
Aequat. Math. 89 (2015), 449–457
c© Springer Basel 2015
0001-9054/15/030449-9
published online April 11, 2015
DOI 10.1007/s00010-015-0348-0 Aequationes Mathematicae

Approximate convexity with the standard deviation’s error

Marek Żo�ldak
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Abstract. Functions f : D → R defined on an open convex subset of Rn satisfying the approx-

imate type convexity condition with bound of the form ε
√

t(1 − t)‖x − y‖ are considered.
We discuss properties concerning such functions characteristic for convex functions.
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1. Introduction

Let D be a bounded open convex subset of Rn. It is known that a function
f : D → R is convex if only if it satisfies the Jensen integral inequality

f(xμ) ≤
∫

D

fdμ (1)

for all probabilistic measures μ on D, where xμ =
∫

D
xdμ = (

∫
D

x1dμ, . . . ,∫
D

xndμ). The question arises: what about a function f : D → R which satisfies
(1) with some error depending on μ.

Let B(D) be the σ-algebra of Borel subsets of D ⊂ R
n, M(D) be the set

of all Borel probabilistic measures on D and let ε ≥ 0.
Assume that a Borel measurable function f : D → R satisfies the inequality

f(xμ) ≤
∫

D

f(x)dμ + ε

[∫

D

‖x − xμ‖2dμ

] 1
2

, (2)

with some ε > 0, for all probabilistic measures on D such that there exist finite:
xμ,

∫
D

fdμ,
∫

D
‖x − xμ‖2dμ, where xμ =

∫
D

xdμ = (
∫

D
x1dμ, . . . ,

∫
D

xndμ).
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In this paper we consider a class of functions for which this error is pro-
portional to [

∫
D

‖x−xμ‖2dμ]
1
2 , where ‖ · ‖ denotes the Euclidean norm in R

n.
Namely, taking in (1) for arbitrary fixed x, y ∈ D, t ∈ [0, 1], instead of μ the
Dirac convex combination μ = tδx + (1 − t)δy of Dirac measures, we get that
f satisfies in particular the following inequality

f (tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) + ε
√

t(1 − t)‖x − y‖.

Definition 1.1. We say that a function f : D → R defined on a convex sub-
set D ⊂ R

n is approximately ε-convex with respect to the standard deviation,
briefly ε-sconvex, if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) + ε
√

t(1 − t)‖x − y‖ (3)

for x, y ∈ D, t ∈ [0, 1].
If condition (3) holds for t = 1

2 and all x, y ∈ D, i.e.

f

(
x + y

2

)
≤ f(x) + f(y)

2
+

1
2
ε‖x − y‖ for x, y ∈ D, (4)

we say that f is approximately ε-midconvex with respect to the standard devi-
ation, briefly ε-smidconvex.

The notion of ε-smidconvexity given in Definition 1.1 is a modification of
the notion of approximate convexity. It was introduced by Hyers and Ulam
[3] with constant error bound and next generalized and development by many
authors, see for example: [2–6,9].

We give basic properties of ε-sconvex and ε-smidconvex functions. One of
the main tools will be the following
Theorem TTZ [9, Thr. 2.2]. Let D be an open convex subset of R

n and let
f : D → R be an ε-smidconvex function locally bounded above at a point.
Then f is locally uniformly continuous.

2. Results

Let D be an open convex subset of Rn.

Proposition 2.1. Let α, β ≥ 0. f, g : D → R. If f, g are respectively ε1- and
ε2-sconvex (smidconvex) then αf + βg is αε1 + βε2-sconvex (midconvex).

Proof. Obvious. �

Proposition 2.2. If f : D → R is ε-sconvex then f is locally uniformly contin-
uous.

If f is ε-smidconvex and locally bounded at a point then f is locally uni-
formly continuous.
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Proof. The first part follows from [9, Thr. 2.2].
Observe, for the second one, that f is locally bounded. Indeed, let S =

conv {x1, . . . , xn+1} be an n-dimensional simplex contained in D. We show
that

f (t1x1 + · · · + tkxk) ≤ t1f(x1) + · · · + tkf(xk) + (k − 1)ε diam S (5)

for t1, . . . , tk ≥ 0,
∑k

i=1 ti = 1.

