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The Aumann functional equation for general weighting
procedures

Lucio R. Berrone

Abstract. The functional equation of composite type

M(M(x,M(x, y)),M(M(x, y), y)) = M(x, y) (1)

arose in the course of the studies on the problem of extension and restriction of the number of
arguments of a mean M performed by G. Aumann in the third decade of the past century. A
solution to (1) in the analytic case was ulteriorly obtained by Aumann himself and remained
as a noteworthy characterization of analytic quasiarithmetic means. An ample generalization
of Eq. (1) which involves general weighting operators is considered in this paper. Under mild
conditions on the regularity of the involved means, the general solution to this generalized
equation is obtained for a particularly tractable class of weighting operators.

Mathematics Subject Classification. 39B22, 37E05.

1. Introduction

In his “habilitationsschrift” presented at the “Technische Hochshule” ,
Munich, in 1933 [1], George Aumann discussed an iterative process to derive a
mean in n+1 variables from a mean in n variables. The process, named by Au-
mann himself augmentation (erhöhung) of a mean, is as follows: for a real inter-
val I and a symmetric mean Mn in the n(≥ 2) variables x1, x2, . . . , xn ∈ I, con-
sider all the n + 1 possible n-tuples (x1, x2, . . . , xn+1)

∨j = (x1, . . . , xj−1, xj+1

. . . , xn+1) obtained from the (n + 1)-tuple (x1, x2, . . . , xn+1) by omitting the
j-th coordinate and then, define a transformation A : In+1 → In+1 by A(x1, x2,
. . . , xn+1) = (X1,X2, . . . , Xn+1), with

Xk = Mn((x1, x2, . . . , xn+1)∨(n+2−k)), k = 1, 2, . . . , n + 1.

Under appropriate hypotheses on the mean M , the iterations

An =

n times
︷ ︸︸ ︷

A ◦ A ◦ · · · ◦ A

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-015-0344-4&domain=pdf
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of the so defined transformation A pointwise converge, when n ↑ ∞, to a
transformation A∞(x1, x2, . . . , xn+1) with all its coordinate functions equal to
one another; i.e.,

A∞(x1, x2, . . . , xn+1) = (Mn+1,Mn+1, . . . , Mn+1), (2)

where Mn+1 = Mn+1(x1, x2, . . . , xn+1) is the upper mean (obermittel) of Mn.
As a consequence of (2), the mean Mn+1 turns out to be invariant under the
transformation A, which is symbolically expressed by Mn+1 ◦ A = Mn+1 or,
writing in the variables,

Mn+1 (Mn(x1, x2, . . . , xn),Mn(x1, . . . , xn−1, xn+1), . . . , Mn(x2, x3, . . . , xn+1))
= Mn+1(x1, x2, . . . , xn+1). (3)

Later, a process opposite to the augmentation of a mean was considered
by Aumann. In [2], the lower mean (untermittel) of the symmetric mean in n
variables Mn is defined as the solution w of the equation

Mn(x1, . . . , xn−1, w) = w (4)

which turns out, again imposing suitable hypotheses on Mn, to be a unique
mean in n − 1 variables Mn−1. The process named reduction (erniedrigung)
of a mean consists of the classical solution of the Eq. (4) by iteration. The
functional relation among Mn and Mn−1 expressed by

Mn(x1, . . . , xn−1,Mn−1(x1, . . . , xn−1)) = Mn−1(x1, . . . , xn−1) (5)

is quickly derived from (4).
The question of establishing when the above defined processes are inverse to

one another led him, in the most simple case in which n = 2, to the composite
functional equation

M(M(x,M(x, y)),M(M(x, y), y)) = M(x, y), x, y ∈ I. (6)

Indeed, setting x3 = M2(x1, x2) in the case n = 2 of (3), it is deduced that

M3(M2(x1, x2),M2(x1,M2(x1, x2)),M2(x2,M2(x1, x2)))
= M3(x1, x2,M2(x1, x2)),

or, taking into account the symmetry of the involved means,

M3(M2(x1,M2(x1, x2)),M2(M2(x1, x2), x2),M2(x1, x2))
= M3(x1, x2,M2(x1, x2)).

