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Abstract. The Cauchy functional equation is not only the most important single functional
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1. Introduction

We are concerned with the fundamental functional equation, the Cauchy Func-
tional Equation (CFE)

K(x + y) = K(x) + K(y), k(xy) = k(x)k(y), (CFE)

to give both the additive and multiplicative versions. For background, see the
standard work by Kuczma [28]. This is known to be crucial to the theory
of regular variation, in both its Karamata form (see Ch. 1 of [6], BGT be-
low) and its Bojanić–Karamata/de Haan form (BGT Ch. 3, [13], or the recent
[12]).1 A close study of these involves a certain functional equation ([5], BGT),
which we call here the Goldie functional equation [(GFE)—see below].2 One
of the themes of Kuczma’s book is the interplay between functional equations

1 For historical remarks, see the full version of this paper: arXiv:1405.3947.
2 The equation occurs first in joint work by the first author and Goldie; the first author is
happy to confirm that the argument is in fact due to Goldie, whence the name.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-015-0350-6&domain=pdf
http://arxiv.org/abs/1405.3947
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and inequalities; he focusses particularly on the Cauchy functional equation
and Jensen’s inequality. Even more closely linked to (CFE) is the functional
inequality of subadditivity ; see [28, Ch. 16] for classical background, [7,8,12]
for more recent results, developed further here. The Goldie functional equa-
tion (GFE) has its counterpart in the Goldie functional inequality [(GFI)—see
below].

The theme of the present paper is that one begins with the functional in-
equality, imposes a suitable side-condition (which serves to ‘give the inequal-
ity the other way’) and deduces the corresponding functional equation, which
under suitable conditions one is able to solve. The functional equation and
functional inequality we have in mind originate in the study of

F ∗(u) := lim supx→∞(F (u + x) − F (x))/g(x)

(cf. BGT 3.1.1), where in the prototypical case below we will have

g(x) ≡ eγx.

They are those mentioned above:

F ∗(u + v) � eγvF ∗(u) + F ∗(v) (∀u, v ∈ R) (GFI)

(BGT (3.2.5), cf. (3.0.11)), and

F ∗(u + v) = eγvK(u) + F ∗(v) (∀u ∈ A, v ∈ R) (GFE)

[see BGT (3.2.7)] with A an additive subgroup (of R). For the relationship here
for γ �= 0 between F ∗ and its Goldie kernel K, indeed in greater generality, see
Theorem 3 in Sect. 2 below, and also Eq. (GBE-P) in Sect. 4; cf. [11, Prop. 1]
for the additive kernel in the case γ = 0, which reduces (GFI) to subadditivity
on R+, the context there. (GFI) captures an asymptotic relation in functional
form, and so is key to establishing the Characterization Theorem of regular
variation (BGT §1.4). Our focus here is on the extent to which the universal
quantifiers occurring in the functional inequalities and functional equations
under study can be weakened, in the presence of suitable side-conditions. The
prototypical side-condition here is the Heiberg–Seneta condition

lim sup
u↓0

F (u) � 0, (HS(F))

due to Heiberg [24] in 1971, and Seneta [34] in 1976 (BGT, Th. 3.2.4). This
condition, best possible here (cf. [BGT, §1.3], [11]), is what is needed to reduce
(GFI) to (GFE).

Two related matters occur here. One is the question of quantifier weakening
above. This, together with (HS), hinges on the algebraic nature of the set on
which one can assert equality. The second, automatic continuity, relates to
the extent to which a solution of (GFE) is continuous (and hence easily of
standard form—see BGT Ch. 3), or (in the most important case γ = 0) an
additive function becomes continuous, and so linear. This is the instance of
the subject of automatic continuity relevant here. Automatic continuity has
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a vast literature, particularly concerning homomorphisms of Banach algebras,
for which see [20,21]. See also Helson [25] for Gelfand theory, Ng and Warner
[29] and Hoffmann-Jørgensen [26]. The crux here is the dichotomy between
additive functions with a hint of regularity, which are then linear, and those
without, which are pathological; for background and references on dichotomies
of this nature, Hamel pathologies and the like, see [9].

One of our themes here and in [11] is quantifier weakening : one weakens
a universal quantifier ∀ by thinning the set over which it ranges. In what
follows we will often have two quantifiers in play, and will replace “∀u ∈ A”
by “(u ∈ A)” , etc., a convenient borrowing from mathematical logic.

One theme that this paper and [11] have in common is the great debt that
the subject of regular variation, as it has developed since [5] and BGT, owes
to the Goldie argument. It is a pleasure to emphasize this here. This argument
originated in a study of Frullani integrals, important in many areas of analysis
and probability ([5, I, II.6]; cf. BGT §1.6.4, [11, §1]).

When one specializes from functional inequalities to functional equations
matters can be taken further. While our methods here are necessarily analytic,
relying on ideas from the dynamics of continuous flows (see e.g. [4,30]), there
one can use algebraic methods. We refer to resulting algebraicization to the
companion paper [32], where these equations are transformed into homomor-
phisms, and to alternative approaches standard in the literature of functional
equations, for instance [1] and the recent [19].

