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Abstract. In this paper we establish some algebraic properties involving r-Whitney numbers
and other special numbers, which generalize various known identities. These formulas are
deduced from Riordan arrays. Additionally, we introduce a generalization of the Eulerian
numbers, called r-Whitney–Eulerian numbers and we show how to reduce some infinite
summation to a finite one.
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1. Introduction

The r-Whitney numbers of the first kind wm,r(n, k) and the second kind
Wm,r(n, k) were defined by Mező [19] as the connecting coefficients between
some special polynomials. We note that these numbers, under a different name,
appear in the work of Corcino et al. in [12]. Specifically, for non-negative inte-
gers n, k and r with n ≥ k ≥ 0 and for any integer m > 0

(mx + r)n =
n∑

k=0

mkWm,r(n, k)xk, (1)

and

mnxn =
n∑

k=0

wm,r(n, k)(mx + r)k, (2)
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where

xn =

{
x(x − 1) · · · (x − n + 1), if n ≥ 1;
1, if n = 0.

The r-Whitney numbers of the first kind and the second kind satisfy the fol-
lowing recurrence, respectively [19]

wm,r(n, k) = wm,r(n − 1, k − 1) + (m − nm − r)wm,r(n − 1, k), (3)

Wm,r(n, k) = Wm,r(n − 1, k − 1) + (km + r)Wm,r(n − 1, k). (4)

Moreover, these numbers have the following rational generating function [8]:
n∑

k=0

wm,r(n, n − k)xk =
n−1∏

k=0

(1 − (r + mk)x), (5)

n∑

k=0

Wm,r(n, k)xn =
xk

(1 − rx)(1 − (r + m)x) · · · (1 − (r + mk)x)
. (6)

Note that if (m, r) = (1, 0) we obtain the Stirling numbers [14], if (m, r) = (1, r)
we have the r-Stirling (or noncentral Stirling) numbers [7], and if (m, r) =
(m, 0) we have the Whitney numbers [4,5]. See [3,8,21] for combinatorial
interpretations of the r-Whitney numbers, [16–18] for their connections to
elementary symmetric functions, [11] for asymptotic expansions of Wm,r(n, k)
and [20] for their connections to matrix theory.

In this paper we extend the work of Cheon et al. [9]. We use the fundamental
theorem of Riordan arrays to establish some combinatorial sums which involve
the r-Whitney numbers and other special numbers. Additionally, we introduce
a generalization of the Eulerian numbers, which are called r-Whitney–Eulerian
numbers, and we obtain some combinatorial properties of them.

2. Preliminary definitions and basic identities

A Riordan array L = [ln,k]n,k∈N
is defined by a pair of generating functions

g(z) = 1 + g1z + g2z
2 + · · · and f(z) = f1z + f2z

2 + · · · , where f1 �= 0, so that
the k-th column satisfies

∑

n�0

ln,kz
n = g(z) (f(z))k ,

the first column being indexed by 0. It is clear that ln,k = [zn] g(z) (f(z))k ,
where [zn] is the coefficient operator. The matrix corresponding to the pair
f(z), g(z) is denoted by R(g(z), f(z)) or (g(z), f(z)). The product of two Rior-
dan arrays (g(z), f(z)) and (h(z), l(z)) is defined by:

(g(z), f(z)) ∗ (h(z), l(z)) = (g(z)h (f(z)) , l (f(z))) .
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The set of all Riordan matrices is a group under the operator ∗, [23]. The
identity element is I = (1, z), and the inverse of (g(z), f(z)) is (g(z), f(z))−1 =(
1/

(
g ◦ f

)
(z), f(z)

)
, where f(z) is the compositional inverse of f(z).

Example 1. The Pascal matrix is given by the following Riordan array.

(
1

1 − z
,

z

1 − z

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

The following theorem is known as the fundamental theorem of Riordan
arrays or summation property.

Theorem 2. [24] If [ln,k]n,k∈N
= (g(z), f(z)) is a Riordan array, then for any

sequence {hk}k∈N

n∑

k=0

ln,khk = [zn] g(z)h(f(z)),

where h(z) is the generating function of the sequence {hk}k∈N.

