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1. Introduction

In an inner product space, two vectors are said to be orthogonal when their
inner product vanishes. There are several concepts of orthogonality such as
Roberts, Birkhoff-James, isosceles, Pythagorean, etc, in an arbitrary real
normed space (X, | -||), which can be regarded as generalizations of orthog-
onality in the inner product spaces, see [1,2,8]. Among them we recall the
following ones (see [10]):
(i) Roberts Lp: x Lpyif ||z +ty| = ||z — ty| for all t € R;
(ii) Birkhoff-James Ly: x Ly if ||z|| < ||z + ty|| for all t € R;
(iii) Isosceles Ly ax Ly yif ||z +y| = ||z — yll;
(iv) a-Isosceles Lar: @ Lo y if ||z + ay|| = ||z — ay|| for some fixed a # 0.
Let us consider the space (R?,||||||), where |||(z, y)||| = max{|z|, |y|} for all
(z,y) € R? and let a = % Suppose that z = (1,3),y = (3,—1),2 = (3,1) and
w = (0,3). One can observe that  L; y, but not = L,; y. Further, it is easy
to check that z 1,7 w, but not z 1; w. Thus neither L ; C 1,y nor L,;C 1,
holds in general.
Let € € [0,1) and (H,{:|-)) be a real-valued inner product space. Two
vectors  and y are said to be approximately orthogonal if |(z|y}| < ¢||z]|| ||y|]
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and we write x 1° y. The condition x L° y is equivalent to any one of the
following:

(i) left approxzimate Birkhoff-James orthogonality °L ;:
|z +ty|| > V1 —e2||z| forall teR (see[3]).
(i) right approximate Birkhoff-James orthogonality 15:
|l +tyl|* > || — 2¢]|z|| [[ty]| for all ¢ € R (see [3]).
(iil) left approzimate Roberts orthogonality °L p:

1—+1—¢2
ety = e — 1yl < S ) 4 )

for all ¢ e R (see [13]).
(iv) right approzimate Roberts orthogonality L5:

‘Hx+ty\|2 — ||z —ty||2’ < de|z| |ty for all ¢ e R (see [13]).

Motivated by approximate Birkhoff orthogonality sets as stated in [7], the
definition of approximate Roberts orthogonality sets arises as follows.

Definition 1.1. Let (X, || - ||) be a real normed space and x,y € X. For any
e € [0,1), the approximate Roberts orthogonality set of  with respect to y is
defined as

Fy(z,y) ={s e R y"Ly (x—sy)}.

In the next section, we investigate the geometric properties of approximate
Roberts orthogonality sets.

Inspired by approximate Birkhoff-James orthogonality and approximate
Roberts orthogonality, we propose two definitions of approximate a-isosceles-
orthogonality for some fixed a # 0.

Let € € [0,1) and z,y € X, let us put z°L ; y if

[z + ay|| — [l — ay|l| < e(llz + ay[| + ||z — ayl])

or equivalently,
1—-¢ 1+e¢

- < < — ayl|. 1.1
e —ayll < llw +ayll < 7 lle — ayll (1.1)

We also define x L¢; y if
lz + ay||* — llz — ay|*| < 4e]jz|l||ay]- (1.2)

For §,e € [0,1), a mapping T: H — K, where H and K are inner prod-
uct spaces, is said to be approximately orthogonality preserving, or (J,¢)-
orthogonality preserving, if

r1°y=Tz 1Ty (z,ycH).
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It is known that approximate orthogonality preserving mappings may be non-
linear and discontinuous, but under the additional assumption of linearity, a
mapping 7" is (0,0)-orthogonality preserving if and only if it is a scalar mul-
tiple of an isometry (see [4,12]). The same result is later obtained in [14] by
using a different approach.

In the case when § = 0, Chmieliiiski and Turnsek [4,11] verified the prop-
erties of such a class of mappings. Kong and Cao [9] studied the stability of
approximate orthogonality preserving mappings and some orthogonality equa-
tions as well.

Now, suppose that X’ and ) are real normed spaces and let d,¢ € [0,1). We
say that a linear mapping T: X — ) approximately preserves (a, b)-isosceles-
orthogonality, or is (, €)-(a, b)-isosceles-orthogonality preserving, if

ol y=TzL,; Ty (z,y€ X).

Chmielinski and Wdjcik [5] studied some properties of mappings that are
(0,¢)-(1, 1)-isosceles-orthogonality preserving. Recently the authors of the
present paper [13] studied approximate Roberts orthogonality preserving map-
pings.

