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Best constant in stability of some positive linear operators
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Abstract. We prove that the kernels of Bernstein, Stancu and Kantorovich operators are
proximinal sets, therefore the infimum of Hyers–Ulam constants is also a Hyers–Ulam con-
stant for the above mentioned operators. Moreover, we investigate what happens when the
supremum norm is replaced by the L1-norm.
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1. Introduction

Hyers–Ulam stability is one of the main topics in functional equation theory.
Ulam formulated a problem concerning the stability of the equation of ho-
momorphism of a metric group in 1940 and a year later D.H. Hyers gave a
first answer to Ulam’s problem for the Cauchy functional equation in Banach
spaces. Recall the result of Hyers [9]: Let X, Y be two real Banach spaces and
ε > 0. Then for every mapping f : X → Y satisfying

‖f(x + y) − f(x) − f(y)‖ ≤ ε, x, y ∈ X, (1.1)

there exists a unique additive mapping g : X → Y such that

‖f(x) − g(x)‖ ≤ ε, x ∈ X. (1.2)

This is the reason why this type of stability is called after their names [9,23].
The result of Hyers was extended later by Aoki [2] and Rassias [20] by re-
placing ε in (1.1) with a function depending on x and y. Generally, we say
that an equation is stable in the Hyers–Ulam sense if for every solution of
a perturbation of the equation (approximate solution) there exists a solution
of the equation (exact solution) near it. Hyers–Ulam stability was considered
by numerous mathematicians, especially during the last 50 years, due to its
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connections with many branches of mathematics: differential equations, opera-
tor theory, dynamical systems theory, functional analysis; see for more details,
results and approaches [3–6,10–12,16,18]. The Hyers–Ulam stability of opera-
tors was considered for the first time in the papers by Hatori, Hirasawa, Miura
et al. who obtained a characterization of the stability of linear operators and a
representation for their best constants [7,8,13,22]. Recall also the results ob-
tained by Moslehian and Sadeghi on the stability of linear operators and their
best constants [14,15]. The authors of the present paper studied the stability
of some classical operators from approximation theory obtaining also an ex-
plicit formula for the infimum of Hyers–Ulam constants for Bernstein, Stancu
and Kantorovich operators. They proved also that in a class of generalized
positive linear operators the infimum of Hyers–Ulam constants for Bernstein
operators has a minimality property [17,19]. Generally, the infimum of Hyers–
Ulam constants of an operator is not a Hyers–Ulam constant of that operator.
An example can be found in [7]. The goal of this paper is to give a positive
answer to this problem for Bernstein, Stancu and Kantorovich operators by
showing that their kernels are proximinal sets in the space C[0, 1] endowed
with the supremum norm. The case where the supremum norm is replaced
by the L1-norm ‖‖1 is studied in Section 3 where we show that the Bernstein
operator Bn, considered on the space (C[0, 1], ‖·‖1), is HU-stable with an arbi-
trary small constant K > 0. We obtain a similar result for the Szász–Mirakjan
operator Ln on the space Cb[0,+∞) with the generalized norm ‖ · ‖1; remark
that on Cb[0,+∞) with the supremum norm, Ln is not HU-stable.

2. The HUS-constant for Bernstein, Stancu and Kantorovich
operators

Let A,B be normed spaces and T : A → B an operator. The following defini-
tion can be found in [7].

Definition 2.1. We say that T has the Hyers–Ulam stability property (briefly,
T is HU-stable) if there exists a constant K > 0 such that for every g ∈ T (A),
ε > 0 and f ∈ A with ‖Tf −g‖ ≤ ε, there exists f0 ∈ A such that Tf0 = g and
‖f − f0‖ ≤ Kε. The number K is called a Hyers–Ulam constant of T (briefly,
HUS-constant) and the infimum of all HUS-constants of T is denoted by KT .
If KT is a HUS-constant of T then it is called the best HUS-constant of T .

Remark 2.2. If T : A → B is a linear operator then T is HU-stable with
HUS-constant K > 0 if and only if for any f ∈ A with ‖Tf‖ ≤ 1 there exists
f0 ∈ A, Tf0 = 0, such that ‖f − f0‖ ≤ K. See [22, p. 587] and [19, Remark
2.3] for more details.

The following result can be found in [7, p. 390, Corollary].
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Theorem 2.3. Suppose that T is an HU-stable linear operator and its kernel
N(T ) is a proximinal set. Then KT is the best HUS-constant of T .

