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Abstract. Functions f: D — R defined on an open convex subset of R satisfying the approx-
imate type convexity condition with bound of the form e./t(1 — t)||x — y|| are considered.
We discuss properties concerning such functions characteristic for convex functions.
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1. Introduction

Let D be a bounded open convex subset of R™. It is known that a function
f: D — R is convex if only if it satisfies the Jensen integral inequality

flwn) < /D fdu (1)

for all probabilistic measures  on D, where z, = [, zdp = ([, zidp, ...,
1) b Tndp). The question arises: what about a function f: D — R which satisfies
(1) with some error depending on f.

Let B(D) be the o-algebra of Borel subsets of D C R™, M(D) be the set
of all Borel probabilistic measures on D and let € > 0.

Assume that a Borel measurable function f: D — R satisfies the inequality

faw< [ f(x)dwe[ / ||m—xu||2dur, @)

with some ¢ > 0, for all probabilistic measures on D such that there exist finite:
Z,, fD fdu, fD lz — x,||*dp, where z, = fD rdy = (fD x1dp, ..., fD Tpdp).
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In this paper we consider a class of functions for which this error is pro-
portional to [ [, ||z — x,|/*dp] 2, where || - || denotes the Euclidean norm in R™.
Namely, taking in (1) for arbitrary fixed x,y € D, t € [0, 1], instead of u the
Dirac convex combination p = td, + (1 — t)d, of Dirac measures, we get that
f satisfies in particular the following inequality

[tz + (1 =)y) <tf(x) + (1 =8)f(y) +evid =)z —yll.

Definition 1.1. We say that a function f: D — R defined on a convex sub-
set D C R"™ is approximately e-convex with respect to the standard deviation,
briefly e-sconvex, if

[tz + (1 =t)y) <tf(z) + (1 =) f(y) + eVl = )]z -yl (3)
for x,y € D, t € [0,1].
If condition (3) holds for t = % and all z,y € D, i.e.

() <O e reven, @

we say that f is approximately e-midconver with respect to the standard devi-
ation, briefly e-smidconvez.

The notion of e-smidconvexity given in Definition 1.1 is a modification of
the notion of approximate convexity. It was introduced by Hyers and Ulam
[3] with constant error bound and next generalized and development by many
authors, see for example: [2-6,9].

We give basic properties of e-sconvex and e-smidconvex functions. One of
the main tools will be the following
Theorem TTZ [9, Thr. 2.2]. Let D be an open convex subset of R™ and let
f: D — R be an e-smidconvex function locally bounded above at a point.
Then f is locally uniformly continuous.

2. Results

Let D be an open convex subset of R”.

Proposition 2.1. Let o, > 0. f,g: D — R. If f,g are respectively 1- and
e9-sconvex (smidconvex) then af + By is aer + Beg-sconver (midconver).

Proof. Obvious. 0

Proposition 2.2. If f: D — R is e-sconvex then f is locally uniformly contin-
UOUS.

If f is e-smidconvexr and locally bounded at a point then f is locally uni-
formly continuous.
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Proof. The first part follows from [9, Thr. 2.2].
Observe, for the second one, that f is locally bounded. Indeed, let S =

conv {x1,...,Tp41} be an n-dimensional simplex contained in D. We show
that

fltizy + -+ tpxr) <t f(x1) + -+ tef(ag) + (k—1e diam S (5)
for ti,...,t >0, Zi.c:lti =1.

For k = 1 it is trivial, for kK = 2 it follows from (3). Assuming that (5)

holds for a certain k € {2,...,n}. Let ¢1,...,tx+1 > 0 such that Zf:ll ti=1,

and 41 # 1. Then, using (4) and the inequality /tr4+1(1 — txy1) < 1, then
applying (5) and the fact that the distance of two elements of S is not larger
than diam S we have

k

t;
i+ @) = £ | G+ )Y i+ teae
f(tizy k+1Zk41) f<(1 k) PRST—— k+1 k+1>

i=1
<(tr+ -+t — x|+t x
<(tx k) f <i§=1 PT——— z) k1 f (Thy1)
k ¢
+e — 1z -z
;t1+"'+tk T
k+1

<> tif(zi) + (k- 1)e diam S + ¢ diam S
=1

k+1
= Ztif(xi) + ke diam S.

i=1
Hence (5) holds for k + 1, because the case t+1 = 1 is obvious. By (5) we
obtain that

fly) <max{f(z1),..., f(®pt1)} +ne diam S fory e S.

