Γ and a chamber C of Γ, we may associate to the
pair (Γ, C) the pair consisting of the automorphism group G := AutI(Γ) and
the set {Gi : i ∈ I} of subgroups of G where Gi is the stabilizer in G of
the element of type i in C. The following proposition shows how to reverse
this construction, that is starting from a group and some of its subgroups,
construct an incidence system.

Proposition 3.1. (Tits, 1956) [33] Let n be a positive integer and I :=
{1, . . . , n}. Let G be a group together with a family of subgroups (Gi)i∈I , X be
the set consisting of all cosets Gig with g ∈ G and i ∈ I, and t : X → I be
defined by t(Gig) = i. Define an incidence relation ∗ on X × X by:
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Gig1 ∗ Gjg2 iff Gig1 ∩ Gjg2 �= ∅.
Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having a chamber.
Moreover, the group G acts by right multiplication on Γ as a group of type
preserving automorphisms. Finally, the group G is transitive on the flags of
rank less than 3.

In particular, we want to find under which conditions the construction
above produces incidence geometries that are regular hypertopes.

Observe that, in the proposition above, G ≤ AutI(Γ). When a geometry
Γ is constructed, using the proposition above, we denote it by Γ(G; (Gi)i∈I)
and call it a coset geometry. The subgroups (Gi)i∈I are called the maximal
parabolic subgroups. The Borel subgroup of the incidence system is the subgroup
B = ∩i∈IGi. The action of G on Γ involves a kernel K which is the largest
normal subgroup of G contained in every Gi, i ∈ I. The kernel is the identity
if and only if G acts faithfully on Γ. If G acts transitively on all chambers of
Γ, hence also on all flags of any type J , where J is a subset of I, we say that
G is flag-transitive on Γ or that Γ is flag-transitive (under the action of G). In
that case, any chamber of Γ is obtained by multiplying the cosets of the base
chamber {G0, . . . , Gr−1} on the right by an element g ∈ G. If G acts regularly
on Γ (i.e. the action is free and flag-transitive) we say that Γ is regular (under
the action of G).

If Γ = Γ(G; (Gi)i∈I) is a flag-transitive geometry and F is a flag of Γ, the
residue of F is isomorphic to the incidence system

ΓF = Γ(∩j∈t(F )Gj , (Gi ∩ (∩j∈t(F )Gj))i∈I\t(F ))
and we readily see that ΓF is also a flag-transitive geometry.

If Γ is a geometry of rank 2 with I = {i, j} such that each of its i-elements
is incident with each of its j-elements, then we call Γ a generalized digon.

We refer to [6,7] for the notion of the Buekenhout diagram of a geometry
and simplify it here to deal only with thin geometries. For a thin, residually
connected, flag-transitive coset geometry Γ(G; (Gi)i∈I), the Buekenhout dia-
gram B(Γ) is a graph whose vertices are the elements of I. Elements i, j of
I are not joined by an edge of the diagram provided that a residue ΓF of
type {i, j} is a generalized digon. Otherwise, i and j are joined by an edge.
This edge is endowed with a number gij that is equal to half the girth of the
incidence graph of a residue ΓF of type {i, j} provided that gij > 3.

For example consider the cube as an incidence geometry of rank three with
elements being the vertices, edges and faces, type set being {0, 1, 2}, vertices
(resp. edges, faces) being of type 0 (resp. 1, 2) and incidence being symmetrised
inclusion. The vertices of the Buekenhout diagram correspond to the types 0, 1
and 2. The residue of an edge, an element of type 1, is a generalized digon;
the residue of a vertex, an element of type 0, is a triangle; and the residues of
a face is a square. Thus g12 = 3, g01 = 4 and the diagram is linear as shown
in the following figure.
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In the case of regular polytopes the Buekenhout diagram and the Coxeter
diagram are essentially the same.

In order for a coset geometry Γ = Γ(G; (Gi)i∈I) to be a regular hypertope,
it needs in particular to be residually connected. The following Theorem trans-
lates the residual connectedness (or strong flag-connectedness) condition into
a group-theoretic condition.

Theorem 3.2. [21] Let Γ = Γ(G; (Gi)i∈I) be a flag-transitive coset geometry. Γ
is residually connected if and only if for every subset J ⊆ I of cardinality at
most |I| − 2,

∩j∈JGj = 〈∩j∈J∪{k}Gj : k ∈ I − J〉.
The following theorem, due to Jacques Tits, shows that if a coset geometry

Γ(G; (Gi)i∈I) has a non-trivial kernel K then this geometry can be constructed
from a smaller group, namely G/K.

Theorem 3.3. [33] Let Γ(G; (Gi)i∈I) be a coset geometry. If K is the kernel of
the action of G on Γ, then Γ(G; (Gi)i∈I) ∼= Γ(G/K; (Gi/K)i∈I).

For this reason it is natural to assume that a group acting flag-transitively
on a coset geometry acts regularly. The following lemma shows that we then
may assume the Borel subgroup of a hypertope Γ(G; (Gi)i∈I) to be the identity
subgroup.

Lemma 3.4. Let Γ(G; (Gi)i∈I) be a regular hypertope. Then B = ∩i∈IGi = 1.

Proof. The groups GJ := ∩j∈JGj where J is any subset of I of cardinality | I |
−1 contain B as a subgroup of index 2, for otherwise, thinness is contradicted.
Hence B is a normal subgroup of all these groups GJ . Now, as Γ is regular
and residually connected, by Theorem 3.2, the subgroups GJ generate G and
thus B must also be a normal subgroup of G. This means B is a kernel. Then
in order to have a free action of G on Γ, we must have B = 1. �

Observe that the subgroups GJ appearing in the proof above are cyclic
groups of order 2. This will enable us to make the connection between thin
regular coset geometries and groups generated by involutions.