For k = 1 it is trivial, for k = 2 it follows from (3). Assuming that (5)
holds for a certain k ∈ {2, . . . , n}. Let t1, . . . , tk+1 ≥ 0 such that

∑k+1
i=1 ti = 1,

and tk+1 �= 1. Then, using (4) and the inequality
√

tk+1(1 − tk+1) ≤ 1, then
applying (5) and the fact that the distance of two elements of S is not larger
than diam S we have

f (t1x1 + · · · + tk+1xk+1) = f

(

(t1 + · · · + tk)
k∑

i=1

ti
t1 + · · · + tk

xi + tk+1xk+1

)

≤(t1 + · · ·+tk)f

(
k∑

i=1

ti
t1 + · · ·+tk

xi

)

+tk+1f(xk+1)

+ ε

∥∥
∥∥∥

k∑

i=1

ti
t1 + · · · + tk

xi − xk+1

∥∥
∥∥∥

≤
k+1∑

i=1

tif(xi) + (k − 1)ε diam S + ε diam S

=
k+1∑

i=1

tif(xi) + kε diam S.

Hence (5) holds for k + 1, because the case tk+1 = 1 is obvious. By (5) we
obtain that

f(y) ≤ max {f(x1), . . . , f(xn+1)} + nε diam S for y ∈ S.

Hence f is bounded from above on S and consequently locally bounded
from above in int S. By [9, Thr. 2.2] f is locally uniformly continuous. �

Theorem 2.1. Let P be an open interval in R, ε > 0, and f : P → R be a
function. Then the following conditions are equivalent:
(i) f is ε-sconvex,

(ii) f(x3)−f(x1)
x3−x1

≤ f(x3)−f(x2)
x3−x2

+ ε
√

x2−x1
x3−x2

for x1 < x2 < x3,

(iii) f(x2)−f(x1)
x2−x1

≤ f(x3)−f(x1)
x3−x1

+ ε
√

x3−x2
x2−x1

for x1 < x2 < x3,

(iv) f(x2)−f(x1)
x2−x1

− ε
√

x3−x2
x2−x1

≤ f(x3)−f(x2)
x3−x2

+ ε
√

x2−x1
x3−x2

for x1 < x2 < x3.
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Proof. In this case the definition of sconvexity of f is equivalent to:

f(x2) ≤ x3 − x2

x3 − x1
f(x1) +

x2 − x1

x3 − x1
f(x3) + ε

√
(x3 − x2)(x2 − x1). (6)

for x1 < x2 < x3, x1, x2, x3 ∈ P .
Indeed, since x2 = x3−x2

x3−x1
x1 + x2−x1

x3−x1
x3, from (3) we get (6).

On the other hand, assuming (6), and putting in (6) x1 = x, x2 = tx+(1−
t)y, x3 = y, we have

x3 − x2 = t(y − x), x2 − x1 = (1 − t)(y − x), x3 − x1 = y − x,

hence we obtain (3).
We show that (6) and (ii) are equivalent. Subtracting f(x3) from both sides

of (6) we get

f(x2) − f(x3) ≤ x3 − x2

x3 − x1
(f(x1) − f(x3)) + ε

√
(x3 − x2)(x2 − x1).

Hence, by dividing by x3 − x2, (i) follows.
Next we show that (6) and (iii) are equivalent. Subtracting f(x1) from both

sides of (6) we obtain

f(x2) − f(x1) ≤ x2 − x1

x3 − x1
(f(x3) − f(x1)) + ε

√
(x3 − x2)(x2 − x1).

Dividing this by x2 − x1 we get (iii).
Finally we show the equivalence of (6) and (iv). Subtracting from both

sides of (6) the expression x2−x1
x3−x1

f(x2) + x3−x2
x3−x1

f(x1) we obtain

x3 − x2

x3 − x1
(f(x2) − f(x1)) ≤ x2 − x1

x3 − x1
(f(x3) − f(x2)) + ε

√
(x3 − x2)(x2 − x1).

Multiplying this inequality by x3−x1
(x3−x2)(x2−x1)

we get

f(x2) − f(x1)
x2 − x1

≤ f(x3) − f(x2)
x3 − x2

+ ε
(x3 − x2) + (x2 − x1)√
(x3 − x2)

√
(x2 − x1)

.

