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Abstract. In this paper we study graph parameters related to vertex-edge domination, where a
vertex dominates the edges incident to it as well as the edges adjacent to these incident edges.
First, we present new relationships relating the ve-domination to some other domination
parameters, answering in the affirmative four open questions posed in the 2007 PhD thesis
by Lewis. Then we provide an upper bound for the independent ve-domination number in
terms of the ve-domination number for every nontrivial connected K1,k-free graph, with
k ≥ 3, and we show that the independent ve-domination number is bounded above by the
domination number for every nontrivial tree. Finally, we establish an upper bound on the
ve-domination number for connected C5-free graphs, improving a recent bound given for
trees.
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1. Introduction

Let G = (V,E) be a graph with order n = |V |. The open neighborhood of
a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood
is N [v] = N(v) ∪ {v}. For a set S ⊆ V , the open neighborhood is N(S) =
∪v∈SN(v), the closed neighborhood is N [S] = N(S) ∪ S, and G[S] is the
subgraph induced by the vertices of S. The private neighborhood of a vertex u
with respect to S is defined as pn[u, S] = {v ∈ V | N [v]∩S = {u}}. The degree
of a vertex v is the cardinality of its open neighborhood. A vertex of degree
one is called a leaf, and its neighbor is called a support vertex. We denote the
star consisting of one central vertex and k leaves by K1,k. If a graph G does
not contain an induced subgraph that is isomorphic to some graph F , then we
say that G is F -free. In particular, if F = K1,3, we say that G is claw-free. Let
diam(G) denote the diameter of a graph G.

A vertex u ∈ V is said to ve-dominate an edge vw ∈ E if
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1. u = v or u = w, that is, u is incident to vw, or
2. uv or uw is an edge in G, that is, u is incident to an edge that is adjacent

to vw.

In other words, a vertex u ve-dominates all edges incident to any ver-
tex in N [u]. A set S ⊆ V is a vertex-edge dominating set (or simply a ve-
dominating set) if for every edge e ∈ E, there exists a vertex v ∈ S such
that v ve-dominates e. The property for a subset of V to be ve-dominating is
superhereditary, meaning that every superset of a ve-dominating set is also a
ve-dominating set. A ve-dominating set S is, therefore, minimal if, for every
vertex v ∈ S, S −{v} is not a ve-dominating set in G. The minimum cardinal-
ity of a ve-dominating set of G is called the vertex-edge domination number
γve(G) and the maximum cardinality of a minimal ve-dominating set of a
graph G is called the upper vertex-edge domination number (or simply the
upper ve-domination number) and is denoted by Γve(G). A set S ⊂ V is in-
dependent if no two vertices in S are adjacent. A set S ⊆ V is an independent
vertex-edge dominating set (or simply an independent ve-dominating set) if S
is both independent and ve-dominating. The independent vertex-edge domi-
nation number , ive(G), of G is the minimum cardinality of an independent
ve-dominating set and the upper independent vertex-edge domination number
βve(G) is the maximum cardinality of a minimal independent ve-dominating
set of G.

A vertex u ∈ S ⊆ V has a private edge e = vw ∈ E (with respect to a set
S), if:

1. u is incident to e or u is adjacent to either v or w, and
2. for all vertices x ∈ S − {u}, x is neither incident to e nor adjacent to v or

w.

In other words, u ve-dominates the edge e and no other vertex in S ve-
dominates e.

A set S is a vertex-edge irredundant set (or simply a ve-irredundant set) if
every vertex v ∈ S has a private edge. The property for a subset of V to be
ve-irredundant is hereditary, meaning that every subset of a ve-irredundant
set is also a ve-irredundant set. A ve-irredundant set S is, therefore, maximal
if, for every vertex v /∈ S, S ∪ {v} is not ve-irredundant. The vertex-edge
irredundance number irve(G) is the minimum cardinality of a maximal ve-
irredundant set in G, and the upper vertex-edge irredundance number IRve(G)
is the maximum cardinality of a ve-irredundant set in G.