2. Generalized Goldie equation

We begin by generalizing (GFE) by replacing the exponential function on the
right by a more general function g, the auxiliary function. To avoid trivial
solutions, without loss of generality for this section g(0) = 1. We further
generalize by weakening the quantifiers, allowing them to range over a set A

smaller than R. It is appropriate to take A as a dense (additive) subgroup.
(This is motivated by asymptotic analysis and additivity in the domain of the
operation limx→∞.) The functional equation in the result below, written there
(GA), may be thought of as the second form of the Goldie functional equation
above. As we see in Theorem 1 below, the two coincide in the principal case
of interest—compare the insightful Footnote 3 of [13]. The notation Hγ below
(originating in [13]) is from BGT §3.1.7 and 3.2.1, implying H0(t) ≡ t. (See
Sect. 4 for generalizations.) The identity

uv − u − v + 1 ≡ (1 − u)(1 − v)

(relevant to the circle group operation of [32]) gives that (1−e−γx)/γ is subad-
ditive on R+ := (0,∞) for γ � 0, and superadditive on R+ for γ � 0. We will
need Theorem 1 below, extending BGT Lemma 3.2.1. The Eq. (GA) below
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when A = R is a special case of a generalized Pexider equation studied by
Aczél [1]. In Theorem 1 (CEE) is the Cauchy exponential equation.

Theorem 1. ([13, (2.2)], BGT Lemma 3.2.1; cf. [2]). For g with g(0) = 1, if
K �≡ 0 satisfies

K(u + v) = g(v)K(u) + K(v) (u, v ∈ A), (GA)

with A a dense subgroup—then:
(i) the following is an additive subgroup on which K is additive:

Ag := {u ∈ A : g(u) = 1};

(ii) if Ag �= A and K �≡ 0, there is a constant κ �= 0 with

K(t) ≡ κ(g(t) − 1) (t ∈ A), (*)

and g satisfies

g(u + v) = g(v)g(u) (u, v ∈ A). (CEE)

(iii) So for A=R and g locally bounded at 0 with g �=1 except at 0 : g(x) ≡ e−γx

for some constant γ �= 0, and so K(t) ≡ cHγ(t) for some constant c,
where

Hγ(t) := (1 − e−γt)/γ.

Proof. Recall (see [28, §18.5]) that the Cauchy nucleus of K,

NK := {x ∈ A : K(x + a) = K(x) + K(a)(∀a ∈ A)},

is either empty or a subgroup (for a proof see [28, Lemma 18.5.1], or the related
[3, Ch. 6, proof of Th. 1]). If x ∈ NK , choosing a ∈ A with K(a) �= 0 yields
g(x) = 1 from

K(a + x) = K(a) + K(x) = g(x)K(a) + K(x).

Conversely, K(u + v) = K(u) + K(v) for v ∈ Ag and any u ∈ A, so v ∈ NK :
Ag = NK . So Ag is a subgroup as 0 ∈ Ag; in particular K is additive on Ag,
so K(0) = 0.

As in [13, 2.2], BGT Lemma 3.2.1, and [2, Th. 1]: as K(u + v) = K(v + u),

g(v)K(u) + K(v) = g(u)K(v) + K(u) : K(u)[g(v) − 1] = K(v)[g(u) − 1].

For A �= Ag, choose v ∈ A\Ag and take κ := K(v)/(g(v) − 1); then

K(u) = κ[g(u) − 1] (u ∈ A).

For K not identically zero, there is u ∈ A with K(u) �= 0; then κ �= 0 and
u /∈ Ag. Substitution (for u, v ∈ A) yields first

κ[g(u + v) − 1] = κg(v)[g(u) − 1] + κ[g(v) − 1],

and then, for κ �= 0, (CEE) on A.
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If A = R and Ag = {0}, either K ≡ 0 (and c = 0), or κ �= 0. Then (CEE)
and local boundedness yield g(x) ≡ e−γx for some γ (see [3, Ch. 3], or [28,
§13.1]), and γ �= 0 (otherwise g ≡ 1). Now take c := −κ/γ. �

Remarks. 1. Above, for g Baire/measurable, by the Steinhaus subgroup the-
orem (see e.g. [9, Th. S] for its general combinatorial form), Ag = R iff Ag

is non-negligible, in which case K is additive. The additive case is studied
in [11] and here we have passed to Ag = {0} as a convenient context. But
more is true. As an alternative to the last remark, for Ag negligible: by
the Fubini/Kuratowski–Ulam Theorem [33, Ch. 14–15], the Eq. (CEE)
above holds for quasi all (u, v) ∈ R

2; consequently, by a theorem of Ger
([22], or [28, Th.18.71]), there is a homomorphism on A ‘essentially ex-
tending’ log g to A. From here, again for g Baire/measurable, g(x) = e−γx

for some γ; similarly also, if the kernel (null space) K of K is negligible,
since, for some κ, as above K(x) ≡ κ(g(x) − 1)(x /∈ K).