For Γ(G; (Gi)i∈I), a regular hypertope, we define ρi as the generator of the
minimal parabolic subgroup ∩j∈I\{i}Gj . Observe that all the ρi’s are involu-
tions. We call the set {ρi : i ∈ I} the distinguished generators of G.

The following result gives a way to check whether a coset geometry (and
in particular a hypertope) is flag-transitive. See also Dehon [21].

Theorem 3.5. (Buekenhout, Hermand [11]) Let P(I) be the set of all the subsets
of I and let α : P(I)\{∅} → I be a function such that α(J) ∈ J for every J ⊂ I,
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J �= ∅. The coset geometry Γ = Γ(G; (Gi)i∈I) is flag-transitive if and only if,
for every J ⊂ I such that |J | ≥ 3, we have

⋂

j∈J−α(J)

(GjGα(J)) =

(
⋂

j∈J−α(J)

Gj

)
Gα(J).

A proof of this result is also available in the book by Buekenhout and Cohen
(see [9, Theorem 1.8.10]).

4. C-groups

Following [27], a C-group of rank r is a pair (G,S) such that G is a group
and S := {ρ0, . . . , ρr−1} is a generating set of involutions of G that satisfy the
following property.

∀I, J ⊆ {0, . . . , r − 1}, 〈ρi | i ∈ I〉 ∩ 〈ρj | j ∈ J〉 = 〈ρk | k ∈ I ∩ J〉.
(4.1)

This property is called the intersection condition (or intersection property) and
is denoted by IC.1 We call any subgroup of G generated by a subset of S a
parabolic subgroup of the C-group (G,S). In particular, a parabolic subgroup
generated by exactly one involution of S is called minimal and a parabolic
subgroup generated by all but one involutions of S is called maximal. We
write GJ := 〈ρj | j ∈ J〉 for J ⊆ {0, . . . , r − 1} and Gi := GI\{i}. Obviously,
G∅ = {1G} and G{0,...,r−1} = G.

A C-group is a string C-group provided its generating involutions can be
reordered in such a way that (ρiρj)2 = 1G for all i, j with |i − j| > 1.

We say that two C-groups (G,S) and (G′, S′) are isomorphic if there is an
isomorphism α : G → G′ such that α(S) = S′.

The Coxeter diagram C(G,S) of a C-group (G,S) is a graph whose vertex
set is S. Two vertices ρi and ρj are joined by an edge labelled by o(ρiρj). As a
consequence, the Coxeter diagram is a complete graph. We take the convention
of dropping an edge if its label is 2 and of not writing the label if it is 3. The
Coxeter diagram of a string C-group has a string shape.

From now on, we will construct hypertopes as coset geometries.

Theorem 4.1. Let I := {0, . . . , r − 1} and let Γ := Γ(G; (Gi)i∈I) be a regu-
lar hypertope of rank r. The pair (G,S) where S is the set of distinguished
generators of Γ is a C-group of rank r.

1 Observe that a notion of intersection property that has been used in some papers in
Incidence Geometry, such as for example [32], is defined using intersections of shadows and
is distinct from the notion used here.
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Proof. The theorem is obviously true for r = 2 as the maximal parabolic
subgroups are cyclic and have trivial intersection. Suppose the theorem is true
for r − 1 and let us show it is then true for r by way of contradiction. Let us
denote by GK the subgroup 〈ρk | k ∈ I\K〉.

If (G,S) does not satisfy (4.1), then there is a pair of subgroups, GK and
GJ with K,J ⊆ I such that GK ∩GJ �= GK∪J . Hence GK ∩GJ > GK∪J . Take
g ∈ (GK ∩ GJ )\GK∪J . This g fixes a flag of type K ∪ J in the base chamber
{G0, . . . , Gr−1}. But the action of GK∪J must be regular on the residue ΓF

of the flag F := {Gi | i ∈ K ∪ J}. Indeed, that residue is also a thin regular
residually connected geometry and its distinguished generators are exactly
those of GK∪J and satisfy (4.1) by induction. Any element of GK∪J will fix
all elements of {Gj | j ∈ K ∪ J}. Since GK∪J is regular on ΓF , there must
exist an element h ∈ GK∪J that sends the flag {Gk | k ∈ I\(K ∪ J)} onto
{Gk ∗ g | k ∈ I\(K ∪ J)}. But then g ∗ h−1 �= 1G fixes the base chamber {Gi |
i ∈ I}, which contradicts the regularity of the action of G on the chambers
of Γ. �

Observe that we can construct a coset geometry Γ(G; (Gi)i∈I) in a natural
way from a C-group (G,S) of rank r by letting Gi = GI\{i} as above. This
construction always gives a thin, residually connected, regular coset geometry
when the rank is at most 2. We next show that this construction will not always
give, for rank three (and therefore also for higher ranks), a thin, residually
connected, regular coset geometry. To this end, we recall a group-theoretical
result of Tits.

Lemma 4.2. (Tits [34]) Let G0, G1, G2 be three subgroups of a group G. Then
the following conditions are equivalent.
(1) G0G1 ∩ G0G2 = G0(G1 ∩ G2)
(2) (G0 ∩ G1) · (G0 ∩ G2) = (G1G2) ∩ G0

(3) If the three cosets G0x, G1y and G2z have pairwise nonempty intersec-
tion, then G0x ∩ G1y ∩ G2z �= ∅.