The concepts of vertex-edge domination and edge-vertex domination were
introduced by Peters [5] in his 1986 PhD thesis. These two concepts were also
studied in the 2007 PhD thesis by Lewis ([3, 2007]), where many new results
were established, which led to the 2010 paper by Lewis et al. [4].
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Throughout this paper, we only consider nontrivial connected graphs, called
ntc graphs. We first show that every minimal ve-dominating set is a ve-
irredundant set.

Proposition 1. Let S be a ve-dominating set of an ntc graph G. Then S is a
minimal ve-dominating set if and only if every vertex v ∈ S has at least one
private edge with respect to S.

Proof. Suppose that S is a minimal ve-dominating set of G. Then for every
vertex v ∈ S, S −{v} does not ve-dominate G. Hence, there is an edge e which
is not ve-dominated by S − {v}, implying that e is a private edge of v with
respect to S.

Conversely, assume that S is a ve-dominating set of G such that every
vertex of S has a private edge with respect to S. If S is not minimal, then
there is a vertex v ∈ S such that S − {v} ve-dominates G. It follows that
each edge of G is ve-dominated by S − {v}, contradicting the property of S.
Therefore, S is a minimal ve-dominating set. �

Lewis et al. [4] proved the following property for ve-irredundant sets.

Proposition 2. (Lewis et al. [4]) Every vertex in a ve-irredundant set S of an
ntc graph G has a private neighbor in V − S.

Corollary 3. Every vertex in a minimal ve-dominating set S of an ntc graph
G has a private neighbor in V − S.

The six ve parameters are related by the following chain of inequalities,
established by Lewis et al. [4].

Theorem 4. (Lewis et al. [4]) For any ntc graph G of order n,

irve(G) ≤ γve(G) ≤ ive(G) ≤ βve(G) ≤ Γve(G) ≤ IRve(G) ≤ n/2.

The chain of inequalities in Theorem 4 is a variant of the well-known dom-
ination chain, first observed by Cockayne et al. [1]:

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G),

where ir(G) and IR(G) denote the lower and upper irredundance numbers of
a graph G, γ(G) and Γ(G) denote the lower and upper domination numbers
of G, and i(G) and β0(G) denote the independent domination number and
vertex independence number of G, respectively.

In his PhD thesis, Lewis [3] raised the following four questions. For an ntc
graph G of order n.

1. Is IRve(G) + γ(G) ≤ n?
2. Is Γve(G) + i(G) ≤ n?
3. Is IR(G) + γve(G) ≤ n?
4. Is Γ(G) + ive(G) ≤ n?
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In this paper, we answer, in the affirmative, each of these four questions. We
present an upper bound for the independent ve-domination number in terms
of the ve-domination number for every ntc K1,k-free graph, with k ≥ 3, and
we show that the independent ve-domination number is bounded above by
the domination number for every nontrivial tree. Finally, we provide an upper
bound on the ve-domination number for connected C5-free graphs, improving
a recent bound for trees by Krishnakumari et al. [2].

2. Answers to questions 1–4

In this section we prove two theorems, which answer the four open questions
listed in Sect. 1. The first result relates the upper irredundance number to
the independent ve-domination number for ntc graphs. Moreover, we provide
a characterization of the graphs attaining this bound.

We recall that a set S ⊂ V of vertices is called irredundant if for every
vertex v ∈ S, N [v] − N [S − {v}] 	= ∅, that is, every vertex v ∈ S has a private
neighbor with respect to S. The maximum cardinality of an irredundant set
is called the upper irredundance number of G and is denoted IR(G). For any
parameter μ(G) associated to a graph property P, we refer to a set of vertices
with Property P and cardinality μ(G) as a μ(G)-set.

Our first result provides positive answers to Questions 3 and 4 from Sect. 1.

Theorem 5. Let G be an ntc graph of order n. Then IR(G)+ ive(G) ≤ n, with
equality if and only if G is a star.

Proof. Let D be an IR(G)-set. Then pn[v,D] 	= ∅ for all v ∈ D. Since G is
an ntc graph, every vertex in D has a neighbor in V − D, and so, V − D
ve-dominates G. Let A be a maximal independent set in G[V − D] and B =
V −(D∪A). Observe that A is an independent ve-dominating set of G[V −D].