Hence f is bounded from above on S and consequently locally bounded
from above in int S. By [9, Thr. 2.2] f is locally uniformly continuous. O

Theorem 2.1. Let P be an open interval in R, ¢ > 0, and f: P — R be a
function. Then the following conditions are equivalent:

(i) f is e-sconver,

(ii) f(w;';:ﬁ“) < ,f(w;,i:iizz) +ey 2t fora <z < s,
(i) Le2l=fl) o S flon) 4o foamee for gy < 2y < s,
)

f(@2)—f(z1) T3—w f(z3)—f(x2) Ty
T e e S s e for x1 < o < x3.

(iv
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Proof. In this case the definition of sconvexity of f is equivalent to:

flxg) < flz1) +

T3 — T T3 —

I3 — T To — X1

mlf(I3)+€\/(I3*$2)(l’2*xl)- (6)

for 1 < xo < x3, T1,T9,23 € P.
3 — I3—x2 To—Ty
Indeed, since @y = 7=y + =g, from (3) we get (6).

On the other hand, assuming (6), and putting in (6) z; = z, x5 =tz + (1 —
t)y, z3 =y, we have

x3—xo =ty —x), 20 —x1 = (1 —t)(y —x),23 —x1 =y —

hence we obtain (3).
We show that (6) and (ii) are equivalent. Subtracting f(z3) from both sides
of (6) we get

fla2) — f(z3) < (f(21) = f(23)) + &/ (w5 — w2) (w2 — 1).

Hence, by dividing by x5 — 2, (i) follows.
Next we show that (6) and (iii) are equivalent. Subtracting f(z1) from both
sides of (6) we obtain

fx2) = f(z1) <

Irs3 — T

T3 — T1

T2 — I

(f(xs) — fa1)) +ev/(w5 — w2) (22 — 21).

Dividing this by z2 — 21 we get (iii).
Finally we show the equivalence of (6) and (iv). Subtracting from both
sides of (6) the expression =71 f(22) + 22=12 f(21) we obtain

g o, S @2) — @) < P (f(ws) = o)) + e/ (23 — 1) (2 — 11).

Multiplying this inequality by %
flwe) = f(x1) _ flws) = flz2) | (25— 22) + (22 —21)

T2 — 1 - T3 — X2 \/(333—33‘2)\/(7}2—3)1)'

Hence we get (iv). O

€r3 —T1

€T3 — T2 T2 — T1

we get

Theorem 2.2. If f: D — R is e-smidconvex then

k k k k@2 —k
et (1= ) 0) < s+ (1 ) sy 2 =0,y

2 2 2 2 2

(7)

forz,ye D,neN, ke {0,...,2"}.
Proof. For n =1 condition (7) is true (for k =1 by (4), for k=0o0r k =2 it
is obvious). Assume, for the proof by induction, that (7) holds for some n € N

and all z,y € D, k € {0,...,2"}. We check that this condition holds for n+ 1.
Let x,y € D, k € {0,...,2""}. Without loss of generality we may assume
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that k € {1,...,2""1}. Changing = and y, if necessary, we may assume that
k €{0,...,2"}. Making use of (4) and the inductive hypothesis we obtain

k k
f<2n+1x+ (1_2n+1> y)
f(wx+(l—)y+y>

Tt (- £)) 150

< 5 + 527H$ - yH
<1 (;fm # (1= 30) 10+ 250 ey f“”)
+ 527||x - y”

— 27%]0(35) + <1 — 27511) fy)

e/ k(2™ — k) €
+ on + on+1 Hx_yH

Hence we need to show that

FE =R 1 _ VR =)
on + 2n+1 — 2n+1

k2" — k) +1 <2k —k)  forke{l,...,2"}.
This inequality is a consequence of the following one
Wk — k) +k <2/kE@ 1 —k)  for ke {l,...,2"},
which is equivalent to:
Ak(2" — k) + k% 4+ 4k\/k(2" — k) < 4k(2"F1 — k), for ke {1,...,2"},
4\/k(2" — k) <4-2" -k, forke{l,...,2"}
16k(2" — k) <16-4" + k? —8k2", for k€ {1,...,2"}
17k? —24-2"k 4+ 16-4" >0, for ke {1,...,2"}.

The last inequality holds, because its discriminant A := (24%—4-17-16)4"
—512-4™ < 0.

for k € {1,...,2"},

ie.

— O

Corollary 2.1. If f: D — R is e-smidconvez and continuous at a point then
18 2e-sconvex.

