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1. Introduction

The American mathematician Van Vleck [14,15] studied around 1910 the con-
tinuous solutions f : R → R, f �= 0, of the functional equation

f(x − y + z0) − f(x + y + z0) = 2f(x)f(y), x, y ∈ R, (1)

where z0 > 0 is fixed, with a view to characterize the sine function on the real
line. He showed first that all solutions are periodic with period 4z0, and then
he selected for his study any continuous solution with minimal period 4z0. He
proved that such a solution has to be the sine function

f0(x) = sin
(

π

2z0
x

)
, x ∈ R.

Actually the continuous non-zero solutions of (1) form a countable set. They
are sine functions all of them, but their periods are integral fractions of the
period of f0 (this statement is derived in Example 9 below).

We shall in this paper solve a generalization of (1), in which R is replaced
by a semigroup and the group inversion x �→ −x of (R,+) by an involution
of the semigroup. It turns out that this simple framework suffices for the
study, because it allows us to establish a link between the generalization (2)
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and d’Alembert’s functional equation (3). Knowledge of the solutions of (3)
enables us to solve (2). Our way of proceeding is computational owing to the
very general setup, while Van Vleck exploited properties of continuous, real-
valued functions on the real line.

Throughout our paper the setup and the notation are as follows:

Set Up. S is a semigroup, τ : S → S is an involution of S, and z0 ∈ S denotes
a fixed element in the center of S.

We seek the solutions f : S → C of the functional equation

f(xτ(y)z0) − f(xyz0) = 2f(x)f(y), x, y ∈ S. (2)

We recall that a semigroup is a non-empty set equipped with an associative
operation. An involution on a semigroup S is a map τ : S → S such that
τ(xy) = τ(y)τ(x) and τ(τ(x)) = x for all x, y ∈ S. On a group the group
inversion x �→ x−1 is an involution. The solutions of (2) will be expressed
in terms of multiplicative functions on S, i.e., maps χ : S → C such that
χ(xy) = χ(x)χ(y) for all x, y ∈ S. It is well known that the multiplicative
functions χ �= 0 on a group G are its characters, i.e., the homomorphisms
χ : G → (C \ {0}, ·).

The functional equation (2) is a natural generalization of (1), so we call it
Van Vleck’s functional equation. As mentioned above we shall relate it to a
version of d’Alembert’s functional equation, more precisely to

g(xy) + g(xτ(y)) = 2g(x)g(y), x, y ∈ S. (3)

Concerning d’Alembert’s functional equation we shall use results by Corovei [5,
Teorema 1] and Kannappan [8, Theorem 2], or rather generalizations of their
results (see [13, Proposition 8.14(a)] and [13, Theorem 9.21(a)] respectively
for details). Corovei’s paper contains a criterion for g to be abelian, while
Kannappan’s gives us the form of any abelian g.

Other recent advances in the study of d’Alembert’s functional equation
have been made by Davison [6], Stetkær [12] and Bahyrycz and Brzdȩk [1]. [4]
considered operator valued solutions.

The present paper is not the first place to treat Van Vleck’s functional
equation since Van Vleck [14,15]. The solutions f : R → C of his classical
functional equation (1) were derived in the textbooks Kannappan [9, Theo-
rem 3.53] and Stetkær [13, Exercise 9.18]. The L∞(R) solutions of (1) were
listed by Gajda [7, Corollary 2], who got them in his studies of the functional
equation∫

G

f(x + y − s) dμ(s) +
∫

G

f(x − y + s) dμ(s) = f(x)f(y), x, y ∈ G,

where G is a locally compact, abelian group, and μ is a complex-valued, regular
Borel measure on G of bounded variation. Nagy [10] studied Banach algebra
valued solutions of (1).
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The groups in [7] are abelian, but the literature also contains results for
groups that need not be abelian. Stetkær [13, Exercise 9.18] found the complex-
valued solutions of (2), when S is a group and τ the group inversion. Perkins
and Sahoo [11] replaced the group inversion by the more general concept of
an involution. They derived d’Alembert’s functional equation (3) from (2) on
groups with an involution [11, Theorem 1], and then used (3) to find the
abelian, complex-valued solutions of (2) [11, Corollary 1].