Now if B = ∅, then since A = V − D, it follows that A is an independent
ve-dominating set of G. Hence, ive(G) ≤ |A| = |V |− |D|, and the result holds.

Thus we may assume that B 	= ∅. Let A′ = N(A) ∩ D, let B′ be the set
of isolated vertices in G[D − A′], and let C = D − (A′ ∪ B′). Note that every
edge e incident to a vertex in B′ is also incident to a vertex in A′ ∪ B, and so,
e is ve-dominated by A.

Now if C = ∅, then A is an independent ve-dominating set of G. Hence,
ive(G) ≤ |A| < |V | − |D|, and IR(G) + ive(G) < n.

Thus we may assume that C 	= ∅. Since the subgraph induced by C has no
isolated vertices, every vertex of C has a private neighbor in B with respect to
D. Hence, |C| ≤ |B|. Let C ′ be a maximal independent set in G[C]. Clearly,
|C ′| < |C| and C ′ ∪ A is an independent ve-dominating set of G. Therefore,
ive(G) ≤ |A ∪ C ′| < |A| + |C| ≤ |A| + |B| = |V − D|, and so IR(G) + ive
(G) < n.
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Suppose now that IR(G) + ive(G) = n, and let D be an IR(G)-set. Then
ive(G) = |V − D|. Following the same notation as above, we deduce that
B = ∅. Hence, V − D = A is an ive(G)-set and B′ = C = ∅. Note that since
B′ = C = ∅, it follows that A′ = N(A) ∩ D = D. Observe that if some vertex
u ∈ D has at least two neighbors in V − D, then ((V − D) − N(u)) ∪ {u} is
an independent ve-dominating set of G of cardinality smaller than |V − D| =
ive(G); contradiction. Hence, each vertex of D has exactly one neighbor in
V − D. Let D2 be the set of isolated vertices in G[D] and D1 = D − D2.
We first assume that D1 	= ∅. Since every vertex of D1 has a neighbor in D1,
its private neighbors are in V − D. Thus, each vertex in D1 has exactly one
neighbor, its private neighbor, in V −D. Since V −D is independent and G is
connected, we deduce that D2 = ∅. Now let x and y be two adjacent vertices
of D1, and let x′ and y′ be their private neighbors in V −D, respectively. Then
((V − D) − {x′, y′}) ∪ {x} is an independent ve-dominating set of cardinality
smaller than V −D; a contradiction. Hence, D1 = ∅. It follows that D = D2 	= ∅
and that D is an independent set. Now since G is connected, every vertex of
D has exactly one neighbor in V − D, and V − D = A is an ive(G)-set, we
conclude that |A| = 1. Therefore, G is a star.

The converse, if G is a star of order n, then IR(G)+ive(G) = n−1+1 = n,
is obvious. �

Since for any graph G, γve(G) ≤ ive(G) and Γ(G) ≤ IR(G), we obtain the
following inequalities as a corollary to this theorem, answering Questions 3
and 4.

Corollary 6. If G is an ntc graph of order n, then IR(G) + γve(G) ≤ n and
Γ(G) + ive(G) ≤ n, with equality if and only if G is a star.

We are now ready to settle Questions 1 and 2. In fact, we prove a stronger
result, namely that IRve(G) + i(G) ≤ n for ntc graphs G of order n.

Theorem 7. If G is an ntc graph of order n, then IRve(G) + i(G) ≤ n.

Proof. Let D be a ve-irredundant set of G of maximum cardinality IRve(G).
By Proposition 2, each vertex of D has at least one private neighbor in V −D.
Hence, V −D dominates D. Let A be a maximal independent set of G[V −D],
B = (V − D) − A and C = D − N(A). Note that A dominates B. Now if
C = ∅, then A dominates G, and the result holds. Hence, assume that C 	= ∅.
By Proposition 2, every vertex of C has a private neighbor in B, implying that
|C| ≤ |B|. Now if C ′ is a maximal independent set of G[C], then A ∪ C ′ is
a maximal independent set of G. Therefore, i(G) ≤ |A| + |C ′| ≤ |A| + |C| ≤
|A| + |B| = |V | − |D|. �

Since γ(G) ≤ i(G) and Γve(G) ≤ IRve(G), the affirmative answers to
Questions 1 and 2 follow as corollaries.
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Corollary 8. If G is an ntc graph of order n, then IRve(G) + γ(G) ≤ n and
Γve(G) + i(G) ≤ n.