Recall that a subset M of the normed space (A, ‖ · ‖) is called a proximinal
set if for every f ∈ A there exists g ∈ M such that

dist(f,M) = ‖f − g‖,

where dist(f,M) = inf{‖f − h‖ : h ∈ M}.
Let C[0, 1] be the space of all continuous functions f : [0, 1] → R endowed

with the supremum norm denoted by ‖ · ‖∞, and a, b ∈ R, 0 ≤ a ≤ b. Let∏
n ⊂ C[0, 1] be the space of all polynomial functions of degree ≤ n.
The Stancu operator [21] Sn : C[0, 1] → Πn is defined by

Snf(x) =
n∑

k=0

f

(
k + a

n + b

) (
n

k

)

xk(1 − x)n−k, f ∈ C[0, 1].

We have

N(Sn) =
{

f ∈ C[0, 1] : f

(
k + a

n + b

)

= 0, 0 ≤ k ≤ n

}

.

For a = b = 0 the Stancu operator reduces to the classical Bernstein
operator Bn.

Now let X = {f : [0, 1] → R | f is bounded and Riemann integrable} and
suppose that X is endowed also with the supremum norm denoted by ‖ · ‖∞.
The Kantorovich operator [1] is defined by

Knf(x) = (n + 1)
n∑

k=0

(∫ k+1
n+1

k
n+1

f(t)dt

)(
n

k

)

xk(1 − x)n−k,

for every f ∈ X and x ∈ [0, 1]. The kernel of Kn is given by

N(Kn) =

{

f ∈ X :
∫ k+1

n+1

k
n+1

f(t)dt = 0, 0 ≤ k ≤ n

}

.

In [17] it is proved that Sn, Bn,Kn are HU-stable operators and, moreover,
the following result holds.

Theorem 2.4.

KSn
= KBn

= KKn
=

(
2n

2
[
n
2

]

)/(
n

[
n
2

]

)

.

We prove in what follows that KSn
,KBn

,KKn
are HUS-constants for the

corresponding operators. Our proof is based on Theorem 2.3. Classical results
on the proximinality of a subset of a normed space are given for reflexive
spaces; C[0, 1] is not reflexive, therefore we will give a direct proof for the
proximinality of the kernels of Sn, Bn,Kn.
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Lemma 2.5. Let 0 ≤ x0 < x1 < . . . < xn ≤ 1 and

N := {g ∈ C[0, 1] : g(xi) = 0, i = 0, 1, . . . , n}.

Then N is proximinal in (C[0, 1], ‖ · ‖∞).

Proof. Let f ∈ C[0, 1]. We have to find a function g ∈ N such that

dist(f,N) = ‖f − g‖∞ . (2.1)

Let m := max{|f(xi)| : i = 0, 1, . . . , n}. If m = 0, then f ∈ N and (2.1) is
satisfied with g = f .

It remains to consider the case when m > 0. First, it is easy to verify that
for each h ∈ N one has ‖f − h‖∞ ≥ m, hence

m ≤ dist(f,N). (2.2)

On the other hand, let λ ∈ C[0, 1] be the piecewise affine function such that

λ(0) = λ(x0) =
m − f(x0)

2m
, λ(xn) = λ(1) =

m − f(xn)
2m

,

λ(xi) =
m − f(xi)

2m
, i = 1, . . . , n − 1.

Since 0 ≤ λ(xi) ≤ 1, i = 0, 1, · · · , n, and λ is affine on each subinterval
[0, x0], [x0, x1],· · · , [xn−1, xn], [xn, 1], we deduce that 0 ≤ λ(x) ≤ 1, x ∈ [0, 1].
Therefore, ‖2λ − 1‖∞ ≤ 1.

Consider the function g ∈ C[0, 1], g(x) := f(x) + m(2λ(x) − 1), x ∈ [0, 1].
It is easy to verify that g(xi) = 0, i = 0, 1, · · · , n, hence g ∈ N . This entails

dist(f,N) ≤ ‖f − g‖∞ = m ‖2λ − 1‖∞ ≤ m.

Considering (2.2), we get

dist(f,N) = ‖f − g‖∞ = m.

So the function g ∈ N satisfies (2.1), and this concludes the proof. �

Lemma 2.6. N(Kn) is proximinal in (X, ‖ · ‖∞).

