

Tabor groups with finiteness conditions

IMKE TOBORG

Abstract. We analyse Tabor groups where every element has finite order and we characterise finite Tabor groups.

Mathematics Subject Classification. Primary 20D99, 20F99; Secondary 39B82.

Keywords. Tabor groups, Torsion groups, Finite groups.

1. Introduction

In this article $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ is the set of natural numbers and \mathbb{N}^* denotes $\mathbb{N}\setminus\{0\}$. Additionally, $\mathbb Z$ is the set of the integers.

Definition. A (semi)group S is called a **Tabor (semi)group** if and only if

(T) For all
$$
x, y \in S
$$
 there is an element $k \in \mathbb{N}^*$ such that

$$
(x \cdot v)^{2^k} = x^{2^k} \cdot v^{2^k}.
$$

 $(x \cdot y)^{2^k} = x^{2^k} \cdot y^{2^k}.$
For elements $x \in S$ and $n \in \mathbb{N}^*$ here $x^1 := x$ and $x^{n+1} := x^n \cdot x$ is defined recursively.

The notion of Tabor (semi)groups comes from $[1]$ $[1]$ since Jozef Tabor $[6]$ pointed out the usefulness of the condition (T) for stability investigations of functional equations.

In this paper we will study groups that satisfy condition (T). These groups are called **Tabor groups**. In [\[2\]](#page-4-1) the authors showed that groups where the order of every element is a power of 2, and groups whose elements have odd order, are Tabor groups.

In general we call a group a **torsion group** if and only if each of its elements has finite order. Moreover, an element of a group is called a 2**-element** if and only if its order is a power of 2.

In the following section we will investigate the Tabor condition (T) for torsion groups. It turns out that 2-elements and elements of odd order commute

in a torsion group that is a Tabor group. Furthermore, the set of all 2-elements forms a subgroup in such a torsion Tabor group.

According to [\[2\]](#page-4-1) the stability of some functional equations may require a stronger condition than (T). The authors investigate (semi)groups S fulfilling
(\tilde{T}) For all $x, y \in S$ there is an element $k \in \mathbb{N}^*$ such that

$$
(\tilde{T}) \text{ For all } x, y \in S \text{ there is an element } k \in \mathbb{N}^* \text{ such that}
$$

$$
(x \cdot y)^{2^k} = x^{2^k} \cdot y^{2^k} \text{ and } (x \cdot y \cdot y)^{2^k} = x^{2^k} \cdot y^{2^k} \cdot y^{2^k}.
$$

Evidently (semi)groups satisfying (\tilde{T}) are Tabor (semi)groups.

In Theorem [2.5](#page-2-0) we will show that the converse is true for a torsion group G , if the set of all elements of odd order forms a subgroup of G.

In the last section we characterise finite Tabor groups and show that they satisfy (T) and are soluble.

2. Torsion Tabor groups

The next definition also repeats some notions from the introduction.

Definition. Let G be a group.

- (a) For all $g \in G$ we set $\langle g \rangle := \{ g^i \mid i \in \mathbb{Z} \}$ to be the subgroup of G that is generated by g, and $o(g) := |\langle g \rangle| \leq \infty$ is called the **order** of g.
- (b) A group is called a **torsion group** if and only if each of its elements has finite order.
- (c) An element of a group is called a 2**-element** if and only if its order is finite and a power of 2.
- (d) A group is called a 2**-group** if and only if each of its elements is a 2 element.

Lemma 2.1. *Let* G *be a torsion group satisfying one of the following conditions.*

- (a) *Every element is a* 2*-element.*
- (b) *Every element has odd order.*

Then G satisfies (T) and *G is a Tabor group.*

Proof. This is Theorem 3 and Remark 3 of [\[2\]](#page-4-1) in the special case of groups. \Box

Lemma 2.2. *If a torsion group* G *is a Tabor group, then the product of any two* 2*-elements is a* 2*-element.*

Proof. Suppose for a contradiction the theorem fails. Let $a, b \in G$ be 2elements such that $a \cdot b$ is no 2-element and such that the order of a is minimal; then $a \neq 1$. By (T) there is an element $k \in \mathbb{N}^*$ such that $a^{2^k} \cdot b^{2^k} = (a \cdot b)^{2^k}$.
We see that $a^{(a^2k)}$ mean $(a^{\otimes a})$ 11 since a is a 2 element. This implies the

We see that $o(a^{2^k}) = \max\{\frac{o(a)}{2^k}, 1\}$, since a is a 2-element. This implies that a^{2^k} is a 2-element of order smaller than $o(a)$. Thus the minimal choice of a
former a^{2^k} b^{2^k} to be a 2 element. Therefore we obtain a natural number a such forces $a^{2^k} \cdot b^{2^k}$ to be a 2-element. Therefore we obtain a natural number n such that $1 = (a^{2^k} \cdot b^{2^k})^{2^n} = ((a \cdot b)^{2^k})^{2^n} = (a \cdot b)^{2^{k+n}}$. This is a contradiction, as $a \cdot b$ is no 2-element. $a \cdot b$ is no 2-element.