From the fundamental theorem of Riordan arrays we can obtain the follow-
ing identities:

Proposition 3. For any integers n, k ≥ 0,

1.
i∑

j=0

(
i

j

)
wm,r(n, n − j) =

i∑

j=0

(
n + i − j

n

)
wm,r+1(n, n − j).

2.
i∑

j=k

(
i

j

)
Wm,r(j, k) = Wm,r+1(i, k).

Proof. 1. Let h(x) =
∏n−1

k=0(1 − (r + mk)x). From Eq. (5) and by applying

Theorem 2 to the Riordan array P =
(

1
1−x , x

1−x

)
with the generating

function h(x), we obtain

i∑

j=0

(
i

j

)
wm,r(n, n − j) =

[
xi

] 1
1 − x

h

(
x

1 − x

)

=
[
xi

] 1
1 − x

n−1∏

k=0

(
1 − (r + mk)

x

1 − x

)
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=
[
xi

] 1
(1 − x)n+1

n−1∏

k=0

(1 − (1 + r + mk)x)

=
i∑

j=0

(
n + i − j

n

)
wm,r+1(n, n − j).

2. Let h(x) = xk

(1−rx)(1−(r+m)x)···(1−(r+mk)x) . From Eq. (6) and by applying

Theorem 2 to the Riordan array P =
(

1
1−x , x

1−x

)
with the generating

function h(x), we obtain
i∑

j=0

(i

j

)
Wm,r(j, k) =

[
xi

] 1

1 − x
h

(
x

1 − x

)

=
[
xi

] 1

1 − x
·

(
x

1−x

)k

(
1 − r

(
x

1−x

)) (
1 − (r + m)

(
x

1−x

))
· · ·

(
1 − (r + mk)

(
x

1−x

))

=
[
xi

] xk

(1 − (1 + r)x) (1 − (1 + r + m)x) · · · (1 − (1 + r + mk)x)

= Wm,r+1(i, k).

�

3. Main theorem

Theorem 4. Let g(t) be the generating function of a sequence (gk)k∈N for which
the below series is convergent. Then we have

n∑

j=0

Wm,r(n, j)(mt)jg(j)(t) =
∞∑

k=0

(mk + r)ngkt
k, for n = 0, 1, 2, . . . ,

where Wm,r(n, j) is an r-Whitney number of the second kind and g(j)(t) is the
j-th derivative of the function g(t) with respect to t.

Proof. We proceed by induction on n. If n = 1,
∞∑

k=0

(mk + r)gktk = m
∞∑

k=0

k + r
∞∑

k=0

gkt
k = mtg′(t) + rg(t)

= Wm,r(1, 1)mtg′(t) + Wm,r(1, 0)g(t),

so the statement holds. Now, supposing that the result is true for all j < n+1,
we prove it for n + 1. From recurrence (4) we obtain:
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∞∑

k=0

(mk + r)n+1gkt
k = mt

d

dt

n∑

j=0

Wm,r(n, j)(mt)jg(j)(t)

+ r

n∑

j=0

Wm,r(n, j)(mt)jg(j)(t)

= mt

⎡

⎣
n∑

j=0

jWm,r(n, j)(mt)j−1mg(j)(t) +
n∑

j=0

Wm,r(n, j)(mt)jg(j+1)(t)

⎤

⎦

+ r

n∑

j=0

Wm,r(n, j)(mt)jg(j)(t)

=
n∑

j=0

(mj + r)Wm,r(n, j)(mt)jg(j)(t) +
n∑

j=0

Wm,r(n, j)(mt)j+1g(j+1)(t)

= rWm,r(n, 0)g(t) + (m + r)Wm,r(n, 1)(mt)g′(t)

+
n∑

j=2

(mj + r)Wm,r(n, j)(mt)jg(j)(t) + Wm,r(n, 0)(mt)g′(t)

+
n−1∑

j=1

Wm,r(n, j)(mt)j+1g(j+1)(t) + Wm,r(n, n)(mt)n+1gn+1(t)