Proof. Let Ik :=
[

k
n+1 , k+1

n+1

)
, k = 0, 1, . . . , n−1, and In :=

[
n

n+1 , 1
]
. Let ‖h‖k

be the supremum norm of a bounded function h defined on Ik, k = 0, . . . , n.
Let f ∈ X and h ∈ N(Kn). Then |f(t) − h(t)| ≤ ‖f − h‖k, t ∈ Ik, and this

entails

(n + 1)
∣
∣
∣
∣

∫

Ik

f(t)dt

∣
∣
∣
∣ ≤ ‖f − h‖k, k = 0, . . . , n. (2.3)

Set m := max
{

(n + 1)
∣
∣
∣
∫
Ik

f(t)dt
∣
∣
∣ : k = 0, . . . , n

}
. From (2.3) we get m ≤

‖f − h‖∞, for all h ∈ N(Kn) and so

m ≤ dist(f,N(Kn)). (2.4)
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Now let g ∈ X be the function defined by

g(t) = f(t) − (n + 1)
∫

Ik

f(s)ds, t ∈ Ik, k = 0, . . . , n.

Then
∫

Ik

g(t)dt =
∫

Ik

f(t)dt −
∫

Ik

f(s)ds = 0, i = 0, 1, · · · , n,

hence g ∈ N(Kn). Moreover,

‖f − g‖∞ = max {‖f − g‖k : k = 0, 1, · · · , n}
= max

{

(n + 1)
∣
∣
∣
∣

∫

Ik

f(s)ds

∣
∣
∣
∣ : k = 0, 1, · · · , n

}

= m.

Therefore g ∈ N(Kn) and ‖f − g‖∞ = m; using also (2.4) we get

dist(f,N(Kn)) ≤ ‖f − g‖∞ = m ≤ dist(f,N(Kn)).

This yields dist(f,N(Kn)) = ‖f − g‖∞ , and the lemma is proved. �

The results proved in Lemma 2.5, Lemma 2.6, Theorem 2.3 and Theo-
rem 2.4 lead to the following conclusion.

Corollary 2.7. The best HUS-constant for Bernstein, Stancu and Kantorovich
n-th operators is

(
2n

2
[
n
2

]

)/(
n

[
n
2

]

)

.

3. HU-stability of operators with respect to different norms

For f ∈ C[0, 1] let ‖f‖∞ be the supremum norm and ‖f‖1 =
∫ 1

0
|f(x)|dx. Let

n ≥ 1 be given, and

N :=
{

g ∈ C[0, 1] : g

(
k

n

)

= 0, k = 0, 1, . . . , n

}

.

Theorem 3.1. N is dense in (C[0, 1], ‖ · ‖1).
Proof. Let f ∈ C[0, 1], f 	= 0, and ε > 0. We have to find a function g ∈ N
such that ‖f − g‖1 ≤ ε. Set

δ := min
{

1
3n

,
ε

4n‖f‖∞

}

. (3.1)

Consider the intervals I0 = [0, δ], In = [1 − δ, 1], Ik =
[
k
n − δ, k

n + δ
]
,

k = 1, 2, . . . , n − 1. Due to (3.1), they are pairwise disjoint.
Let g ∈ C[0, 1] be the function defined by:

• g
(
k
n

)
= 0, k = 0, 1, . . . , n;
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• g(x) = f(x), x ∈ [0, 1] \ ⋃n
k=0 Ik;

• g is affine on each of the intervals I0, In,
[
k
n − δ, k

n

]
,

[
k
n , k

n + δ
]
, k =

1, . . . , n − 1.
Then g ∈ N and ‖g‖∞ ≤ ‖f‖∞, hence |f(x) − g(x)| ≤ |f(x)| + |g(x)| ≤

‖f‖∞ + ‖g‖∞ ≤ 2‖f‖∞, x ∈ [0, 1]. Let I :=
⋃n

k=0 Ik. Then the Lebesgue
measure of I is 2nδ, and
∫ 1

0

|f(x) − g(x)|dx =
∫

I

|f(x) − g(x)|dx ≤ 2‖f‖∞meas(I) = 4‖f‖∞nδ ≤ ε.

Therefore ‖f − g‖1 ≤ ε, and this concludes the proof. �

Theorem 3.2. Let K > 0. The Bernstein operator Bn : (C[0, 1], ‖ · ‖1) →
(C[0, 1], ‖ · ‖1) is HU-stable with HUS-constant K.