2. In Theorem 1, omitting (i), one may restrict to A+ := A ∩ R+; in (ii) g
then satisfies (CEE) on A+, and so in (iii) with A = R, by an extension
theorem of Aczél and Erdős [28, Th. 13.5.3], g is still exponential.

Theorem 2 below is a variant of Theorem 1 relevant to regular variation.
Here there is no quantifier weakening to A, and so we need (GR) in place of
(GA). The result is an immediate corollary of the Lemma below and classi-
cal results concerning (CFE). It will be convenient in what follows to write
‘positive/non-negative’ for a function to mean ‘positive/non-negative on R+’
(whatever its domain), unless otherwise stated.

Theorem 2. If both K and g in (GR) are positive/non-negative with g �= 1
except at 0, then either K ≡ 0, or g(x) ≡ e−γx for some γ �= 0.

Our positivity assumption above, motivated by regular variation, yields
continuity at one point at least (via monotonicity).

Lemma. If both K and g in (GR) are non-negative with g �= 1 except at 0, then
either K ≡ 0, or both are continuous.

Proof of the Lemma. Suppose that K �≡ 0. Writing w = u + v,

K(w) − K(v) = g(v)K(w − v),

so K is (weakly) increasing and so continuous at some point y > 0 say. Now
K(0) = 0 (as g(0) = 1), so g(y) > 0, as otherwise taking v = y above yields
K(w) ≡ K(y) ≡ K(0) = 0. But for any h

K(y + h) − K(y) = g(y)K(h),

and so, since g(y) > 0, K is continuous at 0, as K(0) = 0. Hence K is contin-
uous at any point t > 0 (by a similar argument with t for y). Likewise so is g:
fix w > t, so that K(w − t) > 0. Then
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g(t) = [K(w) − K(t)]/K(w − t),

and the right-hand side is continuous in t for K(w − t) > 0. �

Proof of Theorem 2. As in Th. 1 (*), K(x) = κ[g(x) − 1] for all x, for some
constant κ; if κ �= 0, then, as there, g satisfies (CEE). By the Lemma, g is
continuous on R+. So again g is e−γx, as at the end of the proof of Theorem 1.

�

In (GR) above for x, γ � 0 one has g(x) = e−γx � 1 on R+; generally, if
g(x) � 1 on R+ and K positive satisfies (GR), then for u, v � 0

K(u + v) � K(u) + K(v),

and so K is subadditive on R+.
We now prove a converse—our main result. Here, in the context of subaddi-

tivity, the important role of the Heiberg–Seneta condition, discussed in Sect. 1,
is performed by a weaker side-condition: right-continuity at 0, a consequence,
established in [5]—see also BGT §3.2.1 and [10]. In Theorem 3 this yields co-
incidence on R+ of a continuous function, G(u) below, with a (scalar multiple
of a) function that was assumed right-continuous at 0. The bulk of the proof
is devoted to establishing right-continuity everywhere. A further quantifier
weakening occurs in (ii) below.

Theorem 3. (Generalized Goldie Theorem). If for A a dense subgroup,

(i) F ∗ : R+ → R is positive and subadditive with F ∗(0+) = 0;
(ii) F ∗ satisfies the weakened Goldie equation

F ∗(u + v) = g(v)K(u) + F ∗(v) (u ∈ A)(v ∈ R+)

for some non-zero K satisfying (GA) with g continuous on R and
Ag = {0};

(iii) F ∗ extends K on A:

F ∗(x) = K(x) (x ∈ A),

so that in particular F ∗ satisfies (GA), and indeed

F ∗(u + v) = g(v)F ∗(u) + F ∗(v) (u ∈ A)(v ∈ R+);

—then for some c > 0, γ � 0

g(x) ≡ e−γx and F ∗(x) ≡ cHγ(x) = c(1 − e−γx)/γ (x ∈ R+).

Proof. Put

G(x) =
∫ x

0

g(t)dt : G′(x) = g(x).
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By continuity of g and Th. 1, K(u+) = K(u) for all u ∈ A, and so K(0+) = 0.
Also note that F ∗ is right-continuous (and F ∗(u+) = K(u)) on A, and on R+

satisfies

lim sup
v↓0

F ∗(u + v) � F ∗(u) + F ∗(0+) = F ∗(u).