The present paper extends the above results of Perkins and Sahoo [11]
about Van Vleck’s functional equation (2) and of [13, Exercise 9.18]. Novel
features of our study of (2) are that we

1. for semigroups with an involution (instead of groups with an involution)
derive an explicit formula for the solutions of (2) in terms of multiplicative
maps (Theorem 4),

2. prove that the decomposition of any solution into multiplicative functions
in Theorem 4 is essentially unique (Proposition 5), and

3. take continuity into account (Proposition 6) which facilitates the treatment
of examples.

It follows from Theorem 4 that all solutions of (2) are abelian, so the
restriction to abelian solutions in Perkins and Sahoo [11, Corollary 1] is not
needed.

2. Preliminary results

In this section the setup and the corresponding notation are as described in
the Introduction. In particular z0 belongs to the center of S. Then so does
τ(z0), a fact that we use without explicit mentioning below.

Lemma 1 presents properties of any solution f �= 0 of (2). Lemma 3 dis-
cusses the corresponding solution g of d’Alembert’s functional equation (3).

Lemma 1. Let f �= 0 be a solution of (2). Then f is odd with respect to τ
(meaning that f ◦ τ = −f), and the following formulas hold for all x ∈ S:

f(z0) �= 0, (4)

f(z20) = 0, (5)

f(xτ(z0)z0) = f(z0)f(x), (6)

f(xz20) = −f(z0)f(x), (7)

f(τ(x)z0) = f(xz0). (8)

Assume S is a group and τ the group inversion. Then f(z0) = 1 for any
solution f �= 0 of (2). In particular f(xz20) = −f(x) for all x ∈ S, so that f
is periodic with period z40 .
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Proof. If we replace y by τ(y) in (2) the left hand side changes sign. This
implies that f(τ(y)) = −f(y). In other words that f ◦ τ = −f .

We continue by deriving some identities involving f from (2). Let x, y ∈ S
be arbitrary. Taking x = τ(z0) in (2) and using that f is odd with respect to
τ we find (6).

Setting y = z0 in (2) gives us f(xτ(z0)z0) − f(xz20) = 2f(x)f(z0). When
we apply (6) to the left hand side of this we obtain (7).

We will next show (4). Replacing x by xz0 in (2) and applying (7) yield
(the right hand side first)

2f(xz0)f(y) = f
(
xτ(y)z20

) − f
(
xyz20

)
= −f(z0)f(xτ(y)) + f(z0)f(xy).

If f(z0) = 0, then the right hand side vanishes. From the left hand side we
see that f(xz0) = 0 for all x ∈ S. Thus the left hand side of (2) vanishes. A
glance at the right hand side of (2) reveals that f = 0. But this contradicts
the hypothesis f �= 0. We conclude that f(z0) �= 0.

To show (5) we note that f(τ(x)x) = 0 for all x ∈ S, since f is odd with
respect to τ . Using first this and then (7) we find that

0 = f
(
τ

(
z20

)
z20

)
= −f(z0)f

(
τ

(
z20

))
= f(z0)f

(
z20

)
,

which implies that f(z20) = 0, because f(z0) �= 0.
We get the formula f(z0)f(τ(y)z0) = f(z0)f(yz0), when we combine (2)

with x = z20 and (7). From that we obtain (8), since f(z0) �= 0.
Let finally S be a group and τ its group inversion. From (6) we infer

f(z0)f(y) = f(τ(z0)yz0) = f
(
z−1
0 yz0

)
= f(y) for all y ∈ S.

Since f �= 0, we get f(z0) = 1. �
In general f(z0) �= 1, even on abelian groups (Example 10).

Remark 2. Assume that S has a neutral element e. If z0 = e, then the only
solution of (2) is f = 0 (take x = e in (2) and use that f is odd).

It is illuminating to test the conclusions of the abstract Lemma 1 on the
concrete example f(x) = sinx which satisfies (1) in the case of z0 = π/2.
Indeed, sin x is odd, sin π

2 = 1 �= 0, sin(2π
2 ) = 0, sin(x + 2π

2 ) = − sin π
2 sin x

and sin(−x + π
2 ) = sin(x + π

2 ) for all x ∈ R.
The formula cos x = sin(x + π/2) expresses that translating sine on R by

a suitable distance produces cosine. The proof of the next lemma reveals that
an analogous result holds for the translate x �→ f(xz0) of any solution f �= 0
of (2): A scalar multiple (called g) of the translate of f satisfies d’Alembert’s
functional equation (3) (also known as the cosine equation).