The right hand side of this equality coincides with M2(x1, x2) by the case
n = 3 of (5); therefore,

M3(M2(x1,M2(x1, x2)),M2(M2(x1, x2), x2),M2(x1, x2)) = M2(x1, x2)

and hence, by the uniqueness of solution of (the case n = 3 of) Eq. (4),

M2(M2(x1,M2(x1, x2)),M2(M2(x1, x2), x2)) = M2(x1, x2),

which is, save the differences in the notation, identical to Eq. (6).
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In recent years, the problem of constructing general augmentation or reduc-
tion algorithms for general means has received some attention. In this regard,
the reader is referred to the articles [9,10]. The present paper is instead aimed
at the study of an ample generalization of Eq. (6).

Aumann [2] considered Eq. (6) in the analytic case, showing that the qua-
siarithmetic (analytic) mean

M(z1, z2) = f−1

(

f(z1) + f(z2)
2

)

with f an arbitrary regular function, is its general solution in the class of
analytic means; i.e., functions M(z1, z2) holomorphic in a neighborhood V
of a regular point (a, a) ∈ C

2 which are symmetric and reflexive in V . In
attempting to prove a similar result for real variables, one is faced with two
obstacles at least. At a primary level, the usual order of the real line enters
directly in the formulations of the internality, the characteristic property of
real means. Moreover, the complex variable methods used by Aumann do not
apply to real variables. It is an interesting example of the conservation of the
functional forms, that the quasiarithmetic mean

Af (x, y) = f−1

(

f(x) + f(y)
2

)

, x, y ∈ I, (7)

with f : I → R a strictly monotonic and continuous function, continues to be a
solution to (6) in the real case. Indeed, a continuous symmetric strict solution
of (6) which is not a quasiarithmetic mean is not known. The general solution
of (6) in the class of non-strict continuous symmetric means includes means
like min{x, y} and max{x, y}. In its turn, the means given by

Af,g(x, y) =

⎧

⎨

⎩

Af (x, y), x ≤ y

Ag(x, y), x ≥ y
,

where f, g : I → R are strictly monotonic and continuous functions satisfy-
ing f 	= αg + β for every α, β ∈ R, constitute a family of continuous non-
symmetric and strict solutions. Aumann’s equation also has a rich family of
discontinuous solutions; among them, the following ones. For a nontrivial par-
tition P ={A,B} of R

+, the mean defined by

MP(x, y) =

⎧

⎨

⎩

y, x/y ∈ A

x, x/y ∈ B

is a homogeneous discontinuous solution in I = R
+; while

Md(x, y) =

⎧

⎨

⎩

y, x, y ∈ Q

x, in other cases
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is a solution discontinuous at every point of R
2.

As already mentioned, a generalization of Eq. (6) is presented and discussed
in this paper. After recalling a series of basic concepts, abstract weighting
operators acting on general classes of means are defined in Sect. 2. The main
properties of these operators named weighting procedures are studied there
and some important examples are considered in detail. Even though weighting
versions of means and inequalities among them play a capital role in the theory
of means, only an occasional treatment of particular weightings seems to be
found in the specific literature [7,8], so that the length of Sect. 2 would be
justified in part by this fact. Weighting procedures for means in n variables
are studied in [6]. The useful weight representation of two-variable means is
also introduced in Sect. 2, while the Aumann equation is extended in the
following Sect. 3 to general weighting procedures. In Sect. 4, a noticeable type
of weighting procedures is isolated. The Aumann generalized equation turns
out to be elementary tractable for these weighting procedures, a fact that
ultimately derives from the statement and proof of some results furnishing its
general solution in the last Sect. 4.

2. Means and weighting procedures

Let I be a real interval. A (two-variable) mean M defined on I is a function
M : I × I → I which is internal ; i.e., it satisfies the property

min{x, y} ≤ M(x, y) ≤ max{x, y}, x, y ∈ I. (8)

The mean is said to be strict when the inequalities in (8) are strict if x 	= y
(strict internality). Considering that the equality

M(x, x) = x, x ∈ I, (9)

holds for every mean M , means are reflexive functions. A mean M is said to
be symmetric when

M(x, y) = M(y, x), x, y ∈ I. (10)

The coordinate means X(x, y) ≡ x and Y (x, y) ≡ y are the unique means de-
pending on a sole variable. The functions at the leftmost and rightmost mem-
bers of the inequalities (8) are, respectively, the extremal means min{x, y}
and max{x, y}. With few exceptions, the means considered throughout this
paper will be continuous means; i.e., means that are continuous functions.
The classes of all means and symmetric means defined on I will be respec-
tively denoted by GM(I) and SM(I). If M(I) is a given class of means, then,
Mk(I), k = 0, 1, . . ., and MS(I) will denote the subclasses of M(I) respec-
tively composed by the Ck means and the strict means. For instance, SM2

S(I)
stands for the class of symmetric strict C2 means defined on I.
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Let Ω ⊆ R
2 be a non-void set and F : Ω → R be a real function. Moreover,

let W ⊆ R be a set (the set of parameters) containing two points at least. A
real parameterization of F is a function Φ : Ω × W → R such that

(P1) for a certain w1 ∈ W , Φ(·, w1) = F ;
(P2) for another w2 ∈ W , Φ(·, w2) 	= F .