Now proceed as in the Goldie proof of BGT §3.2.1. For any u, u0 with u0 ∈ A

and u0 > 0, define i = i(δ) ∈ Z for δ > 0 so that (i−1)δ � u < iδ, and likewise
for u0 define i0(δ). As Ag = {0}, put c0 := K(u0)/[g(u0) − 1]. For m ∈ N

F ∗(mδ) − F ∗((m − 1)δ) = g((m − 1)δ)K(δ),

as mδ ∈ A, so that on summing

F ∗(i(δ)δ) = K(δ)
i∑

m=1

g((m − 1)δ), (**)

as F ∗(0) = 0. Note that as δ → 0,

δ

i∑
m=1

g((m − 1)δ) →
∫ u

0

g(x)dx (RI)

(for ‘Riemann Integral’). Without loss of generality G(u0) �= 0. (Indeed, oth-
erwise g = 0 on A ∩ R+ and so on R+, so that F ∗(u+) = 0 on A ∩ R+ ;
this together with F ∗(u + v) = F ∗(v) contradicts positivity of F ∗ on R+.)
Taking limits as δ → 0 through positive δ ∈ A with K(δ) �= 0 (see below for
K(δ) = 0), we then have, as G(u0) �= 0,

F ∗(i(δ)δ)
F ∗(i0(δ)δ)

=
K(δ)
K(δ)

∑i
m=1 g((m − 1)δ)∑i0
m=1 g((m − 1)δ)

=
δ
∑i

m=1 g((m − 1)δ)

δ
∑i0

m=1 g((m − 1)δ)
→ G(u)

G(u0)
.

Here by right-continuity at u0

lim F ∗(i0(δ)δ) = F ∗(u0) = K(u0) = c0[g(u0) − 1] > 0.

So

F ∗(i(δ)δ) → G(u) · F ∗(u0)/G(u0).

Put c1 := c0[g(u0) − 1]/G(u0). As before, as u0 ∈ A,

F ∗(u) � lim supF ∗(i(δ)δ) = G(u) · F ∗(u0)/G(u0)
= G(u)K(u0)/G(u0) = G(u)c0[g(u0) − 1]/G(u0) = c1G(u).

Now specialize to u ∈ A, on which, by the above, F ∗ is right-continuous.
Letting i(δ)δ ∈ A decrease to u, the inequality above becomes an equation:

K(u) = F ∗(u) = c1G(u).

This result remains valid with c1 = 0 if K(δ) = 0 for δ ∈ A∩I for some interval
I = (0, ε), as then F ∗(u) = 0 by right-continuity on A, because F ∗(i(δ)δ) = 0
for δ ∈ A ∩ I, by (**).
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Now for arbitrary u ∈ R, taking v ↑ u with v ∈ A, we have (as u−v > 0) that

F ∗(u) = F ∗(u − v + v) = K(v)g(u − v) + F ∗(u − v) (by (ii), as v ∈ A)
= c1G(v)g(u − v) + F ∗(u − v) → c1G(u),

by continuity of G. Thus for all u ∈ R,

F ∗(u) = c1G(u).

Thus by (*) of Theorem 1, for some κ

c1G(u) = F ∗(u) = K(u) = κ[g(u) − 1] (u ∈ A).

So, by density and continuity on R+ of g,

κ[g(u) − 1] = c1G(u) (u ∈ R+).

So g is indeed differentiable; differentiation now yields

c1g(u) = κg′(u) : g′(u) = (c1/κ)g(u) (u ∈ R+),

as κ �= 0 (otherwise K(u) ≡ 0, contrary to assumptions). So with γ := −c1/κ

g(u)=e−γu and G(u)=Hγ(u) : F ∗(u)=c1G(u)=c1[1 − e−γu]/γ (u ∈ R).

As (1 − e−γx)/γ is subadditive on R+ iff γ � 0 (cf. before Th. 1), c1 > 0. �

Remark. We use above the sequence sn = nδ, rather than the Beck sequence
of Sect. 3 below which is not appropriate here, but see below in Theorem 7 for
a Beck-sequence adaptation of the current argument.

Theorem 4. If g,K are positive, F ∗ is subadditive on R+ with F ∗(0+) = 0,
and

F ∗(u + v) = g(v)K(u) + F ∗(v) (u ∈ A)(v ∈ R+)

—then F ∗ is increasing and continuous on R+, and so g is continuous on R+.
In particular, the continuity on R+ assumed in Theorem 3 above is implied by
the positivity of both g and K.

Proof. (i) Since

F ∗(v + u) − F ∗(v) = g(v)K(u) (u ∈ A)(v ∈ R+),

then for u > 0 and u ∈ A

F ∗(v + u) > F ∗(v) (v ∈ R).

So letting u ↓ 0 through A,

F ∗(v) � lim sup
u↓0 in A

F ∗(v + u) � lim sup
u↓0

F ∗(v + u) � F ∗(v) + F ∗(0+) = F ∗(v).

So

F ∗(v+) = F ∗(v),
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i.e. F ∗ is right-continuous everywhere on R+. Now for u ∈ A with 0 < u < w,

F ∗(w − u) < F ∗((w − u) + u) = F ∗(w).

So, for arbitrary 0 < v < w, and u ∈ A with u > 0 such that v < w − u < w,

F ∗(v) = F ∗(v+) = lim inf{F ∗(w − u) : v < w − u < w, u ∈ A} < F ∗(w),

as A is dense. So

F ∗(v) < F ∗(w),

i.e. F ∗ is increasing on R+.
(ii) Consider u ∈ A+ : = A ∩ R+, v ∈ R+. By F ∗(0+) = 0, right-continuity on
R+ of F ∗, and the weakened Goldie equation, taking limits through a ∈ A+

F ∗(u + v) = lim
a↓u

F ∗(a + v) = lim
a↓u

g(v)F ∗(a) + F ∗(v)

= g(v)F ∗(u) + F ∗(v) (u ∈ A+)(v ∈ R+).

