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Some identities of the r-Whitney numbers
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Abstract. In this paper we establish some algebraic properties involving r-Whitney numbers
and other special numbers, which generalize various known identities. These formulas are
deduced from Riordan arrays. Additionally, we introduce a generalization of the Eulerian
numbers, called r-Whitney—Eulerian numbers and we show how to reduce some infinite
summation to a finite one.
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1. Introduction

The r-Whitney numbers of the first kind wy, (n,k) and the second kind
Winr(n, k) were defined by Mezé [19] as the connecting coeflicients between
some special polynomials. We note that these numbers, under a different name,
appear in the work of Corcino et al. in [12]. Specifically, for non-negative inte-
gers n, k and r with n > k > 0 and for any integer m > 0

(mz+r)" = Z m* W, (n, k), (1)
k=0
and
mia = Z W (1, k) (M + )", (2)
k=0
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where

E

zx—1)---(r—n+1), ifn>1;
Tr= =
1, if n = 0.

The r-Whitney numbers of the first kind and the second kind satisfy the fol-
lowing recurrence, respectively [19]

Wiy (M, k) = Wiy p(n — 1,k — 1) + (m —nm — r)wp,»(n —1,k),  (3)
Wi r(n, k) =Wy p(n— 1,k — 1)+ (km + )Wy, »(n — 1, k). 4)
Moreover, these numbers have the following rational generating function [8]:
n n—1
Z Wy (0,1 — k)2k = H (1= (r+mk)x), (5)
k=0 k=0
ok

Z Wr(n, k)z™ = ( (6)
k=0

1—ra)(1—(r+m)z) - (1—(r+mk)z)
Note that if (m, ) = (1,0) we obtain the Stirling numbers [14], if (m,r) = (1,7)
we have the r-Stirling (or noncentral Stirling) numbers [7], and if (m,r) =
(m,0) we have the Whitney numbers [4,5]. See [3,8,21] for combinatorial
interpretations of the r-Whitney numbers, [16-18] for their connections to
elementary symmetric functions, [11] for asymptotic expansions of Wy, »(n, k)
and [20] for their connections to matrix theory.

In this paper we extend the work of Cheon et al. [9]. We use the fundamental
theorem of Riordan arrays to establish some combinatorial sums which involve
the r-Whitney numbers and other special numbers. Additionally, we introduce
a generalization of the Eulerian numbers, which are called r-Whitney—Eulerian
numbers, and we obtain some combinatorial properties of them.

2. Preliminary definitions and basic identities

A Riordan array L = [ln k], ;cy is defined by a pair of generating functions

g(2) =1+ g1z+g22? +--- and f(2) = fiz + foz? +---, where f; # 0, so that
the k-th column satisfies

Z lmkzn = g(Z) (f(z))k P

n=0

the first column being indexed by 0. It is clear that I, , = [2"] g(2) (f(z)",
where [2"] is the coefficient operator. The matrix corresponding to the pair
f(2),9(z) is denoted by R(g(z), f(2)) or (g(2), f(2)). The product of two Rior-
dan arrays (g(z), f(z)) and (h(z),1(2)) is defined by:

(9(2), £(2)) * (h(2),1(2)) = (9(2)h ((2)) ;L (f(2))) -
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The set of all Riordan matrices is a group under the operator x, [23]. Th
identity element is I = (1, 2), and the inverse of (g(z), f(2)) is (g(2), f(z))~*
(1/(go f) (2), f(2)), where f(z) is the compositional inverse of f(z).

Ezample 1. The Pascal matrix is given by the following Riordan array.

1 0 0 0 O

11 0 0 0

1 . 1 2 1 0 O
<1—z’1—z)_ 1 3 3 1 0
1 4 6 4 1

The following theorem is known as the fundamental theorem of Riordan
arrays or summation property.

Theorem 2. [24] If [l,, 1], ven = (9(2), f(2)) is a Riordan array, then for any
sequence {hg}ren

D lnkhi = [2" 9(2)h(f(2)),
k=0

where h(z) is the generating function of the sequence {h}ren.