Proposition 4.3. Let (G, {ρ0, ρ1, ρ2}) be a C-group of rank three and let Γ :=
Γ(G; {〈ρ1, ρ2〉, 〈ρ0, ρ2〉, 〈ρ0, ρ1〉}). Then Γ is thin if and only if G is regular on
Γ. Moreover, if Γ is thin (or regular), it is a regular hypertope.

Proof. First as G0 ∩ G1 ∩ G2 = {1G}, G acts freely on Γ. Now suppose that
G is transitive on the chambers of Γ. Take a flag of type {i, j}. Without loss
of generality, we can assume this flag to be {Gi, Gj} by the last sentence of
Proposition 3.1. As Gi ∩ Gj

∼= C2 there are exactly two elements of type k
incident to Gi and Gj with k �= i, j. Hence Γ is thin.

Conversely, suppose that Γ is thin. If Γ is not flag transitive, by Lemma 4.2
and Theorem 3.5, there exists a chamber {G0x,G1y,G2z} such that G0x ∩
G1y ∩ G2z = ∅. Let h ∈ G0x ∩ G1y. Then G2h and G2ρ2h as well as G2z are
incident to both G0x and G1y. Hence the residue of the flag {G0x,G1y} has at
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least three elements and Γ is not thin. Hence Γ is flag transitive. We now apply
Theorem 3.2 to conclude that Γ is residually connected. By Proposition 2.1, Γ
is therefore a regular hypertope. �

The following example shows that C-groups can give rise to geometries that
are neither thin nor regular.

Example 4.4. The toroidal hypermap usually denoted by (3, 3, 3)(1,1) (see
Sect. 5 for the notation), can be constructed from the group G ∼= C3 × C3 : C2

of order 18. Defining relations for the automorphism group are

ρ20 = ρ21 = ρ22 = (ρ0ρ1ρ2)2 = (ρ0ρ1)3 = (ρ1ρ2)3 = 1.

The pair (G, {ρ0, ρ1, ρ2}) is a C-group (satisfying IC). However, the incidence
graph of the coset geometry Γ := Γ(G; {〈ρ1, ρ2〉, 〈ρ0, ρ2〉, 〈ρ0, ρ1〉}) is a K3,3,3

and hence G cannot be flag-transitive on Γ as Γ has 33 = 27 chambers. More-
over, Γ is not thin. It is residually connected though. Observe that, as the
incidence graph of Γ is a K3,3,3, AutI(Γ) ∼= S3 × S3 × S3 is flag-transitive on
Γ but G is not.

The next example shows that even residual connectedness may be lost in
higher ranks.

Example 4.5. Let G ∼= A6 and define S := {ρ0 = (1, 2)(3, 4), ρ1 =
(2, 6)(3, 5), ρ2 = (1, 4)(2, 3), ρ3 = (1, 4)(3, 5)}. It can be checked by hand or
using Magma [2] that (G,S) is a C-group. This C-group was mentioned in [14].
It has the following Coxeter diagram and subgroup lattice.

S4 •
5

•
4

A5

S4 • • A5

A6

S4 A5 A5 S4

D6 D4 D10 D4 D8 D6

ρ0 ρ1 ρ2 ρ3

1

However it does not give a thin residually connected regular geometry with
the construction above. Indeed, the subgroups G1 := 〈(1, 2)(3, 4), (1, 4)(2, 3),
(1, 4)(3, 5)〉 and G2 := 〈(1, 2)(3, 4), (2, 6)(3, 5), (1, 4)(3, 5)〉 are both isomorphic
to A5 and their intersection is a dihedral group of order 10. This means that
the corresponding coset geometry will have 6 elements of type 1 and 6 elements
of type 2, and that each element of type 1 is incident to each element of type
2. But then, the residue of an element of type {0, 3}, which is supposed to
be a 4-gon by the Coxeter diagram, consists of 4 elements of type 1 and four
elements of type 2, having a complete bipartite graph K4,4 as incidence graph.
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Therefore, the coset geometry cannot be thin. In addition, it can be checked
with Magma that the coset geometry is also neither residually connected nor
flag-transitive.

For a regular hypertope of rank r the Coxeter diagram is the same as the
Buekenhout diagram.

Theorem 4.6. Let (G, {ρ0, . . . , ρr−1}) be a C-group of rank r and let Γ :=
Γ(G; (Gi)i∈I) with Gi := 〈ρj |j ∈ I\{i}〉for all i ∈ I := {0, . . . , r − 1}. If G is
flag-transitive on Γ, then Γ is a regular hypertope.

Proof. Residual connectedness follows from Theorem 3.2, the fact that Γ is
flag-transitive and the definition of Γ. The minimal parabolic subgroups of
Γ are cyclic groups of order 2 by the intersection condition of the C-group,
hence Γ is thin. Therefore Γ is a hypertope. Moreover G is flag-transitive on
Γ by hypothesis. The intersection condition implies that the intersection of all
maximal parabolic subgroups of Γ must be the identity. Hence Γ is regular.

�

5. Polytopes and hypermaps

An abstract polytope P is a ranked partially ordered set whose elements are
called faces. A polytope P of rank n has faces of ranks −1, 0, . . . , n; P has
a smallest and a largest face, of ranks −1 and n, respectively. Each maximal
chain (or chamber) of P contains n + 2 faces, one for each rank. P is strongly
chamber-connected. P is thin, that is, for every flag and every j = 0, . . . , n−1,
there is precisely one other (j-adjacent) flag with the same faces except the
j-face. This condition is also called the diamond condition.