So F ∗ satisfies the Goldie equation of Theorem 1 on A+.
To conclude: as F ∗ and g are positive, by the Lemma above, they are

continuous on R+, and so Theorem 2 applies, by Remark 2 after Theorem 1.
Alternatively, use [19, Theorem] to deduce the form of F ∗ and g. �

3. From the Goldie to the Beurling equation

In (GFE), take K and F ∗ the same—written K. We generalize the e−γ· to g,
which will serve as an auxiliary function (which will reduce to e−ρ· in the case
of interest). We now have the Goldie equation in the form

K(v + u) − K(v) = g(v)K(u) (u, v ∈ R+).

For reasons that will emerge (see inter alia § 5), an important generalization
arises if on the left the additive action of v on u is made dependent on g:

K(v + ug(v)) − K(v) = g(v)K(u) (u, v ∈ R+), (1)

so that while g appears twice, K still appears here three times. This form is
closely related to a situation with all function symbols identical, ϕ say (which
we will take non-negative):

ϕ(v + uϕ(v)) = ϕ(u)ϕ(v) (u, v ∈ R+). (BFE)

Indeed, from here, writing g for ϕ and with K(t) ≡ g(t)− 1 (i.e. as in (*) with
κ = 1), we recover (1).

This (BFE) is our Beurling functional equation, a special case of the
Go�ląb–Schinzel equation [(GS)—see [23]] in view of the non-negativity and
of the domain being R+ rather than R (both considerations arising from the
context of Beurling regular variation). Aspects of (GS) with some imposed
restriction (‘conditionality’) on the domain have been studied—see the survey
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[16], and the recent papers [18,19,27]. For instance, solutions of the ‘condi-
tional’ Go�ląb–Schinzel equation (i.e. with domain restricted to R+, but with-
out the non-negativity restriction) were considered and characterized in [17],
and shown to be extensible uniquely to solutions with domain R. Note that
for any extension to R+ ∪ {0}, if ϕ(0) = 0, then (BFE) implies ϕ ≡ 0; we
will therefore usually set ϕ(0) = 1, the alternative dictated by the equation
ϕ(0) = ϕ(0)2. Solutions ϕ > 0 are relevant to the Beurling theory of regular
variation [10,31]; their study is much simplified by the following easy result,
inspired by a close reading of [14, Prop. 2].

Theorem 5. If ϕ : R+ → R+ satisfies (BFE), then ϕ(x) � 1 for all x > 0.

Proof. Suppose that ϕ(u) < 1 for some u > 0; then v := u/(1−ϕ(u)) > 0 and
so, since v = u + vϕ(u),

0 < ϕ(v) = ϕ(u + vϕ(u)) = ϕ(u)ϕ(v).

So cancelling ϕ(v), one has ϕ(u) = 1, a contradiction. �

The theorem above motivates the introduction of an important tool in the
study of positive solutions ϕ: the Beck sequence tm = tm(u), defined for any
u > 0 recursively by

tm+1 = tm + uϕ(tm) with t0 = 0,

so that

ϕ(tm+1) = ϕ(u)ϕ(tm).

By Th. 5, {tm} is divergent, as either ϕ(u) = 1 and tm = mu, or

tm = u
ϕ(u)m − 1
ϕ(u) − 1

= (ϕ(u)m − 1)
/

ϕ(u) − 1
u

, (2)

e.g. by Lemma 4 of [31] (cf. a lemma of Bloom: BGT Lemma 2.11.2). In either
case, for u, t > 0 a unique integer m = mt(u) exists satisfying

tm � t < tm+1.

This tool will enable us to prove in Theorem 7 below that a positive solution
of (BFE) takes the form ϕ(t) = 1 + ρt for some ρ � 0. Theorem 6 and its
Corollary below lay the foundations.

Theorem 6. If a function ϕ � 0 satisfies (BFE) on R+ with ϕ(t) > 1 for
t ∈ I = (0, δ) for some δ > 0, then ϕ is continuous and (strictly) increasing,
and ϕ > 1.

Proof. Take K(t) = ϕ(t) − 1; then K > 0 on I. Writing x = u and y = vϕ(u),

ϕ(x + y) − ϕ(x) = K(y/ϕ(x))ϕ(x).
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Fix x ∈ I; then ϕ(x) > 1, and so y/ϕ(x) ∈ I for y ∈ I, so that K(y/ϕ(x)) > 0.
As in Theorem 2, ϕ(x + y) > ϕ(y) for x, y ∈ I, and ϕ is increasing on a
subinterval of I. So ϕ is continuous at some point u ∈ I, ϕ(u) > 0 and

ϕ(u) = lim
v↓0

ϕ(u + vϕ(u)) = ϕ(u) lim
v↓0

ϕ(v) : ϕ(0+) = lim
v↓0

ϕ(v) = 1.