Proof. By Proposition 2.2 f is continuous. By Theorem 2.2 inequality (3) with
e replaced by 2e holds for every dyadic number ¢ € [0, 1]. By the continuity of
f, it holds also for every t € [0, 1]. O
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Ezample 2.1. The Takagi function T'(z) = Y7, srdist(2*z,Z), z € [0,1],
satisfies (4) with ¢ = § [1]. It follows by Corollary 2.1 that T is 1-sconvex.
This example shows that, even if an sconvex function is continuous, it can be
non-differentiable at every point.

Example 2.2. Assume that f: D — R is e-sconvex and let D ¢ G € G C D,
where the set G is open convex with the compact closure. Let w € C°(R™)
be such that w > 0, w(z) = 0 if |z > 1 and [, w(z)dz = 1. Let ws(x) =
Sw(tx), for § > 0.

For ¢ < dist(G,0D) the regularization fs(z fB(O 5) flx = 2)ws(2)dz is
e-sconvex in G. Indeed, for z,y € G, t € [0,1]

fs(te+ (1 —t)y) = / o) fs(te + (1 —t)y — z)ws(2)dz
< [ [0 st =)+ (0 sty =2
+ VI = Dlle -yl =
=tfs(x) + (1 —1t)fs(y) +ev/t(1 = t)[|z —yl|.

Let for zyp € R", R >0

m(B(zo, R)) denote the volume of the ball B(xp, R) in the Euclidean
space R™, and o(S(xg, R)) - the area of the sphere S(zo, R), the boundary
of B(xg, R).

Proposition 2.3. If f: D — R is e-sconvex then for each B(xo,R) C D the
following Hadamard-type inequality holds

1 / 1
_ fdm < 7/ fdo + enRe,,
m(B(zo, R)) B(zo,R) a(S(zo, R)) S(zo0,R)

where ¢, = fol " 1/1 — r2dr.

Proof. Using polar coordinates and (3) we have

/B(aco,R) fm = /R/ o) f(x)do(x)dr
/ / [ R+T(wo+R($_m>

g )
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/ i a7 (e 55)

2R (“TO B R(z;x0)>

R2 —r2 ||2R(z — x0) ‘| do (x)dr.

te 2R r

For z € S(xp,r) we have ||x — xg|| = r. Hence

/B(xo,R) R+ : / /S(ro Y (xO + Blo - )> do(x)dr

f <xo - IM) do(z)dr
S(zo,r r

R
+ 6/ / V R? — r2do(z)dr
0 S(zo,r

By the symmetry of S(z,r) with respect to xg, in the last equality the first
two integrals are equal. For the third integral, using that o(S(xg,r)) = r"~!
0(5(0,1)), we obtain

R R
/ / vV R? — r2do(x)dr = / o(S(xg, 7))V R? — r2dr
0 S(zo,r 0
R
= o(S(0, 1))/ r" '/ R? — r2dr
0
1
=0(5(0,1))R" / "1 — r2dr.
0

Hence

/ fdm </ / <x0+R($ 3:0)) do(x)dr+eo(S(0,1))R" ' R%¢c,
B(zo,R) S(xo,r)

- W/O /S(:ro,R) f(z)do(z)r™ 'dr + eR*a(S(wo0, R))cn

= E fdo + nga(S(xo, R))cn
S(zo,R)
_ m(B(zo, R)) o+ eR%
= (S(z0, R)) /sm gy 147+ o 750, R)en
Hence
1 1 O'(S(xo,R))
m(B(o, R) /Bm,mf ™S (S0, ) /sm,R)f T B0, R)

This ends the proof, because % = 2. O
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Remark 2.1. The constants ¢, from Proposition 2.3 can be found using well
known properties of the beta and gamma functions, see for example [7, ch. §].
By substituting ¢t = 2 in the integral defining ¢, we get

1t ey oo 1/n 3\ 10 (3)

Using Legendre’s formula

1 v T(2n) /7 (2n—1)!
F<”+2> 2201 T(n) 2201 (n—1)!

for n € N and basic properties of the gamma function we obtain

1IT(ntg)va _ o« (2n —1)!

r
T(5+3)

n , N.
T I T T2 2 (s D1 €
(Obviously, by definition, ¢; = 7.) Similarly,
1T(n) (2 1 r 22n—3 —1)1)?
ey = (mr(3) 1 (n)ym _ (n=DY N

2T (n+3) 4(m+3T'(n+3) (n+3) @n—-1"
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