By a weighting of a mean M we mean a set of means parameterized by the
unitary interval [0, 1] and fulfilling special properties. Namely, a parameteri-
zation M(·;w) of a mean M is said to be a weighting (of M), when

(W1) M(·;w) is a mean defined on I for every w ∈ [0, 1],
(W2) M(·; 1/2) = M ,
(W3) M(x, y; 0) = x and M(x, y; 1) = y, for all x, y ∈ I.

Note that, in view of (W1), M(x, x;w) ≡ x, w ∈ [0, 1]. A notation equiv-
alent to M(·;w) in which the weight w is written as a superscript will be
frequently used along this paper and it must not be confused with a power of
the mean M ; in symbols, M(·;w) = Mw(·) 	= [M(·)]w.

A weighting of a mean M is said to be continuous [Ck , analytic] when

(CW) w �→ M(x, y;w) is continuous [Ck, analytic] for every x, y ∈ I;

while it is said to be [strictly ] monotonic when

(MW) w �→ M(x, y;w) is [strictly] increasing if x < y and [strictly] decreasing
if x > y.

A weighting is said to be exhaustive when

(EW) w �→ M(x, y;w) is onto [x, y].

By the Darboux property and (W3), a weighting is exhaustive provided that
it is continuous. Furthermore, for a continuous and strictly monotonic weight-
ing M(·, w), the function w �→ M(x, y;w) is a homeomorphism onto [min{x, y},
max{x, y}] provided that x 	= y.

Several invariance properties possibly enjoyed by weightings are now de-
fined. Let f : I → I be a strictly monotonic and continuous function. A
weighting M(·;w) is said to be scale invariant when

(IW) N(x, y;w) = f−1(M(f(x), f(y);w)) for every w ∈ [0, 1] provided that
N(x, y) = f−1(M(f(x), f(y))).

A weighting is said to be homogeneity preserving provided that

(HW) M(·;w) is a homogeneous mean for every w when M(·) is a homoge-
neous mean;

while it is said to be translation preserving when

(TW) M(x + c;w) = M(x;w) + c holds for every c = (c, c) and for every
w ∈ [0, 1] provided that M(x + c) = M(x) + c for every c = (c, c).
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Observe that property (HW) requires M(·;w) to be defined on a cone of
R for every w ∈ [0, 1]. In its turn, M(·;w), w ∈ [0, 1], must be defined on the
whole R in property (TW).

Now, let M(I) and N (I), M(I) ⊆ N (I), be two classes of means defined on
an interval I. A function W : M(I)×[0, 1]→ N (I) is to be named a weighting
procedure (w.p., for short) provided that, for every M ∈ M(I), W(M ;w) is
a weighting of the mean M . Intuitively, a w.p. is an algorithm assigning a
weighted form W(M ; ·) to a general mean M.

Several notions of continuity are naturally connected with weighting pro-
cedures. A w.p. W : M(I)×[0, 1]→ N (I) is said to be weight-continuous
[ weight-Ck, weight-analytic] when
(WWP) w �→ W(M ;w) is continuous [Ck, analytic] for every M ∈ M(I).

If M(I) and N (I) are suitably topologized, the w.p. is said to be mean-
continuous [sequentially mean-continuous] when
(MWP) M �→ W(M ;w) is continuous [sequentially continuous] for every w ∈

[0, 1];
and it is simply said to be continuous when
(CWP) (M,w) �→ W(M ;w) is continuous.

For many purposes M(I) will be endowed with the pointwise convergence
topology.

A [strictly ] monotonic w.p. W : M(I)×[0, 1]→ N (I) is one satisfying
(MMP) W(M ;w) is a [strictly] monotonic weighting for every M ∈ M(I).