So for x > 0 with ϕ(x) > 0,

lim
v↓0

ϕ(x + vϕ(x)) = ϕ(x) lim
v↓0

ϕ(v) = ϕ(x),

and so ϕ is right-continuous at any x with ϕ(x) > 0.
Let J ⊇ I be a maximal interval (0, η) on which ϕ is increasing, and suppose

that η is finite. Consider any t with 0 < t < η < t+ δ; then v := (η − t)/ϕ(t) <
η − t < δ, as ϕ(t) > 1. As ϕ(v) > 1

ϕ(η) � ϕ(η)/ϕ(v) = ϕ(t + vϕ(t))/ϕ(v) = ϕ(t) > 1.

So ϕ is bounded above by ϕ(η) on (0, η). We check ϕ is left-continuous at η.
Let zn ↓ 0 with η − zn > 0; then, as above, ϕ(zn) → 1. As ϕ > 1 on (0, η),
un := ϕ(η − zn) − 1 is non-negative and bounded, so by right-continuity at η

ϕ(η − zn) = ϕ((η − zn) + znϕ(η − zn))/ϕ(zn) = ϕ(η + znun)/ϕ(zn) → ϕ(η).

As ϕ(η) > 1, by right-continuity at η, ϕ > 1 to the right of η so increasing
there, a contradiction. So J = R+, and ϕ is right-continuous and increasing.

That ϕ is left-continuous at any x > 0 follows as above but with x replacing
η, noting now that as ϕ is increasing, un := ϕ(x − zn) − 1 � ϕ(x) − 1 is non-
negative and bounded. �

Corollary. If ϕ > 0, then ϕ is continuous, and either ϕ > 1, or the value 1 is
repeated densely and so ϕ ≡ 1.

Proof. By Theorem 5 ϕ � 1, so ϕ is (weakly) increasing and so continuous
(by the argument for Theorem 6). If ϕ > 1 is false, then by Theorem 6 there
is no interval (0, δ) with δ > 0 on which ϕ > 1. So there are arbitrarily small
u > 0 with ϕ(u) = 1. Fix t > 0. For any u with ϕ(u) = 1, choose n = nt(u)
with tn := nu � t < (n + 1)u, as above. Then ϕ(tn) = 1 and 0 � t − tn < u.
So the value 1 is taken densely, and so by continuity ϕ(t) ≡ 1. �

We now adapt Goldie’s argument above to give an easy proof of the fol-
lowing. Theorem 7 below can be derived from [14, Cor 3] or [15, Th1]. There
algebraic considerations are key; an analytical proof was provided in [31], but
by a different and more complicated route.3 We include the proof below for
completeness, as it is analogous to the Goldie Theorem above and so thematic
here. We use a little less than Theorem 6 provides.

3 For a fuller account of this argument and simplifications of work of Brzdęk and of Brzdęk
and Mureńko see the longer version of this paper: arXiv:1405.3947.

http://arxiv.org/abs/1405.3947
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Theorem 7. If ϕ(t) > 1 holds for all t in some interval (0, δ) with δ > 0, and
satisfies (BFE) on R+, then ϕ is differentiable, and takes the form

ϕ(t) = 1 + ρt.

Proof. Fix x0 > 0 with ϕ(x0) �= 1. Put

K(t) := ϕ(t) − 1.

By Theorem 6 K is continuous, so K(t) �= 0 for t sufficiently close to x0; we
may assume also that ϕ(u) �= 1 for all small enough u > 0, and so K(u) �= 0
for sufficiently small u.

Let x be arbitrary; in the analysis below x and x0 play similar roles, so it
will be convenient to also write x1 for x.

For j = 0, 1 and any u > 0, referring to the Beck sequence tm = tm(u) as
above, select ij = ij(u) := mxj

(u) so that

tij � xj < tij+1 (j = 0, 1);

then

ϕ(tm+1) − ϕ(tm) = ϕ(u)ϕ(tm) − ϕ(tm) = K(u)ϕ(tm).

Summing,

K(tm) = ϕ(tm) − 1 = ϕ(tm) − ϕ(t0) = K(u)
m−1∑
n=0

ϕ(tn).

As noted, for all small enough u, K(ti0) is non-zero (this uses compactness of
[0, x0]). Cancelling K(u) below (as also K(u) is non-zero), introducing u in its
place (to get the telescoping sums), and recalling tn+1 − tn = uϕ(tn),

K(ti1)
K(ti0)

=
K(u)

∑i1−1
n=0 ϕ(tn)

K(u)
∑i0−1

n=0 ϕ(tn)
=

∑i1−1
n=0 uϕ(tn)∑i0−1
n=0 uϕ(tn)

=
∑i1−1

n=0 (tn+1 − tn)∑i0−1
n=0 (tn+1 − tn)

=
ti1
ti0

.

Passing to the limit as u → 0, by continuity

K(x1)/K(x0) = x1/x0.

Setting ρ0 := K(x0)/x0,

ϕ(x) − 1 = K(x) = ρ0x : ϕ(x) = 1 + ρ0x.