= Wm,r(n + 1, 0)g(t) + ((m + r)Wm,r(n, 1) + Wm,r(1, 0))(mt)g′(t)

+
n−1∑

j=1

[
(m(j + 1) + r)Wm,r(n, j + 1)(mt)j+1g(j+1)(t)

+Wm,r(n, j)(mt)j+1g(j+1)(t)
]

+ Wm,r(n + 1, n + 1)(mt)n+1gn+1(t)

= Wm,r(n + 1, 0)g(t) + Wm,r(n + 1, 1)(mt)g′(t)

+
n−1∑

j=1

[(m(j + 1) + r)Wm,r(n, j + 1) + Wm,r(n, j)] (mt)j+1g(j+1)(t)

+ Wm,r(n + 1, n + 1)(mt)n+1gn+1(t)

= Wm,r(n + 1, 0)g(t) + Wm,r(n + 1, 1)(mt)g′(t)

+
n−1∑

j=1

Wm,r(n + 1, j + 1)(mt)j+1g(j+1)(t)

+ Wm,r(n + 1, n + 1)(mt)n+1gn+1(t)

= Wm,r(n + 1, 0)g(t) + Wm,r(n + 1, 1)(mt)g′(t)
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+
n∑

j=1

Wm,r(n + 1, j + 1)(mt)j+1g(j+1)(t)

=
n+1∑

j=0

Wm,r(n + 1, j)(mt)jg(j)(t).

�

Corollary 5. For any integer n ≥ 0, we have

n∑

j=0

Sr(n, j)tjg(j)(t) =
∞∑

k=0

(k + r)ngkt
k,

where Sr(n, j) is an r-Stirling number of the second kind.

Corollary 6. [9] For any integer n ≥ 0, we have

n∑

j=0

S(n, j)tjg(j)(t) =
∞∑

k=0

kngkt
k,

where S(n, j) is a Stirling number of the second kind.

4. Some identities

From Theorem 4 and the fundamental theorem of Riordan arrays we get the
following identities.

Theorem 7. Let x be a nonzero real number. For any integers n, h ≥ 0, we
have

1.
i∑

j=0

(
i

j

)
(mj + r)nxi−j =

n∑

j=0

Wm,r(n, j)mjj!
(

i

j

)
(1 + x)i−j.

2.
i∑

j=0

(
i

j

)(
h

j

)
(mj+r)nxi−j =

n∑

j=0

i−j∑

l=0

Wm,r(n, j)mjj!
(

h

j

)(
h + l

h

)(
h−j

i−j−l

)

xl(1 − x)i−j−l.

Proof. 1. Let g(t) = 1
1−t , and let f(t) =

∑n
j=0 Wm,r(n, j)(mt)jg(j)(t). Then

gl = 1 for all l ≥ 0, and fk = (mk + r)n for all k, n ≥ 0. By applying
Theorem 2 to the Riordan array P [x] =

(
1

1−xt ,
t

1−xt

)
with the generating

function f(t), we have
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i∑

j=0

pijfj =
i∑

j=0

(
i

j

)
xi−j(mj + r)n =

[
ti

] 1
1 − xt

f

(
t

1 − xt

)

=
[
ti

] 1
1 − xt

n∑

j=0

Wm,r(n, j)
(

mt

1 − xt

)j
j!

(
1−xt−t
1−xt

)j+1

=
n∑

j=0

Wm,r(n, j)mjj!
[
ti−j

] (
1

1 − (1 + x)t

)j+1

=
n∑

j=0

Wm,r(n, j)mjj!
(

i

j

)
(1 + x)i−j .

2. Let g(t) = (1 + t)h for h ≥ 0, then gl =
(
h
l

)
for all l ≤ 0. Therefore

fk = (mk + r)n
(
h
k

)
for all n ≥ 0. By applying Theorem 2 to the Riordan

array P [x] =
(

1
1−xt ,

1
1−xt

)
with the generating function f(t), we obtain

i∑

j=0

pijfj =
i∑

j=0

(
i

j

)(
h

j

)
xi−j(mj + r)n

=
[
ti

] 1

1− xt
f

(
t

1− xt

)

=
[
ti

] 1

1− xt

n∑

j=0

Wm,r(n, j)

(
mt

1− xt

)j

j!