3. Upper bounds on ive(G) and γve(G)

In this section, we give upper bounds on γve(G) and ive(G). By Theorem 4,
we have that ive(G) ≤ n/2 for any ntc graph of order n. Using Corollary 3, we
show that this bound is strict.

Proposition 9. If G is an ntc graph of order n ≥ 3, then γve(G) ≤ ive(G) <
n/2.

Proof. Let ive(G) = k, and let D be an ive(G)-set. If n = 3, then ive(G) = 1,
and the result holds. Thus, let n ≥ 4, and assume, to the contrary, that
ive(G) ≥ n/2. Theorem 4 implies that ive(G) = k = n/2. Thus, G has even
order and |D| = |V − D| = k ≥ 2. Since D is a minimal ve-dominating set,
by Corollary 3, every vertex in D has a private neighbor in V − D. Since
|V − D| = |D| = k, every vertex in D has exactly one private neighbor in
V − D, implying that every vertex in V − D has exactly one neighbor in D.
Moreover, since G is connected and n ≥ 4, the induced subgraph G[V − D] is
connected. Let S be a maximal independent set of G[V − D]. Since G[V − D]
is an ntc graph, |S| < |V − D| = k. But since every edge of G is incident to
a vertex of V − D, it follows that S is an independent ve-dominating set of G
with cardinality less than k = ive(G); a contradiction. �

Our next result gives a bound on ive(G) for K1,k-free graphs G.

Theorem 10. If G is an ntc graph with no induced subgraph isomorphic to K1,k

for k ≥ 3, then

ive(G) ≤ (k − 2)γve(G) − (k − 3).

Proof. Let D be a γve(G)-set, and let A be a maximal independent set of
G[D] and B = D − A. If B = ∅, then D = A is both ve-dominating and
independent, and so ive(G) = γve(G) = |D|. Clearly, the result holds, since
ive(G) = γve(G) ≤ (k − 2)γve(G) − (k − 3), for k ≥ 3.

Next, assume that B 	= ∅. Note that A is an independent ve-dominating
set of G[D]. Let B′ = N(B) − N [A] and B′′ be a maximal independent set
in G[B′]. Since A is an independent dominating set of G[D], we have that
B′ ⊆ V − D. Further, since D is a minimum ve-dominating set, we know by
Corollary 3 that every vertex in B (and in A) has a private neighbor in V −D,
with respect to the set D. Thus, B′, and hence, B′′, is not empty. Since G does
not contain K1,k as induced subgraph and every vertex of B has at least one
neighbor in A, each vertex of B has at most (k−2) neighbors in B′′. It follows
that |B′′| ≤ (k − 2)|B|. Now using the fact that B′′ ∪ A is an independent
ve-dominating set of G, we obtain:



Vol. 90 (2016) Vertex-edge domination in graphs 361

ive(G) ≤ |A| + |B′′|
≤ |A| + (k − 2)|B|
≤ |A| + (k − 2)|D| − (k − 2)|A|
≤ (k − 2)|D| − (k − 3)|A|
≤ (k − 2)γve(G) − (k − 3).

As a consequence of Theorem 10, we obtain the following corollary. �

Corollary 11. If G is an ntc claw-free graph, then γve(G) = ive(G).

Obviously, γve(G) ≤ γ(G) for every graph G. We show that the domination
number is also an upper bound on the independent ve-domination number for
any nontrivial tree.

Theorem 12. For every nontrivial tree T , γve(T ) ≤ ive(T ) ≤ γ(T ).

Proof. We use induction on the order n of T to show that ive(T ) ≤ γ(T ).
Clearly, the result holds if n ∈ {2, 3} establishing the base cases. Assume that
every nontrivial tree T ′ of order n′ < n satisfies ive(T ′) ≤ γ(T ′). Let T be a
tree of order n. Since for stars (where ive(T ) = γ(T ) = 1) and double stars
(trees consisting of two stars with an edge joining the centers of the two stars,
for which ive(T ) = 1 < γ(T ) = 2) the result holds, we may assume that T has
diameter at least four.