In the last section, we consider the class of (0,¢)-(a,b)-isosceles-
orthogonality preserving mappings.

2. Approximate Roberts orthogonality sets

We recall that in a real normed space (X, || - ||) and for € € [0, 1), we say =,y
are approximately Roberts orthogonal, in short z°L 5 y, if

1—¢ 1+
—tyl| < tyll <
1Jrgllﬂﬁ yll < llz +ty| <

We need the following lemma.

3
—1 t e R).
e -ty (teR)

Lemma 2.1. Let (X, - ||) be a real normed space and x,y € X. Then

1-e¢
= eR: —(t+2 < ty|| <
{seri e - 2ol <l + <

for any e € [0,1).

1+e€
T E||x — (t+2s)yl|, t € R}

Proof. Let € € [0,1). By the definition of the approximate Roberts orthogo-
nality set, a number s € R belongs toEFH.H(;U; y) if and only if y°L , (z — sy),
or equivalently, if and only if
1—
1+

€ 1+¢
Sy =tz = syl < lly +tlz — syl < 7 lly —tlz —sy)ll (tER).
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This holds if and only if
1—-¢
1+e¢

t

v- 1= < o+ e

1

v- o) @erao

1+4+¢
1—¢

or equivalently, if and only if

1—¢ 1+¢
[z — 4+ s)yll < llz+ (t—s)yll <

|z —(t+s)yl (¢ €R).

1+4+¢ 1—e¢
The above inequality is valid if and only if
1—¢ 1+

3
lz = (¢ +2s)yll < llw +tyll < T—_llz — (E+2s)yll (¢ €R).

1+¢ 1

O

In the following we state some properties of approximate Roberts orthog-
onality sets.

Theorem 2.2. Suppose that (X,|-||) is a real normed space and x,y € X. Then
Fy(re+py;y) =rF (z,y) +p
for any e € [0,1) and any r,p € R.

Proof. If r = 0, then by Lemma 2.1 we deduce that s € gFH.” (py; y) if and only
if

1—¢ 1+¢€
S —(t+2 < tyl| < —— —(t+2 teR
Ty — @+ 2s)yll < llpy + tyll < T—_llpy — (¢ + 2s)y]l - (£ €R),
or equivalently, if and only if
1—¢ 1+¢€
—1p—(t+2s)| < tI<—Ip—(t+2 teR).
- 29l < lp i < Tl (e 29)] (€ R)
On the other hand, it follows from
1—¢ 1—e¢
—Ip—=(+2p)| = — t| < t
TP~ @2 = o+t < [p+1|
1+4+¢ 1+4+¢
< tl=——Ip—(t+2
S et tl=glp— (t+2p)]
that p GEFH,H(py; y). Now if s GEFH,H(py; y), then for t = —p we get
1—e¢
Tolp - (p+2) < lp+ (-p) =0.

Hence s = p and soEF”'H(py; y) = {p}. Thus

0z +pyy) = °F) (py;y) = {p} = 0°F), (2, y) + p.
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So, we may assume that r # 0. By Lemma 2.1, we have s € EF‘H'H(’I“.Z‘; y) if and
only if

1—¢ 1+¢
—(t+2 < ty|l < —(t+2 teR
e — 20yl < flre+tyl| < T llre — (t+ 2)yll - (£ €R),
or equivalently, if and only if
1—-¢ t S t 1+¢ t s
— | =+2- < -yl < —(-4+2- t e R).
o= (o)l el < 2 - G| eem
This occurs if and only if
1—¢ s 1+e¢ S
—(t+22) g < o+ gl < o= (t+22)y| em),
o= (e 22) gl < le vl < 2 o (e422)y]| cem

or equivalently, s € rEFH,H(:v,y). Therefore EFH.H(r:c; y) = rgFH.”(:c, Y).
Thus s GEFH.H(rx + py;y) if and only if

= rwpy — (¢ 29)y] < -+ py + ty]
1+¢
< T ey — (b4 20)y] (€ ),
or equivalently, if and only if
vz — (¢ =p+ 25yl < llra + (0 + Dy
< - (b -p+ 25yl (ER)

The above double inequality holds if and only if

1—
Tl = (205 =) wll < llra + 19
1+e
< gl =t 2s =Pyl (LeR),

or equivalently, if and only if s € EFH_H(rx; y) + p, namely, s € rEFM(x,y) +
p. O

By Lemma 2.1 and Theorem 2.2 we obtain the following result.