(
h

j

) (
1 +

t

1− xt

)h−j

=
n∑

j=0

Wm,r(n, j)m
jj!

(
h

j

) [
ti−j

] (
1

1− (1 + x)t

)h+1

(1 + (1− x)t)h−j

=
n∑

j=0

Wm,r(n, j)m
jj!

(
h

j

)
i−j∑

l=0

[
tl

] (
1

1− xt

)h+1 [
ti−j−l

]
(1 + (1− x)t)h−j

=
n∑

j=0

i−j∑

l=0

Wm,r(n, j)m
jj!

(
h

j

)(
h+ l

h

)(
h− j

i− j − l

)
xl(1− x)i−j−l.

�

From the above theorem we obtain the following identities.

Corollary 8. For any integers n, h ≥ 0, we have

1.
i∑

j=0

(
i

j

)
(mj + r)n =

n∑

j=0

Wm,r(n, j)mjj!
(

i

j

)
2i−j.

2. Wm,r(n, i) =
1

mii!

i∑

j=0

(−1)i−j

(
i

j

)
(mj + r)n.
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3.
i∑

j=0

(
i

j

)(
h

j

)
xi−j =

i∑

l=0

(
h + l

h

)(
h

i − l

)
xl(1 − x)i−l.

4.
i∑

j=0

(
i

j

)(
h

j

)
(mj + r) = r

(
h + i

h

)
+ mh

(
h + i − 1

h

)
.

Proof. (1) Taking n = 0 in Theorem 7-(1). (2) Taking x = 1 in Theorem 7-(1).
(3) Taking n = 0 in Theorem 7-(2). (4) Taking n = 1 and x = 1 in Theorem
7-(2). �

Note that (3) and (4) are two generalizations of the classical Chu–
Vandermonde identity

i∑

j=0

(
i

j

)(
h

j

)
=

(
h + i

h

)
.

5. A generalization of the Eulerian numbers

In the combinatorics of permutations the A(n, k) Eulerian numbers play an
important role [6]. They can be defined by the S(n, k) Stirling numbers as

A(n, k) =
k∑

j=0

S(n, j)j!
(

n − j

k − j

)
(−1)k−j (n, k ≥ 1). (7)

Moreover, the Eulerian polynomials are defined as

An(x) =
n∑

k=0

A(n, k)xk.

It is a nice fact that these polynomials help to calculate special infinite sums,
because

An(x)
(1 − x)n+1

=
∞∑

k=0

knxk

holds for any non-negative integer n [10, p.244].
Our master formula in Theorem 4 can be used to generalize the Eulerian

numbers and polynomials. Recall that

n∑

j=0

Wm,r(n, j)(mt)jg(j)(t) =
∞∑

k=0

(mk + r)ngkx
k
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for any generating function g keeping convergence. Choosing simply g(x) =
1

1−x (and so gk ≡ 1) we have that

n∑

j=0

Wm,r(n, j)(mx)j
j!

(1 − x)j+1
=

∞∑

k=0

(mk + r)nxk.

Carrying out 1
(1−x)n+1 we get a polynomial on the left whose coefficient can

be found by the binomial theorem:

n∑

j=0

Wm,r(n, j)(mx)j
j!

(1 − x)j+1

=
1

(1 − x)n+1

n∑

j=0

Wm,r(n, j)(mt)jj!(1 − x)n−j

=
1

(1 − x)n+1

n∑

j=0

Wm,r(n, j)mjj!
n−j∑

i=0

(
n − j

i

)
(−1)ixi+j .

Introducing the new index k = i + j (and changing the index in the infinite
sum from k to i to avoid index conflicts) we have that

1
(1 − x)n+1

n∑

k=0

xk

⎛

⎝
n∑

j=0

Wm,r(n, j)mjj!
(

n − j

k − j

)
(−1)k−j

⎞

⎠ =
∞∑

i=0

(mi + r)nxi.