As illustrated by the examples at the end of this section, the monotonicity
of a w.p. depends heavily on the class M(I). If W(·;w) is, when defined on
a certain class M(I), not a strictly monotonic w.p., then, nontrivial solutions
K to the equation

W(K;w1) = W(K;w2) (11)
might exist in M(I) for weights w1 < w2. In particular, nontrivial fixed points
of the operator W(·;w) might exist in M(I) for weights w 	= 0, 1/2, 1; i.e.,
nontrivial solutions K to the equation

W(K;w) = K. (12)

Let us denote by Kw(W) the set of such solutions; i.e.,

Kw(W) ={K ∈ M(I) : W(K;w) = K}, (13)

and the singular set K(W) is the w.p. is the set

K(W) =
⋃

{Kw(W) : w 	= 0, 1/2, 1}. (14)

In the case in which K(W) ={X,Y } where X and Y are the coordinate means
(trivial solutions to Eq. (12)), the w.p. is said to posses a trivial singular set.

A w.p. W : M(I)×[0, 1]→ N (I) is said to be order preserving when
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(OWP) W(M ; ·) ≤ W(N ; ·) provided that M ≤ N .

If the property (OWP) is satisfied with strict inequality signs, then, the
w.p. is said to be strictly order preserving.

In general a w.p. W is said to be invariant in some sense if the weighting
W(M ; ·) is invariant in the same sense for every M ∈ M(I). Thus, a w.p. W
will be called scale invariant when

(IWP) for every f : I → I continuous and strictly monotonic, W(N ; ·)(x, y) =
f−1(W(M ; ·)(f(x), f(y)), x, y ∈ I, provided that N(x, y) ≡ f−1

(M(f(x), f(y))), x, y ∈ I.

A comprehensive way of deriving a w.p. is based on a particular represen-
tation of two-variable means. Concretely, let M be a mean defined on I and
denote by Δ(I2) = {(x, x) : x ∈ I} the set of points at the diagonal of the
square I2. The functional weight λM : I2 \ Δ(I2) → [0, 1] of the mean M is
defined by

λM (x, y) =
M(x, y) − x

y − x
, y 	= x. (15)

In terms of its functional weight λM , a mean M is uniquely representable in
the form

M(x, y) =
{

(1 − λM (x, y))x + λM (x, y)y, y 	= x
x, y = x

. (16)

Observe in passing that the representation (16) can not be directly extended
to means in n > 2 variables.

The main properties of the functional weight λM are accumulated in the
next proposition, whose simple proof will be omitted.

Proposition 1. Let M be a mean defined on the real interval I.

i) The functional weight λM is a continuous function on I2 \Δ(I2) provided
that M is a continuous mean. Conversely, the continuous mean

M(x, y) = (1 − λ(x, y))x + λ(x, y)y, x, y ∈ I,

is associated to an arbitrary bounded extension to I2 of a continuous func-
tion λ : I2 \ Δ(I2) → [0, 1]; moreover,

ii) λM can be continuously extended to the whole I2 if and only if there ex-
ist the partial derivatives ∂M

∂x (t, t), ∂M
∂y (t, t) for every t ∈ I and they are

continuous on I (as functions of t).
iii) 0 < λM (x, y) < 1 for every (x, y) ∈ I2 \ Δ(I2) if and only if M is a strict

mean.
iv) M is a symmetric mean if and only if λM (x, y) + λM (y, x) = 1, x, y ∈ I.
v) λM = α with α ∈ [0, 1] if and only if M is the weighted arithmetic mean

Lα(x, y) = (1 − α)x + αy.
vi) If X, Y are the coordinate means, then, λX = 0 and λY = 1.
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vii) The functional weights corresponding to the extremal means min and max
are respectively given by

λmin(x, y) =
{

0, x < y
1, x > y

and λmax(x, y) =
{

1, x < y
0, x > y

.

The assertion in the next proposition is exemplified by Proposition 1, vii).

Proposition 2. Let M, N be two means defined on the real interval I. Then,
M ≤ N if and only if

λM ≤ λN if x < y, and λM ≥ λN if x > y. (17)

The inequalities in (17) are strict when M < N, x 	= y.

Proof. The proof is a straightforward consequence of (15). �

Setting F(I) = {λ| λ : I2 \ Δ(I2) → [0, 1]} and taking into account that
a mean M is completely characterized by the function λM , a w.p. W can be
represented as a function Λ : F1(I)×[0, 1]→ F2(I) with F1(I) ⊆ F2(I) ⊆ F(I)
and satisfying the following conditions:
(Λ1) Λ(λ; 0) = 0 and Λ(λ; 1) = 1 for every λ ∈ F(I);
(Λ2) Λ(λ; 1/2) = λ for every λ ∈ F1(I).