Corollary 2.3. Suppose that (X, -||) is a real normed space and x,y € X. Let
€€ 0,1). Then

£ T'E
FH.H(W;P?J) = 1; F||.||(1’7y)

for any r € R and any nonzero p € R.
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Theorem 2.4. Suppose that (X, || - ||) is a real normed space such that || - || is
induced by an inner product (-|-). Let x,y € X~{0}. Then

) () el
Fj ) = (||y||2 T )

for any < € [0,1), where r = =22l g — (aly)®.

Proof. By the definition of the approximate Roberts orthogonality set, a num-
ber s € R belongs tOEFH_H(x, y) if and only if y°L  (z — sy).
Furthermore, by [13, Theorem 2.7}, y°L  (z — sy) if and only if

- Sy”a

— <
[(ylz — sy)| < 5

or equivalently, if and only if

Ae 2
72 12zl + s*1yll* = 2s(z]y)).-

2 2 4 2
T +s — 2s(x <
(z]y) [yl lylyl® < (i+e

This holds if and only if
2
2 <1—€2> PG (1—52) o Aer ()
1+e? lyl? \1+e2/) = (A +2P2yll>  fyl*”
or equivalently, if and only if
2y lely) (LN Aeal? ()
87— 2s 7 S 2 2\2(112 4 )
llyll l—¢ (T+e2)?(lyl> vl
This, in turn, is valid if and only if
2 2 2
<s <$y>> - (1+€2> de?||=l>  (2[y)? n <1 —€2> (z]y)?
Iyl — \1=¢*/ \(A+)yl* [yl 1+e2) yl* )’
or equivalently, if and only if
2
(S_ <$|y>) R (||33||2 B <w|y>2) _
o>/ — @ =) \lwl*  llyl*
The later inequality holds if and only if

< oV Il 1ol = (el

(z]y)
[lylI?

s —

Lemma 2.5. [6, Proposition 3.2] Let X' be a real normed space and let f, g, h
X — R be mappings such that

2h(2) < f(z+w) + f(z = w) — 2f(w) < 29(2) (2w € X).
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Then, there exists a quadratic mapping Q: X — R, i.e., a mapping satisfying
Qlz+w)+ Q(z —w) =2Q(2) +2Q(w) (z,w € X)

such that
hz) <Q(z) < g(z) (z€X).
Recall that a normed space (X, || - ||) satisfies the J-parallelogram law for
some ¢ € [0,1), if the inequalities
2(1 = 0)l2ll* < llz + wll* + |z — wll* = 2[lwl* < 2(1 + §)]|2||? (2.1)

hold for all z,w € X (see [2]).
In the next result we use some ideas of [6].

Theorem 2.6. Suppose that e € [0,1) and (X, |- is a real normed space such
that || - || satisfies the §-parallelogram law for some 6 € [0,1). Then there exists

a norm ||| - ||| in X coming from an inner product (-|-) such that
{z]y) (z]y) ) . (z]y) (z]y)
1, +r1 ) SR (z,y) C — T2, +ra ),
(|||y||| lylI? I IlyllI* [yl

2+ (=DF(14£?) 2 2
for all .y € X~{0, where ry, = 2N R a2 |1y 12 — (a]y)?,

Proof. By the d-parallelogram law (2.1) we get

2(1 = 8)lIz)1* < llz + wl* + ||z — w]* = 2fw|* < 21 + O)|[2l* (2,0 € X).

Let h(z) = (1 =9)|2]|?, f(2) = ||z]|*> and g(z) = (1 + 6)||z||? for z € X. Then
2h(2) < f(z +w) + f(z—w) —2f(w) < g(z) (5w € X).

By Lemma 2.5, there exists a real quadratic mapping @) satisfying

(=82l £ Q) < 1+ 9)2I? (2 € X), (2.2
It follows from (2.2) that Q(z) > 0 for z € X~ {0} and Q(0) = 0. Let us define
(2f) = 71z +w) ~ Q= — w)]

for all z,w € X. It follows from (2.2) that (:|-) is locally bounded with respect
to each variable. Since @ is quadratic, (-|-) is symmetric and biadditive. Thus
(-|-) is linear in each variable. Hence (:|-) is an inner product in X generating

the norm ||z]|| :== /Q(z), z € X. Now, we can write (2.2) as
VI=dllzl] < [l[2ll| < vI+ 0]z (2 € X)
i.e., the norms || - || and ||| - ||| are equivalent.