Proof. Let f ∈ C[0, 1] with ‖Bnf‖1 ≤ 1. According to Theorem 3.1, there
exists g ∈ N = ker Bn such that ‖f − g‖1 ≤ K. This means that K is a
HUS-constant for Bn in view of Remark 2.2.
(Let us remark that the assumption ‖Bnf‖1 ≤ 1 is not used in the proof!). �

Remark 3.3. Theorem 3.2 provides an example of an operator for which the
infimum of the HUS-constants is 0, and this infimum is not an HUS-constant.
Another example of an operator T for which the infimum KT is not an HUS-
constant can be found in [7].

In what follows, for f ∈ Cb[0,+∞) let ‖f‖∞ be the supremum norm;
consider also the generalized norm ‖f‖1 :=

∫ ∞
0

|f(x)|dx.
Let n ≥ 1 be given, and

M :=
{

g ∈ Cb[0,+∞) : g

(
k

n

)

= 0, k = 0, 1, . . .

}

.

Lemma 3.4. M is dense in (Cb[0,+∞), ‖ ·‖1), i.e., for each ε > 0 and for each
f ∈ Cb[0,+∞) there exists g ∈ M with ‖f − g‖1 ≤ ε.

Proof. Let f ∈ Cb[0,+∞), f 	= 0, and ε > 0.
Let

0 < δk <
1
2n

, k ≥ 0, (3.2)

such that

δ0 + 2
∞∑

k=1

δk ≤ ε

2‖f‖∞
. (3.3)

Consider the intervals I0 = [0, δ0], Ik =
[
k
n − δk,

k
n + δk

]
, k ≥ 1. Due to

(3.2) they are pairwise disjoint. Let g ∈ Cb[0,+∞) be the function defined by
• g

(
k
n

)
= 0, k ≥ 0;

• g(x) = f(x), x ∈ [0,+∞) \ ⋃∞
k=0 Ik;

• g is affine on each of the intervals I0,
[
k
n − δk,

k
n

]
,
[
k
n , k

n + δk
]
, k ≥ 1.
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Then g ∈ M and ‖g‖∞ ≤ ‖f‖∞, hence |f(x) − g(x)| ≤ 2‖f‖∞, x ∈ [0, 1]. Let
I :=

⋃∞
k=0 Ik. Then, using (3.3) we get

∫ ∞

0

|f(x) − g(x)|dx =
∫

I

|f(x) − g(x)|dx ≤ 2‖f‖∞meas(I)

= 2‖f‖∞

(

δ0 + 2
∞∑

k=1

δk

)

≤ ε.

Therefore ‖f −g‖1 ≤ ε, which shows that M is dense in (Cb[0,+∞), ‖·‖1). �

Theorem 3.5. Let K > 0.
The Szász–Mirakjan operator Ln : (Cb([0,+∞), ‖ · ‖1) → (Cb[0,+∞), ‖ · ‖1)

defined by

Lnf(x) := e−nx
∞∑

i=0

f

(
i

n

)
ni

i!
xi, f ∈ Cb[0,+∞), x ≥ 0,

is HU-stable with HUS-constant K.

Proof. Similar to that of Theorem 3.2. �

Remark 3.6. Ln : (Cb[0,+∞), ‖ · ‖∞) → (Cb[0,+∞), ‖ · ‖∞) is not HU-stable;
see [19].
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[13] Miura, T., Miyajima, M., Takahasi, S.E.: Hyers–Ulam stability of linear differential
operator with constant coefficients. Math. Nachr. 258, 90–96 (2003)

[14] Moslehian, M.S.: Ternary derivations, stability and physical aspects. Acta Appl.
Math. 100(2), 187–199 (2008)

[15] Moslehian, M.S., Sadeghi, G.: Perturbation of closed range operators. Turkish J.
Math. 33, 143–149 (2009)
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Babeş-Bolyai 14, 31–45 (1969)

[22] Takagi, H., Miura, T., Takahasi, S.E.: Essential norms and stability constants of
weighted composition operators on C(X). Bull. Korean Math. Soc. 40, 583–591 (2003)

[23] Ulam, S.M.: A Collections of Mathematical Problems. Interscience, New York (1960)

Dorian Popa and Ioan Raşa
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