Corollary 2.3. Let G be a torsion group. If G is a Tabor group, then the set $\{a \in G \mid a \text{ is a 2-element} \}$ forms a subgroup of G ${g \in G \mid g \text{ is a 2-element} \}$ *forms a subgroup of G.*

Proof. The result follows from Lemma [2.2](#page-1-0) and the subgroup criteria, as inverse elements of 2-elements are 2-elements. \Box

Proposition 2.4. *If a torsion group* G *is a Tabor group then any two elements* y *and* b*, such that* y *has odd order and* b *is a* ²*-element, commute.*

Proof. Let G be a torsion group and suppose that G is a Tabor group. Let further $y, b \in G$ be elements such that y has odd order and $o(b)=2^n$ for some natural number n.

If $n = 0$, then $b = 1$ and we observe $y \cdot b = b \cdot y$.

Assume now $n \geq 1$ and that any elements x and a such that x has odd order and $o(a)=2^m$ with $m < n$ commute.

As G is a Tabor group there is some $k \in \mathbb{N}^*$ such that $(by)^{2^k} = b^{2^k} \cdot y^{2^k}$. From $gcd(o(y), 2^k) = 1 = gcd(o(y), 2^n)$ we obtain that $y^{-1} \in \langle y \rangle = \langle y^{2^k} \rangle = \langle y^{2^n} \rangle$.

If we have $k > n$, then we see that $h^{2^k} = (h^{2^n})^{2^{k-n}} = 1^{2^{k-n}} = 1$ and have

If we have $k \ge n$, then we see that $b^{2^k} = (b^{2^n})^{2^{k-n}} = 1^{2^{k-n}} = 1$ and hence
 $b^{2^k} - b^{2^k} - c^{2^k} - c^{2^k}$. Thus we deduce $c^{-1} \in (c^{2^k}) - (b^{2^k}) \in (b^{2^k})$ in this $(by)^{2^k} = b^{2^k} \cdot y^{2^k} = y^{2^k}$. Thus we deduce $y^{-1} \in \langle y^{2^k} \rangle = \langle (by)^{2^k} \rangle \le \langle by \rangle$ in this case.

In the other case, if $k < n$, we obtain $o(b^{2^k}) = 2^{n-k}$ and $n - k < n$.) = 2^{n-k} and $n - k < n$. As y^{2^k} has odd order, the elements b^{2^k} and y^{2^k} commute by our assumption.
Therefore we conclude for $l := n - k$ that Therefore we conclude for $l := n - k$ that

$$
(by)^{2^n} = ((by)^{2^k})^{2^{n-k}} = (b^{2^k} \cdot y^{2^k})^{2^l} = (b^{2^k})^{2^l} \cdot (y^{2^k})^{2^l} = b^{2^n} \cdot y^{2^n} = y^{2^n}.
$$

In particular we see $y^{-1} \in \langle y \rangle = \langle y^{2^n} \rangle = \langle (by)^{2^n} \rangle \le \langle by \rangle$.
In both cases we have shown that $y^{-1} \in \langle hy \rangle$. From the

In both cases we have shown that $y^{-1} \in \langle by \rangle$. From the fact that cyclic groups are abelian we deduce

$$
b \cdot y = (y \cdot y^{-1}) \cdot (b \cdot y) = y \cdot (y^{-1} \cdot (b \cdot y)) = y \cdot ((b \cdot y) \cdot y^{-1})
$$

$$
= y \cdot (b \cdot (y \cdot y^{-1})) = y \cdot b.
$$

Finally induction yields the assertion of the proposition. \Box

Theorem 2.5. *Let* G *be a torsion group and let* $K := \{x \in G \mid o(x) \text{ is odd}\}\$ *be a subgroup of* G*. Then the following conditions are equivalent.*

(a) G *is a Tabor group.*

(b)
$$
G \cong K \times T
$$
, where $T := \{ g \in G \mid g \text{ is a 2-element} \}$ is a subgroup of G.

