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Abstract. We analyse Tabor groups where every element has finite order and we characterise
finite Tabor groups.
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1. Introduction

In this article N = {0, 1, 2, 3, . . .} is the set of natural numbers and N
∗ denotes

N\{0}. Additionally, Z is the set of the integers.

Definition. A (semi)group S is called a Tabor (semi)group if and only if

(T) For all x, y ∈ S there is an element k ∈ N
∗ such that

(x · y)2
k

= x2k · y2k .

For elements x ∈ S and n ∈ N
∗ here x1 := x and xn+1 := xn · x is defined

recursively.

The notion of Tabor (semi)groups comes from [1] since Józef Tabor [6]
pointed out the usefulness of the condition (T) for stability investigations of
functional equations.

In this paper we will study groups that satisfy condition (T). These groups
are called Tabor groups. In [2] the authors showed that groups where the order
of every element is a power of 2, and groups whose elements have odd order,
are Tabor groups.

In general we call a group a torsion group if and only if each of its elements
has finite order. Moreover, an element of a group is called a 2-element if and
only if its order is a power of 2.

In the following section we will investigate the Tabor condition (T) for
torsion groups. It turns out that 2-elements and elements of odd order commute
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in a torsion group that is a Tabor group. Furthermore, the set of all 2-elements
forms a subgroup in such a torsion Tabor group.

According to [2] the stability of some functional equations may require a
stronger condition than (T). The authors investigate (semi)groups S fulfilling

(T̃) For all x, y ∈ S there is an element k ∈ N
∗ such that

(x · y)2
k

= x2k · y2k and (x · y · y)2
k

= x2k · y2k · y2k .

Evidently (semi)groups satisfying (T̃) are Tabor (semi)groups.
In Theorem 2.5 we will show that the converse is true for a torsion group G,
if the set of all elements of odd order forms a subgroup of G.

In the last section we characterise finite Tabor groups and show that they
satisfy (T̃) and are soluble.

2. Torsion Tabor groups

The next definition also repeats some notions from the introduction.

Definition. Let G be a group.
(a) For all g ∈ G we set 〈g〉 := {gi | i ∈ Z} to be the subgroup of G that is

generated by g, and o(g) := |〈g〉|(≤ ∞) is called the order of g.
(b) A group is called a torsion group if and only if each of its elements has

finite order.
(c) An element of a group is called a 2-element if and only if its order is finite

and a power of 2.
(d) A group is called a 2-group if and only if each of its elements is a 2-

element.

Lemma 2.1. Let G be a torsion group satisfying one of the following conditions.
(a) Every element is a 2-element.
(b) Every element has odd order.
Then G satisfies (T̃) and G is a Tabor group.

Proof. This is Theorem 3 and Remark 3 of [2] in the special case of groups. �

Lemma 2.2. If a torsion group G is a Tabor group, then the product of any
two 2-elements is a 2-element.

Proof. Suppose for a contradiction the theorem fails. Let a, b ∈ G be 2-
elements such that a ·b is no 2-element and such that the order of a is minimal;
then a �= 1. By (T) there is an element k ∈ N

∗ such that a2k · b2
k

= (a · b)2
k

.
We see that o(a2k) = max{ o(a)

2k
, 1}, since a is a 2-element. This implies that

a2k is a 2-element of order smaller than o(a). Thus the minimal choice of a

forces a2k ·b2k to be a 2-element. Therefore we obtain a natural number n such
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that 1 = (a2k · b2
k

)2
n

= ((a · b)2
k

)2
n

= (a · b)2
k+n

. This is a contradiction, as
a · b is no 2-element. �
Corollary 2.3. Let G be a torsion group. If G is a Tabor group, then the set
{g ∈ G | g is a 2-element} forms a subgroup of G.

Proof. The result follows from Lemma 2.2 and the subgroup criteria, as inverse
elements of 2-elements are 2-elements. �
Proposition 2.4. If a torsion group G is a Tabor group then any two elements
y and b, such that y has odd order and b is a 2-element, commute.

Proof. Let G be a torsion group and suppose that G is a Tabor group. Let
further y, b ∈ G be elements such that y has odd order and o(b) = 2n for some
natural number n.

If n = 0, then b = 1 and we observe y · b = b · y.
Assume now n ≥ 1 and that any elements x and a such that x has odd order
and o(a) = 2m with m < n commute.

As G is a Tabor group there is some k ∈ N
∗ such that (by)2

k

= b2
k ·y2k . From

gcd(o(y), 2k) = 1 = gcd(o(y), 2n) we obtain that y−1 ∈ 〈y〉 = 〈y2k〉 = 〈y2n〉.
If we have k ≥ n, then we see that b2

k

= (b2
n

)2
k−n

= 12
k−n

= 1 and hence
(by)2

k

= b2
k · y2k = y2k . Thus we deduce y−1 ∈ 〈y2k〉 = 〈(by)2k〉 ≤ 〈by〉 in this

case.
In the other case, if k < n, we obtain o(b2

k

) = 2n−k and n − k < n.
As y2k has odd order, the elements b2

k

and y2k commute by our assumption.
Therefore we conclude for l := n − k that

(by)2
n

=
(
(by)2

k
)2n−k

=
(
b2

k · y2k
)2l

=
(
b2

k
)2l

·
(
y2k

)2l

= b2
n · y2n = y2n .

In particular we see y−1 ∈ 〈y〉 = 〈y2n〉 = 〈(by)2n〉 ≤ 〈by〉.
In both cases we have shown that y−1 ∈ 〈by〉. From the fact that cyclic

groups are abelian we deduce

b · y =
(
y · y−1

) · (b · y) = y · (y−1 · (b · y)
)
= y · ((b · y) · y−1

)

= y · (b · (
y · y−1

))
= y · b.