From now on, the representation Λ of a w.p. W in terms of functional
weights will be called the weight representation of W. Clearly, a “dictionary”
can be created to specify the correspondence among the standard represen-
tation W and the weight representation Λ of a w.p.. Regarding the classes of
means, the family of functions FS(I) = {λ ∈ F(I) : 0 < λ < 1} corresponds to
the class GMS(I) of strict means and F0

S(I) = {λ ∈ FS(I) : λ is continuous}
corresponds to the class GM0

S(I) of continuous strict means. Of course, the
above defined properties of a w.p. in the standard representation also find, in
this dictionary, their counterparts expressed in terms of the weight represen-
tation. The sole case of weight-continuity and monotonicity is shown by the
next result.

Proposition 3. For every λ ∈ F(I), the function w → Λ(λ;w) turns out to be
continuous or [strictly] increasing provided that the w.p. is weight-continuous
or [strictly] monotonic, respectively.

The proof of this result as well as of conditions (Λ1), (Λ2) is a straightfor-
ward consequence of the equality

Λ(λ;w) =

⎧

⎨

⎩

Mw(x,y)−x
y−x , y 	= x

Mw
y (x, x), y = x

, (18)

which can be equivalently expressed in the form

Mw(x, y) = (1 − Λ(λ;w))x + Λ(λ;w)y. (19)
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To end this section, a series of examples of particular w.p. is exhibited and
the main properties of every one of them are registered.

Example 4. (The sectionally linear w.p.) A linear interpolation between the
values Λ(λ; 0) = 0 and Λ(λ; 1/2) = λ followed by another between the values
Λ(λ; 1/2) = λ and Λ(λ; 1) = 1, yields

Λ(λ;w) =
{

2wλ, 0 ≤ w ≤ 1/2
λ − (1 − 2w)(1 − λ), 1/2 ≤ w ≤ 1 . (20)

Clearly, (20) is weight-continuous but it is not differentiable at w = 1/2 unless
λ(x, y) = 1/2. Moreover, it is a strictly monotonic w.p. in the class FS(I) =
{λ ∈ F(I) : 0 < λ < 1} corresponding to strict means, but it is only monotonic
when defined on the whole class F(I). However, the singular set of this w.p.
is trivial even in that case; more precisely,

Kw(W) =
{{X}, w ∈ (0, 1/2)

{Y }, w ∈ (1/2, 1) .

Example 5. (The homographic w.p.) When the interpolation is made by fitting
a homographic function to the three points arising in conditions (Λ1), (Λ2),
the continuous w.p.

Λ(λ;w) =
wλ(x, y)

(1 − w) (1 − λ(x, y)) + wλ(x, y)
(21)

is obtained. Clearly, the w.p. Λ given by (21) is weight-analytic and, in view
of

∂Λ
∂w

(λ;w) =
λ(x, y)(1 − λ(x, y))

((1 − w) (1 − λ(x, y)) + wλ(x, y))2
> 0,

it turns out to be strictly monotonic when defined on the class FS(I). Like the
sectionally linear w.p., the homographic w.p. has a trivial singular set even if
it is defined on the class F(I); more precisely,

Kw(W) = {X,Y }, w ∈ (0, 1/2) ∪ (1/2, 1).

In [6], other properties of (21) are established.

The weighting procedures described in the examples above are particular
cases of functional weighting procedures. Given a function Φ : [0, 1]2 → [0, 1],
the w.p. Λ : F1(I)×[0, 1]→ F2(I) defined by

Λ(λ;w) = Φ(λ,w), λ ∈ F1(I),

is the functional weighting procedure associated to the function Φ. Clearly,
there exists a correspondence among the properties of the w.p. on one hand
and, on the other, the properties of the function Φ. The development of this
point will not be pursued here and it is limited only to a straightforward
observation: the weight-continuity and monotonicity of the w.p. respectively
corresponds to the continuity and monotonicity of the function w �→ Φ(λ,w).
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Example 6. (The dyadic w.p.) A noteworthy not functional w.p. is defined
by iteration. Namely, given a function F : I × I → I, a family {F d(x, y) : d ∈
D([0, 1])} of dyadic iterates on [x, y] of F is inductively defined as follows (cf.
[3–5]): the first step consists in setting

F 0(x, y) ≡ x, F 1(x, y) ≡ y; (22)

then, assuming that F
j

2n (x, y) is known for n ≥ 0 and for every 0 ≤ j ≤ 2n,
the inductive step establishes that

F
k

2n+1 (x, y) =

⎧

⎪
⎨

⎪
⎩

F
h
2n (x, y), if k = 2h, 0 ≤ h ≤ 2n

F
(

F
h
2n (x, y), F

h+1
2n (x, y)

)

, if k = 2h + 1, 0 ≤ h ≤ 2n − 1
.