(c) *G* fulfils condition (\tilde{T}) *.*

Proof. Let first G be a Tabor group. Then $T := \{q \in G \mid q$ is a 2-element} is a subgroup of G by Corollary [2.3.](#page-2-1) Furthermore, Proposition [2.4](#page-2-2) yields that $G \cong K \times T$.

Let now $T := \{g \in G \mid g \text{ is a 2-element}\}\$ be a subgroup of G and $G \cong K \times T$. Let further g, h be elements of G. Then we obtain elements $a, b \in T$ and $x, y \in K$ such that $g = a \cdot x$ and $h = b \cdot y$. Additionally, each of a and b commutes with both x and y, as we have $G \cong K \times T$.

Let $m = o(x) \cdot o(y) \cdot o(xy) \cdot o(xy^2)$. Then m is an odd number. Analogously to the proof of Theorem 3 in [\[2](#page-4-1)] we deduce from Fermat's Theorem (c.f. The-orem 6–1 of [\[4](#page-5-1)]) that m divides $2^{\varphi(m)}$ – 1, where φ denotes Euler's function. We set $k := \varphi(m)$. Then all of $o(x)$, $o(y)$, $o(xy)$ and $o(xy^2)$ divide $2^k - 1$. Thus we have for all $z \in \{x, y, xy, xy^2\}$ that: $z^{2^k} = z^{2^k-1} \cdot z = 1 \cdot z = z$.
Since T is a 2-group we see that $o(a) \cdot o(b) \cdot o(ab) \cdot o(ab^2) \cdot z = ?$

Since T is a 2-group, we see that $o(a) \cdot o(b) \cdot o(ab) \cdot o(ab^2) \cdot 2 =: 2^n$ is a power of 2. Hence we have $a^{2^n} = b^{2^n} = (ab)^{2^n} = (ab^2)^{2^n}$

Alteration, we see for all $a \in \{a, b, ab, ab^{2}\}$, the of 2. Hence we have $a^{2^n} = b^{2^n} = (ab)^{2^{n'}} = (ab^2)^{2^n} = 1$.

Altogether, we see for all $c \in \{a, b, ab, ab^2\}$ that $c^{2^{kn}} = (c^{2^n})^{2^{(k-1)n}} = 1$ and all $z \in \{x, y, xy, xy^2\}$ we have for all $z \in \{x, y, xy, xy^2\}$ we have:

$$
z^{2^{kn}} = (z^{2^k})^{2^{k(n-1)}} = z^{2^{k(n-1)}} = (z^{2^k})^{2^{k(n-2)}} = \cdots = z^{2^{k \cdot 1}} = z.
$$

We finally conclude that

$$
(g \cdot h)^{2^{kn}} = (ax \cdot by)^{2^{kn}} = (ab \cdot xy)^{2^{kn}}
$$

= $(ab)^{2^{kn}} \cdot (xy)^{2^{kn}} = 1 \cdot xy$
= $1 \cdot x \cdot 1 \cdot y = a^{2^{kn}} \cdot x^{2^{kn}} \cdot b^{2^{kn}} \cdot y^{2^{kn}}$
= $(ax)^{2^{kn}} \cdot (by)^{2^{kn}} = g^{2^{kn}} \cdot h^{2^{kn}}$

and

$$
(gh^{2})^{2^{kn}} = (ax \cdot by \cdot by)^{2^{kn}} = (ab^{2} \cdot xy^{2})^{2^{kn}}
$$

= $(ab^{2})^{2^{kn}} \cdot (xy^{2})^{2^{kn}}$
= $1 \cdot x \cdot 1 \cdot y \cdot 1 \cdot y$
= $(ax)^{2^{kn}} \cdot (by)^{2^{kn}} \cdot (by)^{2^{kn}} = g^{2^{kn}} \cdot h^{2^{kn}} \cdot h^{2^{kn}} \cdot h^{2^{kn}} \cdot b^{2^{kn}} \cdot y^{2^{kn}}$

Thus (\dot{T}) is satisfied.

Finally, if G fulfills (T), then obviously G is a Tabor group. \Box

3. The finite case

Lemma 3.1 (Cauchy's Theorem). *Let* G *be a finite group and let* p *be a prime dividing* [|]G|*. Then* G *contains an element of order* p*.*

Proof. This is 3.2.1 of [\[5](#page-5-2)].