Root T at a vertex r of maximum eccentricity, that is, r is at distance
diam(T ) ≥ 4 from another vertex of T . Let u be a support vertex at maximum
distance from r and v be the parent of u in the rooted tree. Let D be a γ(T )-
set that contains all support vertices of T ; such a γ(T )-set always exists. We
distinguish between two cases.

Case 1. v has degree at least three. Then v is a support vertex or v has
another child besides u that is a support vertex. In any case, v is dominated by
D − {u}. Let T ′ be the tree obtained from T by removing u and its adjacent
leaves. Then D − {u} dominates T ′, and so, γ(T ′) ≤ γ(T ) − 1. Also, if S
is any ive(T ′)-set, then S plus any leaf neighbor of u is an independent ve-
dominating set of T , implying that ive(T ) ≤ ive(T ′)+1. Now by induction, we
have ive(T ′) ≤ γ(T ′). Using the previous inequalities, we obtain the desired
inequality.

Case 2. v has degree two. Let T ′ be the tree obtained from T by removing
u and all of its neighbors (including v). Since diam(T ) ≥ 4, the subtree T ′ is
nontrivial. Noting that D −{u} dominates T ′, we have that γ(T ′) ≤ γ(T )− 1.
Also, since any ive(T ′)-set can be extended to an independent ve-dominating
set of T by adding u to it, we obtain ive(T ) ≤ ive(T ′) + 1. By induction, we
have ive(T ′) ≤ γ(T ′), and so ive(T ) ≤ γ(T ). �

We note that a characterization of trees with equal ve-domination and
domination numbers is given in [4].
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In a recent paper, Krishnakumari et al. [2] established an upper bound of
n/3 on the ve-domination number of any tree of order n and characterized the
family of trees attaining this upper bound. The authors define this family F
of trees T = Tk, as follows. Let T1 be the path P3. For k ≥ 2, Ti+1 can be
obtained recursively from Ti by adding a path P3 and joining one of its leaves
to a vertex of Ti that is adjacent to a path P2 or P3. We note that in [2], a
vertex v is said to be adjacent to a path Pn if there is a neighbor of v, say x,
such that the subtree resulting from T by removing the edge vx and which
contains the vertex x as a leaf, is a path Pn.

Theorem 13. (Krishnakumari et al. [2]) If T is a tree of order n ≥ 3, then
γve(T ) ≤ n/3, with equality if and only if T ∈ F .

The P2-corona of a graph G is the graph of order 3|V (G)| obtained from
G by attaching a distinct path P2 to each vertex v ∈ V by adding an edge
between v and a leaf of its corresponding path P2. We note that any tree
T = Tk, for k ≥ 2, in the family F given by Krishnakumari et al. [2], has the
property that every vertex in Tk ∈ F is exactly one of: (i) a leaf, (ii) a support
vertex of degree two, or (iii) a vertex having exactly one support vertex in
its neighborhood, that is, adjacent to exactly one path P2. Since T1 = P3

can be also considered as a P2-corona of P1, the trees of F are precisely, the
P2-coronas of trees.

Corollary 14. A tree T of order n satisfies γve(T ) = n/3 if and only if T is a
P2-corona of some tree H.

Our next observation improves the previous upper bound. Let L(T ) and
S(T ) denote the set of leaves and support vertices of a tree T , respectively. For
every tree T of order n ≥ 3 and diam(T ) ≥ 3 (in other words, T is not a star),
let T ∗ be the tree obtained from T by removing all except one leaf adjacent to
every support vertex of T . Clearly, T ∗ has order n∗ = n−|L(T )|+ |S(T )| > 3,
and γve(T ) = γve(T ∗).

Observation 15. If T is a tree of order n ≥ 3 and diam(T ) ≥ 3, then γve(T ) ≤
(n − |L(T )| + |S(T )|)/3, with equality if and only if T ∗ is the P2-corona of
some nontrivial tree H.