From the fundamental theorem of Riordan arrays we can obtain the follow-
ing identities:

Proposition 3. For any integers n,k > 0,

35 (Jomtan 3 (st )

=0

2 Z() (oK) = Won i1 (i, 7).

Proof. 1. Let h(z) = [[7Z4(1 = (r + mk)z). From Eq. (5) and by applying

Theorem 2 to the Riordan array P = (ﬁ, ﬁ) with the generating

function h(z), we obtain

%

5 (5 )wmrtmn =) = (o] o (1)

Jj=0

n—1

— o) 5 T (1 i)

k=0




396 I. MEzO AND J. L. RAMIREZ AEM
[ 17:17n+11_‘[ 1+T+mk))

: n+i—jJ .
= E wm,TJrl(nvn _.7)-
‘ n
j=0
k

2. Let h(x) = (1—7'1‘)(1—(7‘+m§:w)~~(1—(7'+mk)x)' From Eq. (6) and by applying
Theorem 2 to the Riordan array P = (ﬁ, ﬁ) with the generating

function h(zx), we obtain
i ‘ a1 z
> () Wnrtih) = ) o (75

o (=)
= =) (e () e (o

= G G G = G i)
= m,r+1(i7k)'

)

3. Main theorem

Theorem 4. Let g(t) be the generating function of a sequence (gx)ken for which

the below series is convergent. Then we have
o0

n
> Wina(n, )(mt) g9 (t) = " (mk +r)"git*,  for n=0,1,2,...,
j=0 k=0
where Wy, »(n, j) is an r-Whitney number of the second kind and g(j)(t) 18 the
j-th derivative of the function g(t) with respect to t.

Proof. We proceed by induction on n. If n =1,

o0 e} o
Z(mk +r)gptt =m Z k+r Z grt® = mtg'(t) +rg(t)
k=0 k=0 k=0
= Winr (1, 1)mtg' (t) + Wi (1,0)9(2),
so the statement holds. Now, supposing that the result is true for all j < n+1,
we prove it for n + 1. From recurrence (4) we obtain:
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oo

> (mk 4 ) gth = mt—ZWw n, §)(mt)’ g (t)
k=0

3 Wi, )t g0
j=0

=t |37 W (0, ) (mt) = gD (8) + 3 W (n, ) (mt) g0 (1)

=0 =0
n
+r Z Wmn'(n? j)(mt)jg(j) (t)
7=0
n n
Z mj + 1) W (n, §)(mt)? g9 () + >~ W (n, 5) (mit)+ g0+ (1)
Jj= 7=0

= er (n,0)g(t) + (m + 1) Wiy, (n, 1)(mt)g' (¢)

n

+ Z(mj + 1) Wi (1, ) (mt) g9 (8) + Wi, (n, 0) (mt)g' (¢)

+ Z W (1, ) (mt) T gUT0 () + W, (0, ) (mt) " T g™ (1)
=Wn r(TL +1,0)g9(t) + ((m+ T)Wm,r(n7 1) + Wm,r(l,O))(mt)g’(t)

n—1

+ Z |:(m(-] + 1) + T)Wnb,r(naj + 1)(mt)j+1g(j+1)(t)

Wi ) (mt g0+ (1)
+ Winr(n 4 1,n+ 1) (mt)" g™+ (1)
=W, r(n +1,0)9(t) + Wi r(n+1,1)(mt)g' (t)

+Z M+ 1)+ 1) Wonp (1.5 + 1) + Wi ()] (m) 7+ g0 1)

+ Wm,T(n +1,n+ 1)(mt)"+1g"+1(t)
= Wir(n+1,0)g(t) + Wi (n + 1,1)(mt)g' (t)
n—1
+ ) Wina(n+1,5 + 1) (mt) gl (¢)
=1
+Whr(n+1,n+ 1)(mt)”+1g”+1(t)
= Wr(n+1,0)9(t) + Wer(n+ 1,1)(mt)g'(t)
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+ Z Wonr(n+ 1,5 4 1) (mt)? g0+ (1)
j=1
n+1

=3 Winp(n+1,5)(mt) g9 (t).

=0

Corollary 5. For any integer n > 0, we have

ZS TthJ ik—i—r gtk
k=0

where S, (n, j) is an r-Stirling number of the second kind.

Corollary 6. [9] For any integer n > 0, we have

NS gtigV () = 3 K gitt,
j=0 k=0

where S(n, j) is a Stirling number of the second kind.

4. Some identities

From Theorem 4 and the fundamental theorem of Riordan arrays we get the
following identities.