Easy computations show thatEF”_H(x, y) C CFHI'IH (z,y) where

VI+6—V1I-6+e(/T+5+V1-9)
VIFo+VI—04e(WV1+6—-V1-0)

(=
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So, by Theorem 2.4, we get

S (ly) fely)
Fia ’y)g<|||y|||2 e )

where
2¢ \/ 2
ry = =y \ [P ylP = (ely)”
(1=l
_ 25+(1+52)
A straightforward computation shows that = 52 T g Hence
2e + (1 +€?) \/
o = el[[2 11y1112 = (ly)*.
VI =02(1 = e2)|||yll[?
Also, we can write (2.2) as
—lalll < lell < == llalll (& € %)
—— |||z z|| € ——|||= x .
V1496 - T V1-4

—/1—-52—
Hence for 0 = ﬁ, we get 9F\\|~|I\<x’y) c “F”.H(x,y), where

1 1 1 1
_m‘m*“m*m)

1 1 1 1
Viss TV T 0 (\/1—5 - \/1+5)
By Theorem 2.4 we deduce that

(xly) ., (x|y) . " N
(i = e ) € “Fuatev

where
260 \/ 2
r = oz VEIP ] = ly)”.
(1 —=62)llylll?
_ 2e—(1+4€?)
Simple computations show that 4 = ¢ and = 02 = iy Thus
2e — (1+¢2
T = 2y |2\/III 2|2 [llyll2 = (zly)*.

VI—02(1—
O

Corollary 2.7. Suppose that (X,] - ||) is a real normed space such that || - || is
induced by an inner product (-|-). If e € [0,1), r,p € R and q € R~{0}, then

r p
EF”.“ (re +py;qz) C 5€F||'H(‘T; z) + QEFH'H(y;Z) (v,y,2 € X).
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Proof. We may assume that z # 0. By Theorem 2.4 and simple computations,
we deduce that

Fye+yz) = {SER: ’s—<x+y|2>

12112

2e 2
ey T AR LR,

IN

) (z|2) 2e 9 2 _ (pl2)2
C {SER. s — ” ”2 < (1 )” H \/HJ;H ||z|| —< ‘Z> }
' (y|z) 2e 9 9 2

="F(@;2) +°F) (y;2) (29,2 € X).
So, the subadditivity property holds. Corollary 2.3 yields that
. (re +py; qz) C °F) (e q2) + °F) (py; g2) = geFH.”(JU% z) + §€F||.\|(y§ z).

O

3. Approximate (a, b)-orthogonality preserving mappings

We start this section with some properties of approximate a-isosceles-orthogonality.
Let ‘H be an inner product space and x,y € H. It is easy to check that

Loy = [{z,y)] < [l]* + llay]?] 3.1

| &
= laf(1 +¢2)

and
z Loy = [(z,y)| <ellz|llyll (3.2)

Furthermore, in an arbitrary normed space simple computations show that
12,;C¢°1L,;, but the converse is not true even in inner product spaces.

Ezample 3.1. Let H be an inner product space and € € [0, 1). Since lim;_ 1' |

2
= 0, there exists ¢y € R such that 1'%;# < Tarcireny - Now for z € H~{0} we
have

e(1+t?)
toz|| < ||lz|? [to] = [(z[toz)| <
ellzll [[tozll < [zl [to| = Kzltoz)] a |(1+€2)|l z||?
€ 2 2
= —(|lz]|* + |[tox||?).

Thus, by (3.1), 2°L,; tox whereas, by (3.2), L%, tox does not hold.

Employing some strategies of [5], we establish now the main result of this
section.
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Theorem 3.2. Let0 < b <a ande,d € [0, 2) LetT: X — Y be a nonzero lin-
ear (0,¢)-(a,b)-isosceles-orthogonality preserving mapping. Then ¢ <

a—b+e(a+b)

aFo—c(a=b) and T is injective, continuous and salisfies

(1+9)(b—cea)
(1 —=9)(a+¢eb)

(1—=9)(a+ed) Yzl
(1+0)(b—eca)’

Yzl < 1Tz <

for all x € X and for all v € [[T], |T|].