(23)
When M is a continuous strict mean, the dyadic iterates {Md(x, y) : d ∈
D([0, 1])} are dense in the interval [x, y] and it makes sense to consider the
completion {M δ(x, y) : δ ∈ [0, 1]}. In fact, for a given δ ∈ (0, 1), there exists
an increasing sequence {dn} ⊆ D([0, 1]) such that dn ↑ δ when n ↑ ∞, then,
the sequence {Mdn(x, y)} is strictly monotonic (increasing when x < y, de-
creasing when x > y and stationary when x = y) and bounded (min{x, y} ≤
Mdn(x, y) ≤ max{x, y}, n ∈ N); so that it makes sense to define M δ(x, y) by

M δ(x, y) = lim
n↑∞

Mdn(x, y). (24)

The following result, whose proof can be found in [3,4], summarizes the above
discussion.

Theorem 7. For a strictly internal and reflexive function M , the function d �→
Md(x, y) defined on D([0, 1]) is monotonically extended by (24) to the interval
[0, 1]. The extension δ �→ M δ(x, y) is a continuous function provided that M
is a continuous mean. δ �→ M δ(x, y) is a monotonic function; increasing when
x < y and decreasing when x > y. Furthermore, M δ is a continuous mean
when 0 < δ < 1 and M0(x, y) = x, M1(x, y) = y.

After Theorem 7, it turns out that W : GM0
S(I)× [0, 1] → GM0

S(I) defined
by the dyadic iteration

W(M ;w) = Mw

is a continuous and strictly monotonic w.p.. Very noticeably, this w.p. is scale
invariant; however, its monotonicity properties get worse if applied to non-
strict means. For example, it is not difficult to see that, in the class GM0(I)
of continuous means, the general solution to the functional equation

M(x,M(x, y)) = M(x, y), x, y ∈ [0, 1], (25)
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which is no other than the equation M1/4(x, y) = M(x, y), includes the means
expressed by

M(x, y) =

⎧

⎨

⎩

φ(x, y), 0 ≤ x ≤ a(y)
x, a(y) ≤ x ≤ b(y)
ψ(x, y), b(y) ≤ x ≤ 1

, (26)

where the functions φ, ψ, a and b are continuous in their respective domains
and satisfy the inequalities

0 ≤ a(y) ≤ φ(x, y) ≤ y, 0 ≤ x ≤ a(y), 0 ≤ y ≤ 1;
y ≤ ψ(x, y) ≤ b(y) ≤ 1, 0 ≤ x ≤ a(y), 0 ≤ y ≤ 1.

Indeed, the general solution to (25) continues to be expressed by formula (26)
provided that functions a and b vary in the classes of upper and lower semi-
continuous functions, respectively, and M is suitably defined at the points
(x, y0) with y0 a discontinuity point of a or b. In any case, the singular set
K1/4 = {K : K1/4 = K} turns out to be a family of means depending on
arbitrary functions.

A density argument (see [3,4]) enable us to express Aw in the form

Aw(x, y) = (1 − w)x + wy = Lw(x, y); (27)

in other words, the weighted arithmetic means Lw arise as images of the arith-
metic mean under the dyadic w.p.. Thus, the scale invariance of the w.p. gives

Aw
f (x, y) = f−1((1 − w)f(x) + wf(y)), (28)

where Af is the quasiarithmetic mean (7).
As shown in the next section, a direct generalization of the Aumann equa-

tion can be obtained by employing the dyadic w.p..

Example 8. (A discontinuous w.p.) Perhaps, the simplest way of satisfying
conditions (Λ1), (Λ2) is represented by the w.p. Λ∞ : F(I)×[0, 1]→ F(I) given
by

Λ∞(λ;w) =

⎧

⎨

⎩

0, w ∈ [0, 1/2)
λ, w = 1/2
1, w ∈ (1/2, 1]

. (29)

Now consider a w.p. Λ such that: i) Λ is monotonic; ii) it is sequentially mean-
continuous (in the topology of the pointwise convergence) and, iii) it has a
trivial singular set; i.e. K(W) = {X,Y }. These conditions are satisfied by the
weighting procedures presented in the previous examples when they are defined
on proper classes of means. Let us compute the value of a limit which, in the
superscript notation, is expressed by the “infinite tower”

(
(

((Mw)w)···)w
)···

.
To this end, define the iterates Λn, n ∈ N, by

Λn(λ;w) =

⎧

⎨

⎩

Λ(λ;w), n = 1

Λ(Λn−1(λ;w);w), n > 1
, w ∈ [0, 1].
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Let us show that the discontinuous w.p. (29) arises as the limit value of these
iterates when n ↑ ∞; i.e.,

lim
n↑∞

Λn(λ;w) = Λ∞(λ;w), λ ∈ F(I).