�

4. Extensions of the Goldie and Beurling equations

Below we consider two generalizations of the Beurling equation inspired by
Goldie’s equation, relevant to Beurling regular variation [10]. Our notation
here is adjusted to coincide with that used in the companion paper [32]. The
first uses three functions:
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K(v + uη(v)) − K(v) = κ(u)η(v) (u, v ∈ R+). (GBE)

Here the choice η = K = ϕ with κ = ϕ − 1 recovers the Beurling equation.
One can also form a Pexider-like generalization ([28, 13.3], or [3, 4.3]) for the
right-hand side above, replacing the occurrence of η there with an additional
function ψ :

K(v + uη(v)) − K(v) = κ(u)ψ(v) (u, v ∈ R+). (GBE-P)

This equation when η = 1 is studied by algebraic means in [19] generalizing [1].
Here η = 1 yields Goldie’s equation GR with auxiliary g = ψ when κ = K, and
also yields the weakend Goldie equation of Theorem 3 with auxiliary g = ψ for
K = F ∗, κ the Goldie kernel of F, and A = R (cf. (GFE) in §1); furthermore,
ψ = η = K,κ = ψ − 1 yields the Beurling equation (in ψ). Below we assume
without loss of generality that K(0) = 0 (otherwise replace K(x) in either
equation by K(x) − K(0)).

Theorem 8. Consider the functional equation (GBE-P) with κ(u) > 0 for u > 0
near 0, η, ψ continuous on R+∪{0} with ψ non-negative and η positive thereon.
With

H(x) :=
∫ x

0

ψ(t)
dt

η(t)
, for x � 0,

any solution K is differentiable, and subject to K(0) = 0 takes the form
K(x) = cH(x), for some constant c � 0 ; furthermore, if ψ(0) �= 0, then κ is
differentiable with κ(0) = 0, κ′(0) = c, and κ(x) = bH(xη(0)) for b := c/ψ(0).

Proof. Since for v, w > 0, assuming κ(0+) exists,

K(v + w) − K(v) = κ(w/η(v))ψ(v),
K(v+) − K(v) = κ(0+)ψ(v), K(u) − K(u−) = κ(0+)ψ(u) (u, v ∈ R+),

by continuity of ψ and η, and for any v > 0 and all small enough w > 0,

K(v + w) � K(v).

So K is locally increasing (i.e. ‘non-decreasing’) on R+, and so is increasing
and so continuous on a dense set D ⊆ R+. So κ(0+) exists and for u, v ∈ D,

κ(0+)ψ(v) = K(v+) − K(v) = 0, κ(0+)ψ(u) = K(u−) − K(u) = 0.

So, either κ(0+) = 0, or ψ ≡ 0 on D, and then ψ ≡ 0 on [0,∞), by continuity.
In the former case, K(v+) = K(v) = K(v−) for all v ∈ R+, so that K is
continuous on R+. In the latter case, for w > v > 0 substituting u = w−v/η(v)
into (GBE-P) gives K(w) − K(v) = 0, so K is constant on R+. So in either
case K is continuous on R+.

Now consider for u > 0 the Beck sequence

tn+1(u) = tn(u) + uη(tn(u)), t0 = 0,
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which is increasing as η > 0. For any t, u > 0 we claim there is m = mt(u)
with

tm(u) � t < tm+1(u).

For otherwise, with t, u fixed as above, the increasing sequence {tn(u)}n is
bounded by t and, putting τ := sup tn(u) � t ,

η(tn(u)) =
1
u

[tn+1(u) − tn(u)] → 0,

contradicting lower boundedness of η near τ (as η is continuous and positive).
Next observe that, since η is bounded on [0, t], by Mt say,

tm+1(u) − tm(u) = uη(tm(u)) � uMt → 0 as u ↓ 0.

Now fix x0, x1 > 0. Select i0 = i0(u) and i1 = i1(u) so that for j ∈ {0, 1}
tij � xj < tij+1.

Then

K(tm+1) − K(tm) = κ(u)ψ(tm).

Summing, and setting f(t) := ψ(t)/η(t) � 0 (as η is positive),

K(tm) = K(tm) − K(t0) = κ(u)
m−1∑
n=0

ψ(tn) =
κ(u)

u

m−1∑
n=0

uη(tn)f(tn).

For all small enough u we have κ(u) non-zero, so

K(ti1)
K(ti0)

=
κ(u)

∑i1−1
n=0 ψ(tn)

κ(u)
∑i0−1

n=0 ψ(tn)
=

∑i1−1
n=0 uη(tn)f(tn)∑i0−1
n=0 uη(tn)f(tn)

=
∑i1−1

n=0 (tn+1 − tn)f(tn)∑i0−1
n=0 (tn+1 − tn)f(tn)

→
∫ xi

0
f(t)dt∫ x0

0
f(t)dt

=
H(x1)
H(x0)

,

where passage to the limit in the rightmost terms is as u ↓ 0. Here, as in
Theorem 3, we assume without loss of generality that H(x0) > 0 (otherwise
ψ ≡ 0 on [0,∞), implying that K is constant and yielding, as above, the trivial
case K ≡ 0). Passing to the limit as u ↓ 0 in the leftmost term, by continuity
of K,

K(x1)/K(x0) = H(x1)/H(x0).