Theorem 3.2. *Let* G *be a finite group.*

Then G *is a Tabor group if and only if* $G \cong K \times T$ *where* K *is a subgroup of* G *, such that* $|K|$ *is odd, and* T *is a* 2*-subgroup of* G *.*

 \Box

Proof. Let G be a Tabor group. Then $T := \{g \in G \mid g \text{ is a 2-element}\}\$ is a 2-subgroup of G by Corollary 2.3. Moreover, if $g \in G$ and $b \in T$ such that 2-subgroup of G by Corollary [2.3.](#page-2-1) Moreover, if $g \in G$ and $b \in T$ such that $a(b) = 2^n$ then $(a^{-1} \cdot b \cdot a)^{2^n} = a^{-1} \cdot b^{2^n} \cdot a = a^{-1} \cdot a = 1$ Thus $b^g := a^{-1} \cdot b \cdot a$ $o(b)=2^n$, then $(g^{-1} \cdot b \cdot g)^{2^n} = g^{-1} \cdot b^{2^n} \cdot g = g^{-1} \cdot g = 1$. Thus, $b^g := g^{-1} \cdot b \cdot g$
is a 2-element and hence an element of T is a 2-element and hence an element of T.

Therefore, T is a normal subgroup of G and from Lemma [3.1](#page-3-0) we deduce that |T| is a power of 2.

Suppose for a contradiction that $|G/T|$ is even. Then Lemma [3.1](#page-3-0) provides an element $Tg \in G/T$ such that $o(Tg) = 2$. This implies $Tg \cdot Tg = T$ and so $g^2 \in T$. We obtain from the definition of T that also $g \in T$ and deduce that $o(Tg) = 1$, which is a contradiction. It follows that |T| and $|G/T|$ are relatively prime.

These are exactly the conditions for the Theorem of Schur-Zassenhaus 6.2.1 of $[5]$. According to this theorem, the group G has a subgroup K such that $K \cap T = \{1\}$ and $G = K \cdot T$. We conclude that $|K| = |G/T|$ is odd and Proposition [2.4](#page-2-2) yields $G \cong T \times K$.

Let now G have a subgroup K, with |K| odd, and a 2-subgroup T such that $G \cong K \times T$. Then we conclude $K = \{x \in G \mid o(x) \text{ is odd}\}\$ and T is the set of all 2-elements. Thus we may apply Theorem [2.5](#page-2-0) to obtain that G is a Tabor group. Tabor group.

Corollary 3.3. *Finite Tabor groups satisfy condition* (\tilde{T}) *.*

Proof. This follows directly from Theorem [2.5](#page-2-0) and Theorem [3.2.](#page-3-1) \Box

Corollary 3.4. *Finite Tabor groups are soluble.*

Proof. Let G be a finite Tabor group.

Then Theorem [3.2](#page-3-1) yields that G contains a subgroup K, with $|K|$ odd, and a 2-subgroup T such that $G \cong K \times T$. From 5.1.3 and 5.1.6(iii) of [\[5](#page-5-2)] we obtain that T is soluble. Additionally K is soluble by the Odd-Order-Theorem [\[3\]](#page-4-2).
Finally 6.1.6 of [5] implies the assertion Finally $6.1.6$ of $[5]$ implies the assertion.

Acknowledgements

The author thanks Prof. Dr. Peter Volkmann for the introduction into Tabor groups and his helpful advice for this article.

References

- [1] Badora, R., Przebieracz, B., Volkmann, P.: Stability of the Pexider functional equation. Ann. Math. Silesianae **24**, 7–13 (2010)
- [2] Badora, R., Przebieracz, B., Volkmann, P.: On Tabor groupoids and stability of some functional equations. Aequat. Math. **87**, 165–171 (2014)
- [3] Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pac. J. Math. **13**, 775–1029 (1963)
- [4] Griffin, H.: Elementary theory of numbers. McGraw-Hill, New York (1954)
- [5] Kurzweil, H., Stellmacher, B.: The theory of finite groups. Springer, New York (2004)
- [6] Tabor, J.: Remark 18, 22nd International Symposium on Functional Equations, Oberwolfach 1984. Aequat. Math. **29**, 96 (1985)

Imke Toborg Institut für Mathematik Universität Koblenz-Landau Fortstraße 7 76829 Landau Germany e-mail: toborg@uni-landau.de

Received: June 25, 2015