In fact, taking into account that Λn(λ; 0) = 0, Λn(λ; 1/2) = λ and Λn(λ; 1) = 1
for n ∈ N, λ ∈ F(I), the equality (29) is true for the weights w = 0, 1/2, 1.
Now assume that w ∈ (0, 1/2). After Proposition 3, the inequalities Λn(λ;w) ≤
Λn−1(λ;w), n ∈ N, hold by the monotonicity of the w.p.; thence, the bounded
sequence {Λn(λ;w)} below is decreasing and there exists the limit

lim
n↑∞

Λn(λ;w) = l0 ≥ 0.

By the sequential continuity of the w.p., this limit satisfies Λ(l0;w) = l0 and
therefore, in view of the triviality of the singular set K(W), it turns out that
l0 = 0. In the case w ∈ (1/2, 1), it can be similarly proved that the increasing
sequence {Λn(λ;w)} converges to l1 = 1.

3. Aumann equation for weighting procedures

Let Mw be a w.p. defined on a class of continuous means M(I) ⊆ GM0(I)
and let p, q ∈ [0, 1]. The functional equation

M(Mp(x, y),Mq(x, y)) = M(x, y), x, y ∈ I, (30)

will be named an Aumann generalized equation for the weighting procedure
Mw. To stress the role of the particular weights, Eq. (30) will be also named
Aumann generalized equation with weights p, q.

The Aumann equation (6) is the Aumann generalized equation correspond-
ing to the dyadic w.p. with weights p = 1/4, q = 3/4. In fact, (22)–(23) yield

M1/4(x, y) = M(x,M(x, y)), M3/4(x, y) = M(M(x, y), y).

Observe that the Aumann generalized equation for the dyadic w.p. is an equa-
tion not expressible in finite terms when p or q are not dyadic numbers.

Equation (30) becomes vacuous for particular values of the weights p, q. In
the cases in which p = 0, q = 1 or p = 1/2 = q, (30) reduces to the identity
M(x, y) = M(x, y); while the equation of symmetric means M(y, x) = M(x, y)
is obtained when p = 1, q = 0. Restrictions of a different kind arise when the
w.p. is monotonic, as shown by the following:

Lemma 9. Assume that the weighting Mw is strictly monotonic, then, Eq. (30)
has no solution in MS(I) when p, q ∈ (0, 1/2) or p, q ∈ (1/2, 1).
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Proof. Assume that Eq. (30) with weights p, q ∈ [0, 1], p < q, is solved by a
mean M . Setting x < y, both the strict internality of M and the monotonicity
of the w.p. yield

Mp(x, y) < M(Mp(x, y),Mq(x, y)) < Mq(x, y),

or, considering that M solves Eq. (30),

Mp(x, y) < M(x, y) = M1/2(x, y) < Mq(x, y).

Hence, the inequalities

p <
1
2

< q.

follow from the strict monotonicity of the w.p.. �

If the solution M is not strict, a similar reasoning proves that p ≤ 1/2 ≤ q,
with at least one inequality sign being strict.

Now, consider the arguments of the mean M in the left member of Eq. (30).
For a continuous mean M and 0 < p < 1/2 < q < 1, a transformation
TM : I2 → I2 is defined as follows:

TM (x, y) = (Mp(x, y),Mq(x, y)), (x, y) ∈ I2. (31)

For Mp and Mq are means, TM turns out to be a mean-type map (cf. [11]);
furthermore, since Mp and Mq are strict means provided that the w.p. Mw

is strictly monotonic, it can be proved that the iterations Tn
M (pointwise)

converge, when n ↑ ∞, to another mean-type map of the form (K(x, y),K(x,
y)), where K is a continuous (strict) mean satisfying

K(Mp(x, y),Mq(x, y)) = K(x, y); (32)

i.e., K is invariant under the transformation TM (see [11] and the references
cited therein). Using these facts and the terminology, it can be affirmed that
the Aumann generalized equation is satisfied by a (strict) mean M if and only
if M is TM -invariant. A formal statement of this result is written for future
reference.