Theorem 7. Let x be a nonzero real number. For any integers n,h > 0, we
have

L. Z (;) (mj+r)"a"7 = f: Wi (n, j)m? j! (;) (1+az)~/

Jj=0 J=0 - .
252 () (mrra= =3 Swmama () () (27
xl(l x) I

Proof. 1. Let g(t) = -, and let f(t) = Z;L:O W (n,5)(mt)? g (t). Then
g = 1for all I > 0, and f, = (mk + 7)™ for all k,n > 0. By applying

1

Theorem 2 to the Riordan array Plz] = (m, 4

) with the generating

function f(t), we have
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Zp”fj JZO (J)z”(m‘j+r>n =113 —lxtf <1 —tsct>
= [t] 5 jxt in,r(n,j) (1mtxt)j (Htj_!ty“

11—zt

n o 1 Jj+1
— J =]
=2 Wonr (o f)m? ! 1 ](1 (1+:c)>
Jj=0
:ZWm,T”Jm]J()(1+$)_j-
= J

2. Let g(t) = (1 +t)" for h > 0, then g = (h) for all I < 0. Therefore
fe = (mk + )" (Z) for all n > 0. By applying Theorem 2 to the Riordan

array Plz ( — zt) with the generating function f(t), we obtain

=) (o
( > | -
o (725) o (3) (1 50)

znjwm,T(n,j)mfj!@) [#7] (M)hﬂ (1+(1— a2y
:zn:er (n, j)m’ ;! < ) S { } (1—1xt>h+1 [ti*j—l} (141 —a))

=0

ern]m] hy [+t ,h_,J xl(l—a:)’;jfl.
=i J h i—g—1

From the above theorem we obtain the following identities.

Il
—
~

.
[E—}

Corollary 8. For any integers n,h > 0, we have

12(1) (mj +r)" Zernj)mJ ()Qlj
=0 M i=0 J

1

mi!

2. Whr(n, i) =

i0<1>”‘ (F)mi-+

j=
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SO0 () (e

1

J

LB (7))

J

Proof. (1) Taking n = 0 in Theorem 7-(1). (2) Taking z = 1 in Theorem 7-(1).
(3) Taking n =0 in Theorem 7-(2). (4) Taking n = 1 and « = 1 in Theorem
7-(2). O

Note that (3) and (4) are two generalizations of the classical Chu—

\Y% andermonde ident i( }/

5. A generalization of the Eulerian numbers

In the combinatorics of permutations the A(n, k) Eulerian numbers play an
important role [6]. They can be defined by the S(n, k) Stirling numbers as

=3 500 (3 20 k=1, ™

Jj=0 -/
Moreover, the Eulerian polynomials are defined as

n

An(z) =" A(n, k)z*

k=0

It is a nice fact that these polynomials help to calculate special infinite sums,
because

An(z) _ i kN ok

_ n+1
(1-2a) —
holds for any non-negative integer n [10, p.244].

Our master formula in Theorem 4 can be used to generalize the Eulerian
numbers and polynomials. Recall that

ZW““" n ])(mt Z (mk +r) gzt
j=0 k=0
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for any generating function g keeping convergence. Choosing simply g(z) =

L (and so g, = 1) we have that

2 Wi Jma)y G 5T = > (mk )"t
=0 k=0

Carrying out m we get a polynomial on the left whose coefficient can
be found by the binomial theorem:

, j!
;Wm,r(nvj)(mxy(l_jm)jﬂ

= ﬁ > W (m. ) (mt (1 — )"~
j=0

- _ 71+12ern]mj]'2< ) lz+]

Introducing the new index k& = ¢ 4+ j (and changing the index in the infinite
sum from k to ¢ to avoid index conflicts) we have that

1 n n ’ - n _j » [e’e) . o
T ZWw(W)m”‘(k - ) (~D)F7 ) =D (mi+ )"
k=0 =0 ‘
We have thus obtained the following theorem.

Theorem 9. For non-negative integers r,n and positive m we have that

Z(mi + )t = Anm.r ().

_ 1’
e (1— )t
and the polynomial Ay, m () equals
Aunel) = 320 S Wl ()
j=0

This result shows that one can define a generalized version of the Eulerian
numbers—which we may call r-Whitney—Eulerian numbers—as

n—j k—j
A r(n, k) jZOernj)m]j <k‘—j>(1) J,



402 I. MEzO AND J. L. RAMIREZ AEM

Note that

- fj S(n, )5 (Z B 7) (=)*7 = A(n, k)

—J

which is just (7) again. The polynomials A,, ., »(z) are then called r-Whitney—
Eulerian polynomials. Their exponential generating function is easy to deter-
mine.

Theorem 10. We have that

oY — L @)exp(ry(l—a))
Z An m, 7" nl - 1— xexp(my(l - LL‘)) .