Proof. Let ac‘sJ_aI y = Tx°L,; Ty for all z,y € X. Thus

e~ ayl < e+ oyl < Tl ay
T — Q X Qa T —Qa
110 4 Y 5 y
—
1—
T bTyH < ||Tx+bTyH < 7\\Tx—bTyH (3.3)

for all x,y € X.
By replacing x and y by ’H'y and “Z¥, respectively, (3.3) can be written in
the following form:

1-946 1+6
ol < el < 12
—

l1—¢lla—"0 a+b
T Tyl <
e yH—

<1+€
~1-—c¢

a+b a—"b H

a—2>b a+b
5 Tx + 2 Ty

; (34)

for all x,y € X.
Fix y € X with |ly|| = 1. For every x € X with ||z|| = 1, since

1+6
- 1-

x 51l

ol < | 1
—|1—-¢

from (3.4) we get

l—clla—0 146 a+b a+b 1446 a—>b
T Ty| < T T
1+c| 2 (1—5x>+ 2 yH— 2 <1—6$>+ 2 yH
1+e ||a—0 1+ a+b
< T Ty .
=1-¢| 2 (1—5x)+ 2 yH

(3.5)
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It follows from (3.5) that

(a+0b)(1+9) a+b_ (1+46 a—b a—>b
— L |Tz| < T T T
e e e P R
l1+¢el|la—0 1+0 a+b a—b
T T T
S (1—5x>+ y Y|t 1Tyl
(I+e)(a—0b)(1+9) (I+¢e)(a+D)
< — 1Tz|| + —=——=— Tyl
2(1 —¢)(1=9) 2(1—¢)
Thus
(1—=9)(a+eb)
Tx| < ————=||T = =1 3.6
721 < G g 1Tyl (el = sl = 1) (36)

which implies 1 < % (or equivalently, 6 < %&Z*‘Z;) the injectivity
and continuity of T. By (3.6) and passing to the supremum over ||z|| = 1, we
get

(1 =96)(a+eb)

ITz|| < —ll yl (lyll =1).

(1+0)(b—ca)

By the above inequality and passing to the infimum over ||y|| = 1, we obtain
(1—90)(a+eb)
17| < [T1. (3.7)

(140)(b—ea)
Now, let v € [[T],]|T]|] and x € X. Therefore we have from (3.7) that

L e el < SO =D
=0t = T8t o)
< (1+6)(b—5a) (1- )(a+5b)[ 7] |1z
(1-9)(a +€b) (1+9)(b—ea)
(1 —=19)(a+eb)
< I el < G o
(1 —9)(a+eb)
< 0t .

As a consequence of Theorem 3.2, we have the following result.

Corollary 3.3. Let0 < b <aande,d € [0, g) LetT: X — Y be a linear (9, ¢)-

(a, b)-isosceles-orthogonality preserving mapping with 0 < Z;%M < 9.

Then T = 0.
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Corollary 3.4. Let 0 < b < a and €,0 € [O,g). Let T: X — Y be a

nonzero linear (9, ¢)-(a, b)-isosceles-orthogonality preserving mapping. If a lin-

ear mapping S : X — Y satisfies ||S — T|| < O||T||, then ||S| < n[S], where
_ (1-06)2(a+eb)?+0(1—52)(ateb)(b—ea)

n= (146)2(b—ea)?—0(1—62)(a+eb)(b—ca) *

Proof. Let ||S —T| < 0||T||. For any z € X we have

[Sz]| = [|T2][ | < |8z = T=|| < IS =T |z]| < O[T ||,
whence
=0T =[] < [|S=]| = [|T=[| < 6| T[] ||| (3-8)

Since T is a nonzero (4, €)-(a, b)-isosceles-orthogonality preserving mapping,
by Theorem 3.2, for v = ||T||, we have

(1+6)(b—ea) (1 —=96)(a+¢eb)
T <|Tz|| £ ———F+—||T . 3.9
e I < 172l < GraaITl el (39)
Therefore by (3. 8) and (3.9) we get
(14+0)(d (1—10)(a+eb)
-0 )||T < <|\——<+0||T .
(e o) Il < el < (g e +0) 171
(3.10)
For any =,y € X, by (3.10), we therefore have
(1—8)(a+eb) (1+6)(b— ea) -
<|—= —_— .
IsellIol < (G5 gien +6) < ((gr —¢)  Isullel
Now the assertion follows passing to the supremum over ||z|| = 1 and passing
to the infimum over |ly|| = 1 from the above inequality. O
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