Abstract regular polytopes can be identified with string C-groups as shown
in [27, Theorem 2E11]. In this case, the involutions of a string C-group (G,S)
can be ordered in such a way that (ρiρj)2 = 1G for all i, j with |i − j| > 1.
The Schläfli type of a regular polytope P is given by {p1, p2, . . . , pn−1} where
pi is the order of the product of consecutive generators ρi−1ρi. The right
cosets of the maximal parabolic subgroups of (G,S) correspond to faces of the
polytope. The rank of the faces of the polytope is induced by the labeling of
the generators of (G,S). By reversing the order of the generators of a string
C-group, one obtains the dual of the corresponding polytope.

The main theorem of [1] can be rephrased in the framework of string C-
groups as follows. Observe that this theorem was also proved by Egon Schulte
in his dissertation in a more general context (see [30, Sections 3 and 4]).
Theorem 5.1. [1,30] Let (G, {ρ0, . . . , ρr−1}) be a string C-group of rank r and
let Γ := Γ(G; (Gi)i∈I) with Gi := 〈ρj |j ∈ I\{i}〉 for all i ∈ I := {0, . . . , r − 1}.
Then Γ is thin, residually connected and regular. Moreover, Γ has a string
diagram.
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Proof. The intersection condition of (G,S) implies assumption (i) of
Aschbacher’s theorem while the string condition implies assumption (ii).
Therefore we can apply his result to string C-groups to show that Γ is indeed
thin, residually connected and regular in all ranks. �

Therefore, abstract regular polytopes, being also string C-groups, are thin
regular residually connected coset geometries (or hypertopes). The diamond
condition in polytopes corresponds to thinness in geometries. A chain (respec-
tively flag) of a polytope is a flag (respectively chamber) in the corresponding
geometry. Strong flag-connectedness in polytopes corresponds to residual con-
nectedness in geometries. The commuting property of non-consecutive genera-
tors in string C-groups corresponds to the linearity of the Buekenhout diagram
in geometries. The concept of adjacent flags in polytopes is equivalent to that
of adjacent chambers. Two chambers of an incidence geometry Γ of rank r are
adjacent provided their intersection is a flag of cardinality r − 1.

Theorem 5.2. Let Γ := Γ(G; (Gi)i∈I) be a thin, residually connected, regu-
lar coset geometry with a string diagram. Let C := (G, {ρ0, . . . , ρr−1}) where
{ρ0, . . . , ρr−1} is the set of distinguished generators of Γ. Then C is a string
C-group.

Proof. This is an immediate consequence of Theorem 4.1.
�

In rank three, a string C-group induces an abstract regular polyhedron with
vertices, edges and faces. When finite, such a polyhedron can be embedded on
a closed surface (orientable or not) and is usually called reflexible map [16].
However, not all maps are abstract polytopes as some of them do not satisfy
the diamond condition.

Thin regular geometries induced by rank three non-string C-groups, provide
examples of reflexible hypermaps. For example, the following Coxeter diagram
represents a string C-group K generated by three reflections ρ0, ρ1 and ρ2,
that is universal in this case, meaning it is the full Coxeter group [6, 3].

6

ρ0 ρ1 ρ2

This C-group is the symmetry group of the regular tessellation of the
Euclidean plane by hexagons which is an abstract regular polyhedron of Schläfli
type {6, 3}. The regular maps with the same Schläfli type {6, 3} will be embed-
ded on the torus and induced by adding the relation

(ρ1ρ2(ρ1ρ0)2)b(ρ2ρ1(ρ0ρ1)2)c = 1 (5.1)

to the universal Coxeter group [6, 3] for b = 0, c = 0 or b = c. The resulting
regular map is denoted by {6, 3}(b,c). Doubling the fundamental region of the
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C-group K or, in other words, looking at the subgroup H of K generated by
ρρ0
1 , ρ1, ρ2, we get the following non-string Coxeter diagram and we shall also

say that H is a non-string C-group and denote it by [(3, 3, 3)].

ρρ0
1

ρ1
ρ2

Taking a quotient Q of H by adding relation (5.1), we get a finite inci-
dence geometry that can be seen as a regular hypermap (3, 3, 3)(b,c) on the
torus. Observe also that the hypermaps (3, 3, 3)(b,c) are hypertopes whenever
(b, c) �= (1, 1). Indeed, the subgroup H of K may be also seen as a group acting
on the the tessellation of the plane by hexagons where hexagons are split into
three families giving the three types, no two hexagons of the same type having
a common edge and two hexagons being incident provided they have a common
edge. This geometry is obviously residually connected and any (3, 3, 3)(b,c) is
obtained by quotienting this geometry, relation (5.1) giving a partition of the
hexagons in equivalence classes. Hence residual connectedness remains true in
the quotiented geometry. When (b, c) = (1, 1), there are only 3 elements of each
type, hence thinness is lost as we showed in Example 4.4. When (b, c) �= (1, 1),
there are enough elements of each type to have thinness. As explained in [5],
a hypermap (3, 3, 3)(b,c) with (b, c) �= (1, 1) is a regular hypertope if and only
if bc(b − c) = 0. Otherwise it is chiral. These hypermaps together with the
toroidal maps are the toroidal hypertopes. Indeed all hypertopes of rank 3, that
are not polytopes, have a triangle diagram, and thus it is natural to define
toroidal hypertopes as thin toroidal hypermaps. The only families of toroidal
hypermaps are {6, 3}(b,c), {3, 6}(b,c), (3, 3, 3)(b,c) and {4, 4}(b,c) as shown in [15].

6. C+-groups

In constructing regular hypertopes from groups, we restricted ourselves to
groups generated by involutions. We now consider a class of groups that are not
necessarily generated by involutions, from which we will be able to construct
highly symmetric hypertopes. These hypertopes may or may not be regular.
In the latter case, they will be chiral.