Proof. By our previous theorem

Ap () = (1 — 2)"+? Z(mi + )"t

SO

=(1-2) Z z'exp(y(mi+r)(1 —x))
i=0

= (1—2)exp(ry(1—x)) Y« exp(my(1 — x)i)
i=0
_ (A —z)exp(ry(l —z))
1—zexp(my(l—x))"

O

For a similar class of Eulerian numbers connected to the Whitney numbers
see the paper of Rahmani [22].

6. Some additional special cases of the main theorem

The simplest case of Theorem 4 is discussed in the previous section, when
gr = 1 for all k. We discuss other special cases now.
First, let g = kflk For this sequence let

Z mx = g(x).
k=1
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It is not hard to see that the derivatives of g at x = 1 are as follows
g P (W) = (-1 (eDja — (-1 (G =1).
Here
j .
G- (D
—] A
Di=3'
i=0
is the j-th derangement number [6]. Combinatorially, in a permutation on j

elements there are exactly D; permutations without fixed points.
It is well known that

g(1) = Ei(1) —,

mmz—/mﬁ

tet
z te

where

is the exponential integral function [2, p.143]. Hence we readily get the follow-
ing summation formula for all n > 1

SR (0, 0)(BI(D) )
k=1

= I Wi (n, §)(=1) (eDj—1 — (j = 1))).

Jj=1

Especially, when m =1, r = 0,

E:E%<:6§:SOLjXAIV7U%_L
k=1 j=1

Now we take g(z) = cos(2mx) and g(x) = sin(2wz). These special cases
result that

g _1)k(og)2k P2 4 '
Z(?mk‘ + 7“)”(122153') = Z (=1)7 (2em)¥ W, ,(n, 25),
k=0 : j=1
g 1)k (97)2k Ln/2] _ _
Z(m@k +1)+ r)”% =m Z (=17 (2em)¥ W, (n,25 + 1).

(2k + 1)!

k=0 j=1

For the Stirling numbers this specializes to

00 _1)k(oq)2k /2 ' 4
> enr BT = S 1 en s 2),
k=0 j=1

0 _1)k(r)2k /2 _ '

> 2k + 1)"M = > (-1 (2m)¥S(n,2j +1).

(2k + 1)!

k=0 j=1
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Another interesting example comes if we take g(x) = ¢ (), where 1 is the
Digamma function [2, p.15]. The derivatives of g(x) are

9" (@) = np" V(@) + 2y (), ifn > 1.
It is also known that
1
¥ (2) (SRR S 4 1) (> 2),
where ¢ is the Riemann zeta function. Moreover, g(1/2) = —v/2 —log(2) and

g'(1/2) = w2/4 — v — 2log(2). From these one can easily prove that for any
n,m>1andr >0

S () ctwomt

=
— %(m ) - (% n 1og(2)) Winr (1, 0)
+ %2 —log(2) g) Wi (n, 1)
+_§ngwm,r<n,j> (-2) #] - v - 25 e+ ],
with the specji;l case
é (j)k (k)"
SLEE +§S(n,j) (—é)jﬂ @ - 10) - e+ ).

which also holds for any n > 1 assuming that the empty sum equals zero.
We call the reader to prove that the sum of the even and odd indexed
second kind Stirling numbers can be expressed as

[n/2]

(oo}

. — (2k)" (2k+1
Z S(n,2j) = cosh(1) Z — sinh(1 Z
3=0 = (2k)! i 2k + 1
[n/2] o0 o0
. 2k+1)" )"
Z S(n,2j+1) —cosh(l)z(@k%_ Z
§=0 k=0 k=0

(These identities appear in an American Mathematical Monthly problem of A.
Fekete [13]. See [1] for a solution, and see the book of Comtet [10, p.225-226]
for a more general setting.)



Vol. 90 (2016) Some identities of the r-Whitney numbers 405

Finally, let C;, be the n-th Catalan number. It is well known that

C(z) == ZCk;Ek = %
k=0

In [15], the author showed that
n!

" (z) = m (an—1(x)

+ bn(2)C(2)),
where

an(z) = Z Cra® (4 —1)"7% and b, (z) = —2 Z Crr12®(4z — 1)"F,
k=0 k=0

with C_; = —1/2. Therefore,

oS .
|

S (mk )" Crtt =" Wi (n, j)(mt)fm (aj_1(t) + b, (t)C(2)).

k=0 =0
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