Finally induction yields the assertion of the proposition. �
Theorem 2.5. Let G be a torsion group and let K := {x ∈ G | o(x) is odd} be
a subgroup of G. Then the following conditions are equivalent.
(a) G is a Tabor group.
(b) G ∼= K × T , where T := {g ∈ G | g is a 2-element} is a subgroup of G.
(c) G fulfils condition (T̃).

Proof. Let first G be a Tabor group. Then T := {g ∈ G | g is a 2-element}
is a subgroup of G by Corollary 2.3. Furthermore, Proposition 2.4 yields that
G ∼= K × T .
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Let now T := {g ∈ G | g is a 2-element} be a subgroup of G and G ∼= K×T .
Let further g, h be elements of G. Then we obtain elements a, b ∈ T and
x, y ∈ K such that g = a · x and h = b · y. Additionally, each of a and b
commutes with both x and y, as we have G ∼= K × T .

Let m = o(x) · o(y) · o(xy) · o(xy2). Then m is an odd number. Analogously
to the proof of Theorem 3 in [2] we deduce from Fermat’s Theorem (c.f. The-
orem 6–1 of [4]) that m divides 2ϕ(m) − 1, where ϕ denotes Euler’s function.
We set k := ϕ(m). Then all of o(x), o(y), o(xy) and o(xy2) divide 2k −1. Thus
we have for all z ∈ {x, y, xy, xy2} that: z2

k

= z2
k−1 · z = 1 · z = z.

Since T is a 2-group, we see that o(a) ·o(b) ·o(ab) ·o(ab2) ·2 =: 2n is a power
of 2. Hence we have a2n = b2

n

= (ab)2
n

= (ab2)2
n

= 1.
Altogether, we see for all c ∈ {a, b, ab, ab2} that c2

kn

= (c2
n

)2
(k−1)n

= 1 and
for all z ∈ {x, y, xy, xy2} we have:

z2
kn

=
(
z2

k
)2k(n−1)

= z2
k(n−1)

=
(
z2

k
)2k(n−2)

= · · · = z2
k·1

= z.

We finally conclude that

(g · h)2
kn

= (ax · by)2
kn

= (ab · xy)2
kn

= (ab)2
kn · (xy)2

kn

= 1 · xy

= 1 · x · 1 · y = a2kn · x2kn · b2
kn · y2kn

= (ax)2
kn · (by)2kn

= g2
kn · h2kn

and
(
gh2

)2kn

= (ax · by · by)2
kn

=
(
ab2 · xy2

)2kn

=
(
ab2

)2kn

· (
xy2

)2kn

= 1 · xy2

= 1 · x · 1 · y · 1 · y = a2kn · x2kn · b2
kn · y2kn · b2

kn · y2kn

= (ax)2
kn · (by)2kn · (by)2kn

= g2
kn · h2kn · h2kn

.

Thus (T̃) is satisfied.
Finally, if G fulfills (T̃), then obviously G is a Tabor group. �

3. The finite case

Lemma 3.1 (Cauchy’s Theorem). Let G be a finite group and let p be a prime
dividing |G|. Then G contains an element of order p.

Proof. This is 3.2.1 of [5]. �

Theorem 3.2. Let G be a finite group.
Then G is a Tabor group if and only if G ∼= K × T where K is a subgroup of
G, such that |K| is odd, and T is a 2-subgroup of G.
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Proof. Let G be a Tabor group. Then T := {g ∈ G | g is a 2-element} is a
2-subgroup of G by Corollary 2.3. Moreover, if g ∈ G and b ∈ T such that
o(b) = 2n, then (g−1 · b · g)2n = g−1 · b2n · g = g−1 · g = 1. Thus, bg := g−1 · b · g
is a 2-element and hence an element of T .

Therefore, T is a normal subgroup of G and from Lemma 3.1 we deduce
that |T | is a power of 2.

Suppose for a contradiction that |G/T | is even. Then Lemma 3.1 provides
an element Tg ∈ G/T such that o(Tg) = 2. This implies Tg · Tg = T and so
g2 ∈ T . We obtain from the definition of T that also g ∈ T and deduce that
o(Tg) = 1, which is a contradiction. It follows that |T | and |G/T | are relatively
prime.
These are exactly the conditions for the Theorem of Schur-Zassenhaus 6.2.1
of [5]. According to this theorem, the group G has a subgroup K such that
K ∩ T = {1} and G = K · T . We conclude that |K| = |G/T | is odd and
Proposition 2.4 yields G ∼= T × K.

Let now G have a subgroup K, with |K| odd, and a 2-subgroup T such
that G ∼= K × T . Then we conclude K = {x ∈ G | o(x) is odd} and T is the
set of all 2-elements. Thus we may apply Theorem 2.5 to obtain that G is a
Tabor group. �
Corollary 3.3. Finite Tabor groups satisfy condition (T̃ ).

Proof. This follows directly from Theorem 2.5 and Theorem 3.2. �
Corollary 3.4. Finite Tabor groups are soluble.

Proof. Let G be a finite Tabor group.
Then Theorem 3.2 yields that G contains a subgroup K, with |K| odd, and a
2-subgroup T such that G ∼= K × T . From 5.1.3 and 5.1.6(iii) of [5] we obtain
that T is soluble. Additionally K is soluble by the Odd-Order-Theorem [3].
Finally 6.1.6 of [5] implies the assertion. �
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