We have thus obtained the following theorem.

Theorem 9. For non-negative integers r, n and positive m we have that

∞∑

i=0

(mi + r)nxi =
An,m,r(x)
(1 − x)n+1

,

and the polynomial An,m,r(x) equals

An,m,r(x) =
n∑

k=0

xk

⎛

⎝
n∑

j=0

Wm,r(n, j)mjj!
(

n − j

k − j

)
(−1)k−j

⎞

⎠ .

This result shows that one can define a generalized version of the Eulerian
numbers—which we may call r-Whitney–Eulerian numbers—as

Am,r(n, k) =
n∑

j=0

Wm,r(n, j)mjj!
(

n − j

k − j

)
(−1)k−j .
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Note that

A1,0(n, k) =
n∑

j=0

W1,0(n, j)j!
(

n − j

k − j

)
(−1)k−j

=
n∑

j=0

S(n, j)j!
(

n − j

k − j

)
(−1)k−j = A(n, k)

which is just (7) again. The polynomials An,m,r(x) are then called r-Whitney–
Eulerian polynomials. Their exponential generating function is easy to deter-
mine.

Theorem 10. We have that
∞∑

n=0

An,m,r(x)
yn

n!
=

(1 − x) exp(ry(1 − x))
1 − x exp(my(1 − x))

.

Proof. By our previous theorem

An,m,r(x) = (1 − x)n+1
∞∑

i=0

(mi + r)nxi,

so
∞∑

n=0

An,m,r(x)
yn

n!
= (1 − x)

∞∑

i=0

xi
∞∑

n=0

[y(mi + r)(1 − x)]n

n!

= (1 − x)
∞∑

i=0

xi exp(y(mi + r)(1 − x))

= (1 − x) exp(ry(1 − x))
∞∑

i=0

xi exp(my(1 − x)i)

=
(1 − x) exp(ry(1 − x))
1 − x exp(my(1 − x))

.

�
For a similar class of Eulerian numbers connected to the Whitney numbers

see the paper of Rahmani [22].

6. Some additional special cases of the main theorem

The simplest case of Theorem 4 is discussed in the previous section, when
gk = 1 for all k. We discuss other special cases now.

First, let gk = 1
k!k . For this sequence let

∞∑

k=1

1
k!k

xk = g(x).
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It is not hard to see that the derivatives of g at x = 1 are as follows

g(j)(1) = (−1)j−1 (eDj−1 − (j − 1)!) (j ≥ 1).

Here

Dj = j!
j∑

i=0

(−1)i

i!

is the j-th derangement number [6]. Combinatorially, in a permutation on j
elements there are exactly Dj permutations without fixed points.

It is well known that

g(1) = Ei(1) − γ,

where

Ei(x) = −
∫ ∞

−x

dt

tet

is the exponential integral function [2, p.143]. Hence we readily get the follow-
ing summation formula for all n ≥ 1

∞∑

k=1

(mk + r)n

k!k
= Wm,r(n, 0)(Ei(1) − γ)

−
n∑

j=1

mjWm,r(n, j)(−1)j (eDj−1 − (j − 1)!) .

Especially, when m = 1, r = 0,
∞∑

k=1

kn

k!k
= e

n∑

j=1

S(n, j)(−1)j−1Dj−1.

Now we take g(x) = cos(2πx) and g(x) = sin(2πx). These special cases
result that

∞∑

k=0

(2mk + r)n
(−1)k(2π)2k

(2k)!
=

�n/2�∑

j=1

(−1)j(2πm)2jWm,r(n, 2j),

∞∑

k=0

(m(2k + 1) + r)n
(−1)k(2π)2k

(2k + 1)!
= m

�n/2�∑

j=1

(−1)j(2πm)2jWm,r(n, 2j + 1).