Consider a pair (G+, R) with G+ being a group and R := {α1, . . . , αr−1} a
set of generators of G+. Define α0 := 1G+ and αij := α−1

i αj for all 0 ≤ i, j ≤
r−1. Observe that αji = α−1

ij . Let G+
J := 〈αij | i, j ∈ J〉 for J ⊆ {0, . . . , r−1}.

If the pair (G+, R) satisfies condition (6.1) below called the intersection
condition IC+ (obtained in analogy with the intersection condition (4.1) of C-
groups keeping only those equalities that involve subsets J and K of cardinality
at least two), we say that (G+, R) is a C+-group.
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∀J,K ⊆ {0, . . . , r − 1}, with |J |, |K| ≥ 2, G+
J ∩ G+

K = G+
J∩K . (6.1)

It follows immediately from the intersection condition IC+, that R is an inde-
pendent generating set for G+, which means that αi �∈ 〈αj : j �= i〉.

Examples of C+-groups may be constructed from C-groups as follows. Given
a C-group (G,S) with S := {ρ0, . . . , ρr−1}, we define the rotation subgroup
(G+, R) where R := {αj := ρ0ρj : j ∈ {1, . . . , r − 1}} and G+ := 〈R〉.
Let α0 := 1G+ . Obviously, αij = α−1

i αj = ρiρj ∈ G+ for any choice of
i, j ∈ {0, . . . , r − 1}. The subgroup G+ is of index 1 or 2 in G.

Proposition 6.1. Let (G,S) be a C-group and R be defined as above. The set
R is an independent generating set for G+.

Proof. Suppose R is not an independent generating set. Then there exists
i such that αi ∈ 〈αj |j ∈ {1, . . . , r − 1}\{i}〉. Hence ρ0ρi ∈ 〈ρ0ρj |j ∈
{1, . . . , r − 1}\{i}〉. But (G,S) is a C-group. Thus 〈ρ0, ρi〉 ∩ 〈ρ0, ρj |j ∈
{1, . . . , r−1}\{i}〉 must be equal to 〈ρ0〉. Therefore ρ0 = ρi and (G,S) is not a
C-group. �

Proposition 6.2. Let (G,S) be a C-group and (G+, R) be its rotation subgroup
as defined above. If G+ is of index 2 in G then (G+, R) is a C+-group.

Proof. By Proposition 6.1, R is an independent generating set. Moreover, as
G+ is of index 2 in G, ρi �∈ G+ for every i = 0, . . . , r−1. Suppose (G+, R) is not
a C+-group. Then there exist J,K ⊆ {0, . . . , r − 1} with G+

J ∩ G+
K > G+

J∩K .
We have GJ∩K = GJ ∩ GK ≥ G+

J ∩ G+
K > G+

J∩K . Moreover, the index of
G+

J∩K in GJ∩K is at most 2, hence it is 2 for otherwise G+
J ∩ G+

K = G+
J∩K .

This implies that G+
J ∩ G+

K = GJ∩K . Therefore J ∩ K must be empty for
otherwise there exists a ρi ∈ G+, a contradiction. Now, if J ∩ K is empty, we
have {1G} = GJ∩K = GJ ∩ GK ≥ G+

J ∩ G+
K > G+

J∩K which is also impossible.
Therefore (G+, R) is a C+-group.

�

The next example shows that it is possible to construct examples of
C-groups (G,S) where (G+, R) does not satisfy IC+ when G+ = G.

Example 6.3. Let
ρ0 := (3, 6)(4, 7)(5, 9)(8, 10)(11, 12),
ρ1 := (2, 4)(3, 6)(5, 10)(8, 12)(9, 11),
ρ2 := (1, 2)(3, 5)(4, 7)(6, 9)(8, 11)(10, 12), and
ρ3 := (1, 3)(2, 5)(4, 8)(7, 11)(10, 12).
Let S := {ρ0, ρ1, ρ2, ρ3} and G := 〈S〉. It can be checked by hand or using

Magma that (G,S) is a C-group but that (G+, R) is not a C+-group as can
be found by taking I := {0, 1, 2} and J := {1, 2, 3} to check that (6.1) is not
satisfied.
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As another example we refer to [3, Section 2] where it is shown that the
11-cell is a regular 4-polytope whose rotation subgroup fails the intersection
condition IC+. This is due to the fact that this polytope is not directly regular
(as his facets and vertex-figures are not directly regular either).

Let (G+, R) be a C+-group. It is convenient to represent (G+, R) by the
following complete graph with r vertices which we will call the B-diagram of
(G+, R) and denote by B(G+, R). The vertex set of B is the set {α0, . . . , αr−1}.
Since αji = α−1

ij , the edges {αi, αj} of this graph are labelled by o(α−1
i αj) =

o(α−1
j αi). We take the convention of dropping an edge if its label is 2 and of

not writing the label if it is 3. Vertices of B are represented by small circles
in order to distinguish them from the vertices of a Coxeter diagram, which
represent involutions. Observe that a C-group (G,S) and its corresponding
C+-group (G+, R) will have isomorphic diagrams. The main difference is that
the vertex set of the Coxeter diagram of (G,S) is S while the vertex set of the
B-diagram of a (G+, R) is R ∪ {1G+}.

For instance, the automorphism group of a chiral 4-polytope of type {6, 3, 3}
with toroidal facets has the following B-diagram where the αi’s are described
in the next paragraph.