Lemma 3. Let f �= 0 be a solution of (2). We may define the function g : S →
C by

g(x) :=
f(xz0)
f(z0)

for x ∈ S,
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because f(z0) �= 0 (Lemma 1).
g may be written in the form g = (χ + χ ◦ τ)/2, where χ : S → C, χ �= 0,

is a multiplicative function.

Proof. We note that

f(z0)2[g(xy) + g(xτ(y))] = f(z0)[f(xyz0) + f(xτ(y)z0)]

= f(z0)f(xτ(y)z0) + f(z0)f(xyz0).

Applying (6) to the first term on the right and (7) to the second one we
continue the computations as follows

= f(xτ(y)z0τ(z0)z0) − f(xyz0z
2
0)

= f((xz0)τ(yz0)z0) − f((xz0)(yz0)z0) = 2f(xz0)f(yz0).

Dividing by f(z0)2 we arrive at (3). And g �= 0, because

g(z20) = f(z20z0)/f(z0) = −f(z0)f(z0)/f(z0) = −f(z0) �= 0.

We next prove that g is abelian. As a solution of (3) g is a pre-d’Alembert
function by [13, Proposition 9.17(c)], so according to [13, Proposition 8.14(a)]
(a generalization of Corovei [5, Teorema 1]) it suffices to prove that g(z0)2 �=
d(z0), where d(x) := 2g(x)2 − g(x2) for x ∈ S. This is easily done. Indeed,
g(z0) = f(z20)/f(z0) = 0/f(z0) = 0, while

d(z0) = 2g(z0)2 − g(z20) = 0 − (−f(z0)) = f(z0) �= 0.

Now g is an abelian solution of d’Alembert’s functional equation (3), so
the existence of χ is immediate from [13, Theorem 9.21(a)] (a generalization
of Kannappan [8, Theorem 2]). χ �= 0, because g �= 0. �

3. The main results

In this section the setup and the corresponding notation are as described in the
Introduction. We solve Van Vleck’s functional equation (2) by expressing its
solutions in terms of multiplicative functions. Furthermore we show that the
decomposition of a solution into multiplicative functions is essentially unique,
and we discuss briefly continuous solutions.

Theorem 4. Under our setup the non-zero solutions f : S → C of (2) are the
functions of the form

f = χ(τ(z0))
χ − χ ◦ τ

2
, (9)

where χ : S → C is a multiplicative function such that χ(z0) �= 0 and
χ(τ(z0)) = −χ(z0). Furthermore f(z0) = χ(z0τ(z0)).

Assume S is a group and τ the group inversion. Then the conditions on χ
reduce to χ(z20) = −1. In this case f(z0) = 1 for any solution f �= 0 of (2).
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Proof. Let f �= 0 be a solution of (2). Taking y = z0 in (2) we get by the
definition of g in Lemma 3 that

f(x) =
1

2f(z0)
[f(xτ(z0)z0) − f(xz0z0)] =

1
2
[g(xτ(z0)) − g(xz0)].

When we here substitute the formula g = (χ+χ ◦ τ)/2 from Lemma 3, we get
after elementary reductions that

f =
χ(z0) − χ(τ(z0))

2
χ ◦ τ − χ

2
. (10)

Note for use below that χ(z0) �= χ(τ(z0)), and that χ �= χ ◦ τ , since f �= 0.
Writing f = c[χ ◦ τ − χ], where c := [χ(z0) − χ(τ(z0))]/4 �= 0, we find from

(10) that

f(τ(x)z0) = c[χ(τ(z0))χ(x) − χ(z0)χ(τ(x))], and that

f(xz0) = c[χ(τ(z0))χ(τ(x)) − χ(z0)χ(x)].

We infer from the formula (8) that

χ(τ(z0))χ(x) − χ(z0)χ(τ(x)) = χ(τ(z0))χ(τ(x)) − χ(z0)χ(x),

which reduces to
[χ(τ(z0)) + χ(z0)][χ − χ ◦ τ ] = 0.