Hence we get (iv). �

Theorem 2.2. If f : D → R is ε-smidconvex then

f

(
k

2n
x +

(
1 − k

2n

)
y

)
≤ k

2n
f(x) +

(
1 − k

2n

)
f(y) + 2ε

√
k(2n − k)

2n
‖x − y‖

(7)
for x, y ∈ D, n ∈ N, k ∈ {0, . . . , 2n}.
Proof. For n = 1 condition (7) is true (for k = 1 by (4), for k = 0 or k = 2 it
is obvious). Assume, for the proof by induction, that (7) holds for some n ∈ N

and all x, y ∈ D, k ∈ {0, . . . , 2n}. We check that this condition holds for n+1.
Let x, y ∈ D, k ∈ {0, . . . , 2n+1}. Without loss of generality we may assume
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that k ∈ {1, . . . , 2n+1}. Changing x and y, if necessary, we may assume that
k ∈ {0, . . . , 2n}. Making use of (4) and the inductive hypothesis we obtain

f

(
k

2n+1
x +

(
1 − k

2n+1

)
y

)

= f

(
k
2n x +

(
1 − k

2n

)
y + y

2

)

≤ f
(

k
2n x +

(
1 − k

2n

)
y
)

+ f(y)
2

+
ε

2
k

2n
‖x − y‖

≤ 1
2

(
k

2n
f(x) +

(
1 − k

2n

)
f(y) + 2ε

√
k(2n − k)

2n
‖x − y‖ + f(y)

)

+
ε

2
k

2n
‖x − y‖

=
k

2n+1
f(x) +

(
1 − k

2n+1

)
f(y)

+

(
ε
√

k(2n − k)
2n

+
ε

2n+1

)

‖x − y‖.

Hence we need to show that√
k (2n − k)

2n
+

1
2n+1

≤ 2

√
k(2n+1 − k)

2n+1
for k ∈ {1, . . . , 2n},

i.e.

2
√

k(2n − k) + 1 ≤ 2
√

k(2n+1 − k) for k ∈ {1, . . . , 2n}.

This inequality is a consequence of the following one

2
√

k(2n − k) + k ≤ 2
√

k(2n+1 − k) for k ∈ {1, . . . , 2n},

which is equivalent to:

4k(2n − k) + k2 + 4k
√

k(2n − k) ≤ 4k(2n+1 − k), for k ∈ {1, . . . , 2n},

4
√

k(2n − k) ≤ 4 · 2n − k, for k ∈ {1, . . . , 2n}
16k(2n − k) ≤ 16 · 4n + k2 − 8k2n, for k ∈ {1, . . . , 2n}
17k2 − 24 · 2nk + 16 · 4n ≥ 0, for k ∈ {1, . . . , 2n}.

The last inequality holds, because its discriminant Δ := (242−4·17·16)4n =
−512 · 4n < 0. �
Corollary 2.1. If f : D → R is ε-smidconvex and continuous at a point then f
is 2ε-sconvex.

Proof. By Proposition 2.2 f is continuous. By Theorem 2.2 inequality (3) with
ε replaced by 2ε holds for every dyadic number t ∈ [0, 1]. By the continuity of
f , it holds also for every t ∈ [0, 1]. �
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Example 2.1. The Takagi function T (x) =
∑∞

k=0
1
2k

dist(2kx,Z), x ∈ [0, 1],
satisfies (4) with ε = 1

2 [1]. It follows by Corollary 2.1 that T is 1-sconvex.
This example shows that, even if an sconvex function is continuous, it can be
non-differentiable at every point.

Example 2.2. Assume that f : D → R is ε-sconvex and let D ⊂ G ⊂ G ⊂ D,
where the set G is open convex with the compact closure. Let ω ∈ C∞

c (Rn)
be such that ω ≥ 0, ω(x) = 0 if ‖x‖ ≥ 1 and

∫
Rn ω(x)dx = 1. Let ωδ(x) =

1
δn ω( 1δ x), for δ > 0.

For δ < dist(G, ∂D) the regularization fδ(x) =
∫

B(0,δ)
f(x − z)ωδ(z)dz is

ε-sconvex in G. Indeed, for x, y ∈ G, t ∈ [0, 1]

fδ(tx + (1 − t)y) =
∫

B(0,δ)

fδ(tx + (1 − t)y − z)ωδ(z)dz

≤
∫

B(0,δ)

[
tf(x − z)ωδ(y − z) + (1 − t)ωδ(y − z)

+ ε
√

t(1 − t)‖x − y‖
]
dz

= tfδ(x) + (1 − t)fδ(y) + ε
√

t(1 − t)‖x − y‖.

Let for x0 ∈ R
n, R > 0

m(B(x0, R)) denote the volume of the ball B(x0, R) in the Euclidean
space R

n, and σ(S(x0, R)) - the area of the sphere S(x0, R), the boundary
of B(x0, R).