6

α0 = 1G+ α1 α2 α3

In [31], the set of generators of G+ is usually denoted by σ1, . . . , σr−1. We
note that in the example above, α1 = σ1, α2 = σ1σ2 and α3 = σ1σ2σ3. More
generally, given an abstract chiral polytope of Schäfli type {p1, p2, . . . , pr−1}
with generators σ1, . . . , σr−1, we have αi = σ1σ2σ3 . . . σi for 1 ≤ i ≤ r − 1.
Given an abstract chiral polytope and a set of generators σ1, . . . , σr−1 of its
automorphism group G+ as in [31], there is no automorphism g of G+ such
that g(σ1) = σ−1

1 , g(σ2) = σ2
1σ2 and g(σi) = σi for 3 ≤ i ≤ r − 1. If such

an automorphism exists, the polytope is regular. In this case the group G+

is of index one or two in a C-group (G,S) with S = {ρ0, . . . , ρr−1} where
ρ0 := g and ρi = gαi for i = 1, . . . , r − 1. In terms of the generators {αi :
i ∈ {1, . . . , r − 1}}, this condition is equivalent to having no g ∈ Aut(G+)
such that g(αi) = α−1

i for all 1 ≤ i ≤ r − 1. The generators σi are a natural
choice in the case of geometries with a linear diagram. We adopt a different
set of generators, needed for the cases where the diagram is not linear. Our
generators correspond in rank three to the ones usually chosen in the literature
on maps and hypermaps (see for instance [4]).

7. Chiral hypertopes as coset geometries

Given a chiral hypertope Γ(X, ∗, t, I) (with I := {0, . . . , r − 1}) and its auto-
morphism group G+ := AutI(Γ), pick a chamber C. For any pair i �= j ∈ I,
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there exists an automorphism αij ∈ G+ that maps C to (Ci)j . Also, Cαii =
(Ci)i = C and α−1

ij = αji. We define

αi := α0i (i = 1 . . . , r − 1)

and call them the distinguished generators of G+ with respect to C.
Let R := {α1, . . . , αr−1}. Arguments similar to those used in the proof

of Theorem 4.1 allow us to show that the pair (G+, R) is a C+-group, that
is, the distinguished generators of G+ satisfy the intersection condition IC+

and the relations implicit in some B-diagram with vertex set R ∪ {α0} where
α0 := 1G+ . The following theorem is the chiral equivalent of Theorem 4.1.

Theorem 7.1. Let I := {0, . . . , r − 1} and let Γ be a chiral hypertope of rank
r. Let C be a chamber of Γ. The pair (G+, R) where G+ = AutI(Γ) and R is
the set of distinguished generators of G+ with respect to C is a C+-group.

Proof. We assume that r ≥ 3 as no chiral hypertope of rank ≤ 2 exists. Let
us again denote by G+

K
the subgroup 〈αij |i, j ∈ I\K〉. If |K| ≥ r − 1, then

G+
K

= {1}. Let Gi be the stabiliser in G+ of the element of type i in C for
i = 0, . . . , r − 1.

If (G+, R) does not satisfy (6.1), then there is a pair of subgroups, G+
K

and
G+

J
with K,J ⊆ I, both of size at most r − 2, such that G+

K
∩ G+

J
�= G+

K∪J
.

Hence G+
K

∩ G+
J

> G+
K∪J

. Take g ∈ (G+
K

∩ G+
J

)\G+
K∪J

. This g fixes a flag of
type K ∪J in the base chamber C = {G0, . . . , Gr−1}. But the action of G+

K∪J
must be free on the residue ΓF of the flag F := {Gi | i ∈ K ∪ J} for otherwise
the action of G+ is not free on Γ, which is a contradiction. Any element of
G+

K∪J
will fix all elements of F . If |K ∪ J | = r, the element g fixes a chamber,

which contradicts the fact that the action is free. If |K ∪ J | = r − 1, there
are exactly two chambers containing the flag F . Since the action is chiral, g
must also fix these chambers, and we conclude that the action is not free, a
contradiction. Finally, suppose that |K ∪ J | < r − 1. Since G+

K∪J
has at most

two orbits on the flags of ΓF , there must exist an element h ∈ G+
K∪J

that
sends the flag {Gk | k ∈ I\(K ∪ J)} onto {Gkg | k ∈ I\(K ∪ J)} or onto
one of its adjacent flags. In the first case, gh−1 �= 1G fixes the base chamber
{Gi | i ∈ I}, the action of G on the chambers of Γ is not free, a contradiction.
In the second case, gh−1 �= 1G maps the base chamber onto one of its adjacent
chambers, contradicting the chirality of the hypertope. �

Corollary 7.2. The set R of Theorem 7.1 is an independent generating set for
G+.

Proof. Assume R is not an independent generating set. Then there exists αi

in R such that αi ∈ 〈αj |j ∈ {1, . . . , r − 1}\{i}〉. But then, the groups G+
I and

G+
J with I := {0, i} and J := {0, . . . , r − 1}\{i} contradict (6.1). �



Vol. 90 (2016) Highly symmetric hypertopes 1061

The notion of chirality in hypertopes has been well explored in the case
when the underlying diagram is linear, that is, when the hypertope is an
abstract chiral polytope [31]. The automorphism groups of chiral polytopes
are characterized as groups with specific generators σ1, . . . , σr−1 such that
σiσi+1 . . . σj is of order 2 for all 1 ≤ i < j ≤ r−1. Examples can be found where
the σi’s are not independent when r ≥ 4. For instance, all chiral polytopes with
automorphism group S5 given in [25] have their σi’s not independent.

8. Constructions and examples

Just as regular polytopes can be constructed inductively from regular poly-
topes of lower rank, similar constructions can be applied to hypertopes. Cun-
ningham and Pellicer showed in [19] that every finite chiral d-polytope with
regular facets is itself the facet of a chiral (d+1)-polytope. However, inductive
constructions of chiral polytopes from chiral polytopes are not possible as the
(n − 2)-faces of a chiral polytope of rank n are necessarily regular (see [31,
Proposition 9]). Although the result for polytopes cannot be extended to thin
geometries with a nonlinear diagram (as these geometries are not necessary
posets), the following result imposes a similar restriction on inductive con-
structions of chiral hypertopes.