Since χ �= χ ◦ τ , we conclude that χ(τ(z0)) = −χ(z0), so that (10) becomes
(9) as desired.

The converse [that any function f of the form (9) is a solution of (2)] is
done by an elementary computation [substitution of the formula (9) for f into
(2) using the assumption χ(τ(z0)) = −χ(z0)] is left out.

Furthermore

f(z0) = χ(τ(z0))
χ(z0) − χ(τ(z0))

2
= χ(τ(z0))

χ(z0) + χ(z0)
2

= χ(z0τ(z0)).

Assume S is a group and τ the group inversion. Then the condition on χ
becomes χ(z−1

0 ) = −χ(z0), which is equivalent to χ(z0)2 = −1. Lemma 1
takes care of the last statement of the theorem. �

Example 9 demonstrates that the condition χ(z20) = −1 in Theorem 4 is a
serious restriction on χ: Only a countable subset of the multiplicative functions
on R passes this restriction.

Consider the multiplicative function χ in Theorem 4. The formula (10)
shows that the solution f remains the same, if χ and χ ◦ τ are interchanged.
The following proposition proves that this is the only ambiguity in the choice
of χ, given the solution f �= 0.

Proposition 5. Let χ1, χ2 : S → C be multiplicative maps, and let c1, c2 ∈ C.
If

c1
χ1 − χ1 ◦ τ

2
= c2

χ2 − χ2 ◦ τ

2
�= 0, (11)
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then χ1 = χ2 or χ1 = χ2 ◦ τ .

Proof. Multiplying out we get c1χ1 − c1χ1 ◦ τ − c2χ2 + c2χ2 ◦ τ = 0. If χ1,
χ2, χ1 ◦ τ , χ2 ◦ τ are four different multiplicative maps, then the individual
terms vanish by [13, Theorem 3.18(a)]. In particular c1χ1 = c1χ1 ◦ τ = 0. But
that contradicts the assumption (11). So at least two of the four multiplicative
maps agree. The possibilities χ1 = χ1 ◦ τ and χ2 = χ2 ◦ τ contradict (11), and
left are the ones of the proposition. �

Finally we discuss continuous solutions.

Proposition 6. Assume in addition to the setup that S is a topological semi-
group and that τ : S → S is continuous. Then the solution f �= 0 of (2)
described in (9) of Theorem 4 is continuous, if and only if χ is continuous.

Proof. Clearly χ continuous implies that f is continuous. Conversely, if f �= 0
is continuous, then χ − χ ◦ τ is continuous. Now [13, Theorem 3.18(d)] tells us
that χ is continuous. �

Remark 7. Van Vleck [14] observed that if f is a solution of (1), then −f is
a solution of the version of (1) in which z0 is replaced by −z0. That is the
reason why he could assume without loss of generality that z0 was positive.

The same observation can be made in the general setup. Let f be a solution
of (2). Since f is odd with respect to τ (Lemma 1) and abelian (by the formula
of Theorem 4) we find for all x, y ∈ S that

(−f)(xτ(y)τ(z0)) − (−f)(xyτ(z0)) = (f ◦ τ)(xτ(y)τ(z0)) − (f ◦ τ)(xyτ(z0))

= f(z0yτ(x)) − f(z0τ(y)τ(x)) = −(f(τ(x)τ(y)z0) − f(τ(x)yz0))

= −2f(τ(x))f(y) = 2f(x)f(y) = 2(−f(x))(−f(y)),

which shows that −f satisfies the version of (2) in which z0 is replaced by
τ(z0).

4. Examples

Example 8. The solution formula (9) is an extension to our general setup
of Euler’s formula for sine. To illustrate this point we consider Van Vleck’s
original functional equation (1) with z0 = π/2, i.e.,

f(x − y + π/2) − f(x + y + π/2) = 2f(x)f(y), x, y ∈ R. (12)

Let χ(x) := exp(ix), x ∈ R. The condition on χ in Theorem 4 is satisfied,
because χ(z0) = exp(iπ/2) = i and χ(τ(z0)) = χ(−z0) = exp(−iπ/2) = −i, so
the solution formula (9) provides a solution of (12). That solution is

f(x) =
1
i

eix − e−ix

2
for x ∈ R.
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The right hand side is indeed Euler’s classic formula for sine. We have in this
roundabout way found that f(x) = sin x is a solution of (12), but this fact is
of course easy to verify directly.