Proposition 2.3. If f : D → R is ε-sconvex then for each B(x0, R) ⊂ D the
following Hadamard-type inequality holds

1
m(B(x0, R))

∫

B(x0,R)

fdm ≤ 1
σ(S(x0, R))

∫

S(x0,R)

fdσ + εnRcn,

where cn =
∫ 1

0
rn−1

√
1 − r2dr.

Proof. Using polar coordinates and (3) we have

∫

B(x0,R)

fdm =
∫ R

0

∫

S(x0,r)

f(x)dσ(x)dr

=
∫ R

0

∫

S(x0,r)

[
f(

R + r

2R

(
x0 +

R(x − x0)
r

)

+
R − r

2R

(
x0 − R(x − x0)

r

)]
dσ(x)dr
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≤
∫ R

0

∫

S(x0,r)

[
R + r

2R
f

(
x0 +

R(x − x0)
r

)

+
R − r

2R
f

(
x0 − R(x − x0)

r

)

+ε

√
R2 − r2

2R

∥∥∥∥
2R(x − x0)

r

∥∥∥∥

]

dσ(x)dr.

For x ∈ S(x0, r) we have ‖x − x0‖ = r. Hence
∫

B(x0,R)

fdm ≤ R + r

2R

∫ R

0

∫

S(x0,r)

f

(
x0 +

R(x − x0)
r

)
dσ(x)dr

+
R − r

2R

∫ R

0

∫

S(x0,r)

f

(
x0 − R(x − x0)

r

)
dσ(x)dr

+ ε

∫ R

0

∫

S(x0,r)

√
R2 − r2dσ(x)dr.

By the symmetry of S(x0, r) with respect to x0, in the last equality the first
two integrals are equal. For the third integral, using that σ(S(x0, r)) = rn−1

σ(S(0, 1)), we obtain
∫ R

0

∫

S(x0,r)

√
R2 − r2dσ(x)dr =

∫ R

0

σ(S(x0, r))
√

R2 − r2dr

= σ(S(0, 1))
∫ R

0

rn−1
√

R2 − r2dr

= σ(S(0, 1))Rn+1

∫ 1

0

rn−1
√

1 − r2dr.

Hence
∫

B(x0,R)

fdm ≤
∫ R

0

∫

S(x0,r)

f

(
x0+

R(x−x0)

r

)
dσ(x)dr+εσ(S(0, 1))Rn−1R2cn

=
1

Rn−1

∫ R

0

∫

S(x0,R)

f(x)dσ(x)rn−1dr + εR2σ(S(x0, R))cn

=
R

n

∫

S(x0,R)

fdσ + εR2σ(S(x0, R))cn

=
m(B(x0, R))

σ(S(x0, R))

∫

S(x0,R)

fdσ + εR2σ(S(x0, R))cn.

Hence
1

m(B(x0, R)

∫

B(x0,R)

fdm ≤ 1
σ(S(x0, R)

∫

S(x0,R)

fdσ + εR2 σ(S(x0, R))
m(B(x0, R))

cn.

This ends the proof, because σ(S(x0,R)
m(B(x0,R)) = n

R . �
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Remark 2.1. The constants cn from Proposition 2.3 can be found using well
known properties of the beta and gamma functions, see for example [7, ch. 8].
By substituting t = r2 in the integral defining cn we get

cn =
1
2

∫ 1

0

t
n
2 −1(1 − t)

1
2 dt =

1
2
B

(
n

2
,
3
2

)
=

1
2

Γ
(

n
2

)
Γ

(
3
2

)

Γ
(

n
2 + 3

2

) , n ∈ N.

Using Legendre’s formula

Γ
(

n +
1
2

)
=

√
π

22n−1

Γ(2n)
Γ(n)

=
√

π

22n−1

(2n − 1)!
(n − 1)!

for n ∈ N and basic properties of the gamma function we obtain

c2n+1 =
1
4

Γ
(
n + 1

2

) √
π

Γ(n + 2)
=

π

22n+1

(2n − 1)!
(n + 1)!(n − 1)!

, n ∈ N.

(Obviously, by definition, c1 = π
4 .) Similarly,

c2n =
1
2

Γ(n)Γ
(
3
2

)

Γ
(
n + 3

2

) =
1
4

Γ(n)
√

π

(n + 1
2 )Γ

(
n + 1

2

) =
22n−3

(
n + 1

2

)
((n − 1)!)2

(2n − 1)!
, n ∈ N.
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