Let Γ(X, ∗, t, I) be an incidence geometry. For J ⊆ I, we define the J-
truncation of Γ as the incidence geometry JΓ(JX,J ∗,J t, J) where JX =
t−1(J), J∗ is the restriction of ∗ to JX ×J X and J t is the restriction of
t to JX. If Γ(G; (Gi)i∈I) is a coset geometry and J ⊆ I, the J-truncation
of Γ(G; (Gi)i∈I) is the coset geometry Γ(G; (Gj)j∈J). Observe that every
J-truncation of Γ is also a geometry but is usually thin only when J = I.

Theorem 8.1. Let Γ(X, ∗, t, I) be a chiral hypertope of rank |I| ≥ 3. Then, any
rank |I| − 2 truncation of Γ is a flag-transitive geometry.

Proof. Let J ⊂ I with |J | = |I|−2 and let k, l ∈ I\J . Take two chambers JC1

and JC2 of JΓ. These two chambers are flags of Γ and as Γ is a geometry, they
can be extended to chambers C1 := JC1 ∪{xk, xl} and C2 := JC2 ∪{yk, yl} of
Γ. If the chambers C1 and C2 are in the same orbit under the action of AutI(Γ),
then JC1 and JC2 are in the same orbit under the action of AutI(JΓ). Suppose
C1 and C2 are not in the same orbit. Hence, C2 can be mapped to an adjacent
chamber of C1, namely C ′

1 := JC1∪{x′
k, xl} where x′

k �= xk. Hence there exists
g ∈ AutI(Γ) such that g(C2) = C ′

1. In particular, g(JC2) = JC1, and thus JC1

and JC2 are in the same orbit under the action of AutI(JΓ). Therefore, JΓ is
flag-transitive. �

We note that the rank |I|−2 truncations of a chiral hypertope need not be
(regular) hypertopes as in most cases thinness is lost. Nevertheless, we may be
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able to construct hypertopes of rank r from flag-transitive geometries of rank
r − 2.

In Sect. 4, we saw that to a regular hypertope and one of its chambers, we
can associate a C-group (Theorem 4.1). We constructed regular hypertopes
from C-groups under certain conditions. We showed in Example 4.5 that a
given C-group (G,S) does not necessarily give a coset geometry that is a
regular hypertope but in Theorem 4.6 we showed that if G is flag-transitive
on the coset geometry, then that geometry is a hypertope.

As we shall see now, we can construct chiral and regular hypertopes from
some C+-groups (G+, R) where R is a set of independent generators.

We start by showing how to construct a coset geometry from a group and
an independent generating set of this group.

Construction 8.1. Let I = {1, . . . , r − 1}, G+ be a group and R :=
{α1, . . . , αr−1} be an independent generating set of G+. Define G+

i := 〈αj |j �=
i〉 for i = 1, . . . , r − 1 and G+

0 := 〈α−1
1 αj |j ≥ 2〉. The coset geometry

Γ(G+, R) := Γ(G+; (G+
i )i∈{0,...,r−1}) constructed using Tits’ algorithm (see

Proposition 3.1) is the geometry associated to the pair (G+, R).

The coset geometry Γ(G+, R) gives an incidence system using Tits algo-
rithm. If this incidence system is a chiral hypertope, then (G+, R) is necessar-
ily a C+-group as we showed in Theorem 7.1, so in order to construct chiral
hypertopes from coset geometries, it is necessary to start with C+-groups.

If one looks at the rotation subgroup of the group A6 of Example 4.5, it
is clear that a C+-group does not necessarily give a coset geometry Γ that is
thin and strongly chamber connected and hence does not automatically give
a hypertope.

Theorem 8.2. Let (G+, R) be a C+-group. Let Γ := Γ(G+, R) be the coset
geometry associated to (G+, R) using Construction 8.1. If Γ is a hypertope
and G+ has two orbits on the set of chambers of Γ, then Γ is chiral if and only
if there is no automorphism of G+ that inverts all the elements of R. On the
other hand, if there exists an automorphism σ ∈ Aut(G+) that inverts all the
elements of R, the group G+ extended by σ is regular on Γ.

Proof. As Γ is a hypertope, it is thin and residually connected, hence strongly
chamber connected by Proposition 2.1. This implies that G+ acts freely on the
chambers of Γ.

Let us show that the two orbits of chambers under the action of G+ are
obtained from the base chamber C := {G+

0 , . . . , G+
r−1} and its i-adjacent cham-

ber. Given the base chamber C, its i-adjacent chamber is (C\{G+
i }) ∪ {G+

i g}
where g := α−1

1 if i = 0 and g := αi otherwise. Indeed, if i = 0, G+
0 α−1

1 contains
α−1

j for all j = 1, . . . , r − 1 and thus G+
0 α−1

1 has at least one element in com-
mon with G+

i for every i = 1, . . . , r − 1. Hence {G+
0 α−1

1 , G+
1 , . . . , G+

r−1} is the
0-adjacent chamber to C. Similarly G+

i αi contains α−1
j αi for all j = 1, . . . , r−1
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and thus G+
i αi has at least one element in common with G+

j for every
j = 0, . . . , r −1, with j �= i. Also G+

0 contains α−1
j αi for every j �= i and hence

G+
0 is incident to G+

i αi. Thus the set (C\{G+
i }) ∪ {G+

i αi} is the i-adjacent
chamber to C.