Example 9. In this example we return to Van Vleck’s original functional equa-
tion (1), where S = (R,+) and τ(x) = −x for any x ∈ R. We shall produce
the continuous solutions f : R → C of (1) by the help of Theorem 4 and
Proposition 6. If z0 = 0, the only solution is f = 0 (by Remark 2), so from
now on we let z0 ∈ R \ {0}.

According to Theorem 4 and Proposition 6 the continuous solutions f �= 0
are the functions of the form

f(x) = χ(−z0)
χ(x) − χ(−x)

2
, (13)

where χ : R → C is any continuous character such that χ(2z0) = −1. It is
known that the continuous characters of R are the exponential functions x �→
exp(λx), where λ ∈ C (see for instance [13, Example 3.7(a)]). The condition
χ(2z0) = −1 restricts the set of continuous characters to

χn(x) = exp
(

i
(2n + 1)π

2z0
x

)
, x ∈ R, where n ranges over Z.

The corresponding solutions are by (13) the sine functions

fn(x) = (−1)n sin
(

(2n + 1)π
2z0

x

)
, x ∈ R, n ∈ N ∪ {0}.

We have here restricted the index set from Z to N ∪ {0}, because f−n = fn−1

for all n ∈ Z.
It might be noticed that f0 has period 4z0, while the period of fn is an

integral fraction of 4z0, viz, 4z0/(2n + 1).
Example 9 is discussed in the references [7,9] and [13] plus of course the

original papers [14,15] by Van Vleck.

Example 10. We have in Lemma 1 seen that f(z0) = 1 for all non-zero solutions
of (2), when S is a group and τ the group inversion. The present example
reveals that in general f(z0) �= 1.

We consider the additive group (R2,+) equipped with the involution τ(x, y)
= (x,−y). Take z0 = (1, π/2) and

χ(x, y) := ex+iy, x, y ∈ R
2.

An easy computation shows that χ(τ(z0)) = −χ(z0), so the hypothesis of
Theorem 4 is satisfied. According to Theorem 4 the corresponding solution f
of (2) has

f(z0) = χ(z0 + τ(z0)) = χ(2, 0) = e2,

so we have here an example in which f(z0) �= 1.
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Example 11. By this example we indicate that our theory applies not just to
groups, and that non-zero solutions of (2) may exist in more generality. Let S
be R

2 equipped with the composition rule given by

(x1, y1) · (x2, y2) := (x1x2 + y1y2, x1y2 + y1x2).

S is an abelian semigroup with neutral element (1, 0), but it is not a group.
It cannot even be embedded into a group, because (0, 0) can have no inverse.
The map τ(x, y) := (x,−y) is an involution of S. See [2] or [3].

The multiplicative functions of S are the functions of the form χ(x, y) =
M1(x + y)M2(x − y), where Mi(xy) = Mi(x)Mi(y) for all x, y ∈ R and i =
1, 2 ([3, Corollary 2.5] or [13, Exercise A.11]). The continuous functions M :
R → C for which M(xy) = M(x)M(y) for all x, y ∈ R are described in [13,
Example 3.9(c)].

Let us be content with noting that the condition of Theorem 4 on χ can be
satisfied for some z0 ∈ S, so that (2) has non-zero solutions on S. If we choose

z0 =
(

e + 1
2

,
e − 1

2

)
, M1(t) = |t|1+iπ/2 and M2(t) = |t|1−iπ/2,

then

χ(z0) = χ

(
e + 1

2
,
e − 1

2

)
= M1

(
e + 1

2
+

e − 1
2

)
M2

(
e + 1

2
− e − 1

2

)

= M1(e)M2(1) = e1+iπ/2 = ei.

Similarly we find that

χ(τ(z0)) = χ

(
e + 1

2
,−e − 1

2

)
= e1−iπ/2 = −ei,

which shows that the condition of Theorem 4 is satisfied for these choices.
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