For the Stirling numbers this specializes to
∞∑

k=0

(2k)n
(−1)k(2π)2k

(2k)!
=

�n/2�∑

j=1

(−1)j(2π)2jS(n, 2j),

∞∑

k=0

(2k + 1)n
(−1)k(2π)2k

(2k + 1)!
=

�n/2�∑

j=1

(−1)j(2π)2jS(n, 2j + 1).
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Another interesting example comes if we take g(x) = xψ(x), where ψ is the
Digamma function [2, p.15]. The derivatives of g(x) are

g(n)(x) = nψ(n−1)(x) + xψ(n)(x), if n ≥ 1.

It is also known that

ψ(n)

(
1
2

)
= (−1)n+1n!(2n+1 − 1)ζ(n + 1) (n ≥ 2),

where ζ is the Riemann zeta function. Moreover, g(1/2) = −γ/2 − log(2) and
g′(1/2) = π2/4 − γ − 2 log(2). From these one can easily prove that for any
n,m ≥ 1 and r ≥ 0

∞∑

k=2

(−1
2

)k

ζ(k)(mk + r)n

= rn +
γ

2
(m + r)n −

(γ

2
+ log(2)

)
Wm,r(n, 0)

+
(

π2

8
− log(2) − γ

2

)
Wm,r(n, 1)

+
n∑

j=2

Wm,r(n, j)
(

−1
2

)j

j!
[
(2j − 1)ζ(j) − 2j+1 − 1

2
ζ(j + 1)

]
,

with the special case
∞∑

k=2

(−1
2

)k

ζ(k)kn

=
π2

8
− log(2) +

n∑

j=2

S(n, j)
(

−1
2

)j

j!
[
(2j − 1)ζ(j) − 2j+1 − 1

2
ζ(j + 1)

]
,

which also holds for any n ≥ 1 assuming that the empty sum equals zero.
We call the reader to prove that the sum of the even and odd indexed

second kind Stirling numbers can be expressed as

�n/2�∑

j=0

S(n, 2j) = cosh(1)
∞∑

k=0

(2k)n

(2k)!
− sinh(1)

∞∑

k=0

(2k + 1)n

(2k + 1)!
,

�n/2�∑

j=0

S(n, 2j + 1) = cosh(1)
∞∑

k=0

(2k + 1)n

(2k + 1)!
− sinh(1)

∞∑

k=0

(2k)n

(2k)!
.

(These identities appear in an American Mathematical Monthly problem of A.
Fekete [13]. See [1] for a solution, and see the book of Comtet [10, p.225–226]
for a more general setting.)



Vol. 90 (2016) Some identities of the r-Whitney numbers 405

Finally, let Cn be the n-th Catalan number. It is well known that

C(x) :=
∞∑

k=0

Ckx
k =

1 − √
1 − 4x

2x
.

In [15], the author showed that

C(n)(x) =
n!

(x(1 − 4x))n
(an−1(x) + bn(x)C(x)) ,

where

an(x) =
n∑

k=0

Ckx
k(4x − 1)n−k, and bn(x) = −2

n∑

k=0

Ck−1x
k(4x − 1)n−k,

with C−1 = −1/2. Therefore,
∞∑

k=0

(mk + r)nCkt
k =

n∑

j=0

Wm,r(n, j)(mt)j
j!

(t(1 − 4t))j
(aj−1(t) + bj(t)C(t)) .

References

[1] Amdeberhan, T.: Solution to problem #10791. https://math.temple.edu/∼tewodros/
solutions/10791.PDF. Accessed 7 Jan 2016

[2] Bateman, H.: Higher Transcendental Functions, vol. 2, 1st edn. McGraw-Hill Book
Company, New York (1955)

[3] Belbachir, H., Bousbaa, I.E.: Translated Whitney and r-Whitney numbers: a combina-
torial approach. J. Integer Seq. 16 (2013) (Article 13.8.6)

[4] Benoumhani, M.: On some numbers related to Whitney numbers of Dowling lat-
tices. Adv. Appl. Math. 19, 106–116 (1997)

[5] Benoumhani, M.: On Whitney numbers of Dowling lattices. Discrete Math. 159, 13–
33 (1996)
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