Proof. Let T be a nontrivial tree of order n and diam(T ) ≥ 3. Clearly, n ≥ 4.
Now consider the tree T ∗. Obviously, γve(T ) = γve(T ∗). Since T ∗ has order
n∗ > 3, by Theorem 13, γve(T ∗) ≤ n∗/3 with equality if and only if T ∗ is the
P2-corona of some nontrivial tree. �

Our final result shows that n/3 is also an upper bound on the ve -domination
number of connected C5-free graphs of order n ≥ 3, which improves the bound
given in [2]. According to Proposition 1, every vertex v in a minimal ve-
dominating set of a graph G has at least one private edge. Such private edges
may be incident with either v or a vertex adjacent to v. To aid our discussion,
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we say that a vertex v in a γve(G)-set is a Type-1 vertex if all its private edges
are incident with v, and is a Type-2 vertex, otherwise. �

Theorem 16. If G is a connected C5-free graph of order n ≥ 3, then γve(G) ≤
n/3.

Proof. Among all γve(G)-sets, let D be one with as few isolated vertices in G[D]
as possible. We shall show that |V − D| ≥ 2|D|, which proves the theorem.

By Proposition 1, every vertex of D has at least one private edge. We note
that it is possible for a private edge of u to be adjacent to a private edge of v
for two vertices u and v in D. Let Di be the subset of D containing the Type-i
vertices for i ∈ {1, 2}. Then D = D1 ∪D2 and D1 ∩D2 = ∅. Suppose a vertex,
say u, of D1 has a neighbor in D. Then D − {u} is a ve-dominating set with
cardinality less than γve(G); a contradiction. Thus, we conclude that D1 is an
independent set and no vertex of D1 has a neighbor in D2.

For a vertex x ∈ D, let pn2(x,D) be the set of vertices of V − D that are
incident to a private edge of x but not incident to a private edge of another
vertex in D−{x}. Note that pn[x,D]∩(V −D) ⊆ pn2(x,D), and so, Corollary 3
implies that |pn2(x,D)| ≥ 1 for every x ∈ D. Our goal is to build a set Sx

for each x ∈ D, such that |Sx| ≥ 2 and Sx ∩ Sy = ∅ for all y ∈ D − {x}. To
build such a set, begin with Sx = pn2(x,D). If |Sx| ≥ 2 for all x ∈ D, then we
are finished. Suppose that there exists an x ∈ D such that |Sx| = 1, and let
Sx = {x′}. We show that either we have a contradiction, or that we can add a
vertex v to Sx, that is, we can replace Sx with Sx ∪ {v} such that Sx ∩ Sy = ∅
for all y ∈ D − {x}.

We consider two cases.
Case 1. x ∈ D1. Since x has no neighbor in D, either x is a leaf of G or

x has a common neighbor, say w, with another vertex v ∈ D. Assume first
that x is a leaf in G. Since G is connected, x′ has another neighbor z, and
necessarily, z ∈ V − D. Moreover, since x is a Type-1 vertex, the edge x′z is
ve-dominated by a neighbor of z in D. But then D′ = (D − {x}) ∪ {z} is a
γve(G)-set with fewer isolated vertices in G[D′] than in G[D], contradicting
our choice of D.

Hence, we may assume that x is not a leaf, that is, x and v share a common
neighbor w 	= x′. Since x ∈ D1, it follows that w ∈ V − D. Again, (D − {x}) ∪
{w} is a γve(G)-set with fewer isolated vertices in the subgraph it induces than
D has, contradicting our choice of D.

Case 2. x ∈ D2. Then x has a private edge uv such that u and v are in
V −D, that is, at least one of u and v is a private neighbor of x with respect to
D. If u 	= x′ and v 	= x′, then |Sx| ≥ 2, a contradiction. Hence, we may assume
that all the private edges of x are incident to x′. Consider the private edge
x′v of x. Since v 	∈ Sx implies that v 	∈ pn2(x,D), it follows that v is incident
to a private edge of at least one vertex in D − {x}. Let Y = {y1, ..., yt} be
the subset of D − {x} such that each yi ∈ Y has a private edge incident to v.
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By our previous comments, Y 	= ∅. Let vwi be a private edge of yi for each
yi ∈ Y . Note that v 	∈ N(yi) for any yi ∈ Y , because x′v is a private edge of
x. Thus, wi ∈ pn[yi,D] and yi ∈ D2.