Setting c := K(x0)/H(x0),

K(x) = cH(x),

is valid for x � 0, as K(0) = 0. This is differentiable.
As K is continuous at 0, Eq. (GBE-P) holds also for v = 0. So if ψ(0) �= 0,

κ(u) =
c

ψ(0)

∫ uη(0)

0

f(t)dt = c/ψ(0)H(uη(0)) = bH(uη(0)).
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So c � 0 as ψ and η are non-negative and κ(u) > 0 for u > 0 near 0. The
right-hand side is differentiable in u; so, for some θ = θ(u) with 0 < θ(u) < 1,

κ(u) = c · uη(0)/ψ(0) · f(uθη(0)) : κ(u)/u = cf(uθ0η(0))/f(0).

As ψ and η are continuous at 0, taking limits as u ↓ 0 :

lim
u↓0

κ(u)/u = c,

i.e. κ′(0) = c as κ(0) = 0 (right-sidedly). �

Theorem 8′ below is somewhat more than a partial converse; injectivity
below is assumed for the convenience of solving (†) below for f directly. The
full analysis of this equation in [18] reveals that we omit here only the obvious
‘trivial’ cases f ≡ 1 and f ≡ 0. (Here f is a relative flow velocity—see [4,
§4.30].)

In Theorem 8 above one can simplify further to assume without loss of
generality η(0) = ψ(0) = 1 (replacing: ψ by ψ/ψ(0), η by η/η(0), u by η(0)u
and κ(·) by κ(./η(0))ψ(0)); then b = c. This we do below.

Theorem 8′. With the assumptions of Theorem 8 and with ψ(0) = η(0) = 1,
if κ = K ≡ cH, and f = ψ/η is injective, then η(t) ≡ 1 + ρt for some ρ � 0,
and so for some γ with suitable interpretation for γ = 0:

ψ(t) ≡ eγt, H(x) ≡
∫ x

0

eγtdt = (eγx − 1)/γ, if ρ = 0;

ψ(t) ≡ (1 + ρt)γ , H(x) ≡
∫ x

0

(1 + ρt)γ−1dt

= ((1 + ρx)γ − 1)/ργ, if ρ ∈ (0,∞).

Proof. Note that f(t) � 0. Substituting for K and κ into (GBE-P),∫ v+uη(v)

v

f(t)dt = ψ(v)
∫ u

0

f(t)dt.

Differentiating w.r.t. u, η(v)f(v + uη(v)) = ψ(v)f(u), i.e., as η is positive,

f(v + uη(v)) = f(u)f(v). (†)
Define a circle operation by

x ◦ y := v + uη(v)

(for the extensive algebraic background, including Popa groups, see [32]). As

f(u ◦ v) = f(u)f(v) = f(v ◦ u)

and f is injective,

v + uη(v) = u + vη(u) : (1 − η(v))/v = (1 − η(u))/u (u, v > 0).

So η(t) = 1+ρt for some ρ � 0, and so ◦ is a group operation on the Popa group
Gρ = R\{1/ρ}, which is isomorphic either to (R\{0},×) for ρ > 0 under the
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‘shift-scale’ map η, or to (R,+) for ρ = 0 (identically)—cf. [32]. Substituting
ψ/η for f,

ψ(v + uη(v))
η(v + uη(v))

=
ψ(u)ψ(v)
η(u)η(v)

,

so

ψ(v + uη(v)) = ψ(u)ψ(v),

since η satisfies (BFE). So

ψ(v + uη(v)) = ψ(u ◦ v) = ψ(u)ψ(v).

To conclude: passage through the relevant isomorphisms mentioned above con-
verts this to a Cauchy functional equation determining ψ as asserted. Alterna-
tively, as ψ : Gρ → G∞ is a continuous homomorphism, its form may be read
off from [18, Prop. 2.1], or more simply [32, Prop. A]. �

With the usual L’Hospital convention, γ = 0 is permissible in the first case
above (yielding a linear function), and also in the second case (yielding there
log(1 + ρx)/ρ).

Taking ψ = η so that f ≡ 1, which is already continuous, we obtain as
a corollary Theorem 9 below, which needs only local boundedness above and
away from 0, rather than continuity in η (to justify the use of the Beck se-
quence). The proof is similar to but simpler than that of Theorem 8.

Theorem 9. For the functional equation (GBE) above with η > 0 locally
bounded above and away from 0 on R+, and κ(u) > 0 for u > 0 near 0:

(i) any solution with K(0) = 0 is linear: K(x) = cx;
(ii) κ(u) = cu.

In particular, for K = η and κ = η − 1, the solution of the Beurling equation
is η(u) = 1 + cu.

Proof. Omitted—details in the full version of the paper: arXiv:1405.3947. �
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