As (G+, R) is a C+-group, there is no element of G+ that maps C to any
of its i-adjacent chambers. This is due to the fact that, in order to map C to
its i-adjacent chamber, we need to fix all but one of the maximal parabolic
subgroups, and the intersection of all but one maximal parabolic subgroups is
the identity. Thus for every i = 0, . . . , r − 1, C and its i-adjacent chamber are
not in the same orbit under the action of G+. Hence any chamber in the orbit
of C under the action of G+ will not be in the same orbit with its i-adjacent
chamber under the action of G+.

If there exists an element σ ∈ Aut(G+) that inverts every generator, then
σ obviously maps C to its 0-adjacent chamber and hence fuses the two cham-
ber orbits. The group G+ extended with σ will therefore act regularly on Γ.
On the other hand, if no such element exists, Γ has two orbits on its set of
chambers, and two adjacent chambers are always in distinct orbits, hence Γ is
chiral. �

We conclude this section with a concrete construction leading to rank 4
regular and chiral hypertopes. We can extend the triangle Coxeter group
[(3, 3, 3)] defined in Sect. 5 by an involution ρ3 such that ρ2ρ3 is of order p,
and in addition ρ3 commutes with ρ0 and ρ1. We get a rank four C-group with
the following diagram.

ρρ0
1

ρ1
ρ2 ρ3

p

When p = 3, 4, 5 and 6, this group is a subgroup of index 2 in the Coxeter
group [6, 3, p] (generated by ρ0, ρ1, ρ2 and ρ3), the symmetry group of a regular
tessellation of hyperbolic 3-space by horospherical cells {6, 3} ([17,18]).

Adding the relations (5.1) to [6, 3, p], we obtain the universal regular poly-
topes {{6, 3}(b,c), {3, p}} with p = 3, 4, 5. Finite regular polytopes in this family
have been classified in [27]. They are included in Table 1 where we also list the
known universal chiral polytopes of that type. We conjecture that this list is
also complete based on [12] and computations done using Magma. With the
exception of {{6, 3}(1,1), {3, p}}, as explained by Example 4.4, each of these
regular and chiral polytopes has a type preserving automorphism group that
is twice bigger than the type preserving automorphism group of the corre-
sponding hypertope {(3, 3, 3)(b,c), p} ( that is a hypertope whose residues of
ρ3 are toroidal hypermaps of type (3, 3, 3)(b,c), while the residues of ρ1 and
ρρ0
1 are toroidal maps of type {3, p}). Regular hypertopes of this type are thus
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Table 1. Known finite polytopes of type {{6, 3}s, {3, p}}
with p ∈ {3, 4, 5} (having type-preserving automorphism
group of size g)

p s g Group Chiral/regular
3 (2, 0) 240 S5 × C2 Regular

(3, 0) 1296 [1 1 2]3 � C2 Regular
(4, 0) 15,360 [1 1 2]4 � C2 Regular
(1, 2) 336 PGL2(7) Chiral
(1, 3) 2184 PSL2(13) × C2 Chiral
(1, 4) 8064 SL2(7) � A4 � C2 Chiral
(2, 2) 2880 S5 × S4 Regular
(2, 3) 6840 PGL2(19) Chiral

4 (1, 1) 288 S3 � [3, 4] Regular
(2, 0) 768 [3, 3, 4] × C2 Regular
(1, 2) 2016 PGL2(7) × S3 Chiral

5 (2, 0) 28,800 [3, 3, 5] × C2 Regular

Table 2. Known finite hypertopes of type {(3, 3, 3)s, p} with
p ∈ {3, 4, 5} (having type-preserving automorphism group of
size g)

p s g Group Chiral/regular
3 (2, 0) 120 S5 Regular

(3, 0) 648 [1 1 2]3 Regular
(4, 0) 7680 [1 1 2]4 Regular
(1, 2) 168 PSL2(7) Chiral
(1, 3) 1092 PSL2(13) Chiral
(1, 4) 4032 SL2(7) � A4 Chiral
(2, 2) 1440 A5 × S4 Regular
(2, 3) 3420 PSL2(19) Chiral

4 (1, 2) 1008 PSL2(7) × S3 Chiral
(2, 0) 384 [3, 3, 4] Regular

5 (2, 0) 14,400 [3, 3, 5] Regular

also classified and our conjecture extends to chiral hypertopes as well. Table 2
lists the hypertopes obtained using this construction. More precisely, they are
obtained by using the following presentation for the rotational subgroup with
p and s = (a, b) as parameters.

G+(p, a, b) := 〈x, y, z|x3, y3, zp, (x−1z)2, (y−1z)2, (x−1y)3, (xy−1x)a(xy)b〉
The case where p = 6 is considerably more complicated and will be dealt with
in another paper [23].
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9. Open problems and acknowledgements

We conclude this paper with a series of open problems that we think are
interesting to investigate in future work.

Problem 9.1. What is a minimal set of conditions for the IC+ condition?

The corresponding problem in polytopes has been solved in [13] by Conder
and Oliveros.

Problem 9.2. Classify all finite locally toroidal incidence geometries of type
{(3, 3, 3); p} for p = 3, 4, 5.

By type {(3, 3, 3); p}, we mean that the incidence geometry Γ(X, ∗, t, {0, 1, 2,
3}) has residues of elements of type 3 being hypermaps of type (3, 3, 3)(b,c) and
residues of elements of type 0 and 1 being polyhedra of Schläfli type {3, p}.

Problem 9.3. Find an example of a C-group that gives a thin, residually con-
nected geometry of rank ≥ 4 that is not flag-transitive.

Problem 9.4. Find an example of a C-group of rank 3 that gives a geometry
that is not thin, not residually connected and not flag-transitive.
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