We first show that for all yi ∈ Y , either |Syi
| ≥ 2 or we can add a vertex

to Syi
creating a new set that has no vertex in common with any Sa where

a ∈ D − {yi}. Suppose, to the contrary, that |Syi
| = 1, that is, Syi

= {wi},
for some yi ∈ Y . Assume first that there exists a vertex z ∈ V − D for which
N(z) ∩ D = {x, yi}. Note that z 	∈ Sa for any a ∈ D. Moreover, every edge
incident to z is ve-dominated by both x and yi, so none of these edges are
private edges for any vertex in D. Hence, we can add z to Syi

forming a new
Syi

, and so, |Syi
| ≥ 2 and Syi

∩ Sa = ∅ for all a ∈ D − {yi}. Moreover, since
N(z) ∩ D = {x, yi}, z is not a candidate to be added to another Syj

for j 	= i.
Thus, if |Syi

| = 1, then we may assume that no such vertex z exists.
Note that x is not adjacent to v or to wi, and yi is not adjacent to v

or x′. If x′ is adjacent to wi, then (D − {x, yi}) ∪ {x′} is a ve-dominating
set of G with cardinality less than γve(G), a contradiction. Hence, we may
assume that x′ and wi are not adjacent. But then if x and yi are adjacent, the
subgraph induced by {x, x′, v, wi, yi} is a cycle C5, a contradiction. Hence, x
is not adjacent to yi. Now, (D−{x, yi})∪{v} is a ve-dominating set of G with
cardinality less than γve(G), a contradiction.

Thus, for each yi ∈ Y , we have a set Syi
such that |Syi

| ≥ 2 and Syi
∩Sa = ∅

for all a ∈ D − {yi}. Moreover, we note that v 	∈ Sa for any a ∈ D − {x}.
In other words, if |Sx| = |Sy| = 1 for vertices x and y in D, then no private
edge of x is adjacent to a private edge of y. Now we can add v to Sx so that
|Sx| ≥ 2 and Sx ∩ Sa = ∅ for all a ∈ D − {x}.

In both cases, we have demonstrated that for each vertex in D, we can
count at least two distinct vertices in V − D, that is, |V − D| ≥ 2|D|. Thus,
γve(G) ≤ n/3. �

The following corollaries are immediate from Theorem 16.

Corollary 17. If G is a bipartite graph of order n ≥ 3, then γve(G) ≤ n/3.

Corollary 18. (Krishnakumari et al. [2])If T is a tree of order n ≥ 3, then
γve(T ) ≤ n/3.

Observe that the C5-free condition is necessary for Theorem 16. For a simple
example, consider the graph C5 for which γve(C5) = 2 > 5/3. However, this
is the only example of a graph that we have found for which the bound of
Theorem 16 does not hold. We leave it as an open problem to either prove
that the theorem holds for all ntc graphs of order n ≥ 6, or give a family of
graphs that are counterexamples. It is also worth mentioning that the bound
given in Theorem 16 is not valid for the independent vertex-edge domination
number ive(G). Indeed, let G be the graph obtained from k (k ≥ 4) paths
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P5 by adding all edges between the centers of the paths. Clearly, G is C5-free
having n = 5k vertices and ive(G) = 2k − 1 > n/3.

4. Open questions

We conclude this paper with a list of open questions.

1. Characterize all nontrivial trees T with ive(T ) = γ(T ).
2. In Theorem 5, we prove that if G is an ntc graph of order n, then IR(G) +

ive(G) ≤ n. This raises the following question.
Is IR(G) + βve(G) ≤ n?

3. Let S ⊂ V . A vertex v ∈ S is called an enclave in S if N [v] ⊆ S. Let
Ψ(G) equal the maximum cardinality of a set S containing no enclave. It
is known that for any graph G, IR(G) ≤ Ψ(G).

Is Ψ(G) + ive(G) ≤ n?
4. In Theorem 7, we prove that if G is an ntc graph of order n, then IRve(G)+

i(G) ≤ n. This raises the following question:
Is Γve(G) + β0(G) ≤ n?

5. In Theorem 7, when is the equality IRve(G) + i(G) = n achieved?
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