Proposition 10. Let Mw be a strictly monotonic and continuous w.p..The
Aumann generalized equation (30) is solved by a continuous mean M if and
only if

lim
n↑∞

Tn
M (x, y) = (M(x, y),M(x, y)), x, y ∈ I,

where TM is the mean-type map defined by (31). Furthermore, the solution M
is a strict mean.

The invariance properties of a w.p. are generally inherited by the solutions
to the Aumann generalized equation (30). For instance, by the scale invariance
of the dyadic w.p., if a continuous mean M is a solution to the Aumann
equation (6), then, the conjugated mean f−1 ◦M ◦ (f × f) is a solution as well
for every continuous and strictly monotonic function f : I → I (recall that
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f × f denotes the cartesian product (f × f)(x, y) = (f(x), f(y)), x, y ∈ I). Of
course, the same is true for the Aumann generalized equation for the dyadic
w.p.. In this case, if the equality p+q = 1 is satisfied by the weights p, q, then,
a simple computation shows that the entire family of quasiarithmetic means
is contained in the general solution to the equation.

4. Simple weighting procedures

Suppose that Mw is a continuous (weight-continuous and sequentially mean-
continuous) and strictly monotonic w.p. defined on a class of continuous means
M(I)⊆ GM0(I). The weight representation Λ of the w.p. Mw will be indis-
tinctly used throughout this section. For a pair of weights (p, q) satisfying
0 < p < 1/2 < q < 1, the w.p. Λ is said to be (p, q)-simple when the
quotient (λ − Λ(λ; p)) / (Λ(λ; q) − Λ(λ; p)) depends on (x, y) only through the
functional weight λ or; expressed in symbols, when there exists a function Fp,q

such that
λ − Λ(λ; p)

Λ(λ; q) − Λ(λ; p)
= Fp,q(λ), λ ∈ F(I) \ {0, 1}. (33)

When a w.p. is (p, q)-simple for every pair (p, q), 0 < p < 1/2 < q < 1, then it
is said to be a simple w.p..

It is emphasized that the function Fp,q is not generally defined at the ex-
tremal weights λ = 0 or λ = 1, where the quotient of the left hand side of
(33) may not exist. However, some examples are shown below of weighting
procedures in which Fp,q is defined and continuous on [0, 1]. Moreover, taking
into account that 0 < Fp,q < 1, λ ∈ F(I) \ {0, 1}, by the strict monotonic-
ity of Λ; it turns out that Fp,q is a self-map of the interval (0, 1) which, in
view of the sequential mean continuity of Mw, is continuous. In regard to the
dependence of Fp,q on the parameters p, q, note that (p, q) �→ Fp,q(t) is contin-
uous on (0, 1/2) × (1/2, 1) and that p �→ Fp,q(t) and q �→ Fp,q(t) are (strictly)
decreasing functions.

If λ is the functional weight of the mean M , an easy computation based on
(19) yields

λ − Λ(λ; p)
Λ(λ; q) − Λ(λ; p)

=
M − Mp

Mq − Mp
, x 	= y. (34)

Proposition 11. i) If the w.p. W is (p, q)-simple on a class of means which
includes the weighted arithmetic means Lt(x, y) = (1−t)x+ty, 0 < t < 1,
then,

Fp,q(t) =
t − Λ(t; p)

Λ(t; q) − Λ(t; p)
, t ∈ (0, 1),

where Λ(t;w) stands for the weight representation of W(Lt;w).
ii) Every functional w.p. is simple.
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Proof. i) is immediate from the definition of (p, q)-simple w.p.. If Λ denotes
the weight representation of a functional w. p. associated to the function Φ
and 0 < p < 1/2 < q < 1, then,

λ − Λ(λ; p)
Λ(λ; q) − Λ(λ; p)

=
λ − Φ(λ; p)

Φ(λ; q) − (λ; p)

is a function of λ ∈ F(I) \ {0, 1} and therefore, Λ is (p, q)-simple. Since (p, q)
was arbitrary, this proves ii). �

As an application of this result, let us compute the map Fp,q for the func-
tional weighting procedures of Examples 4 and 5. In the first place, for the
sectionally linear w.p.,

t − Φ(t; p)
Φ(t; q) − Φ(t; p)

=
t − 2pt

t − (1 − 2q)(1 − t) − 2pt

=
(1 − 2p)t

2 (1 − q − p) t + (2q − 1)
;

so that, the corresponding function Fp,q is the homographic map given by

Fp,q(t) =
(1 − 2p)t

2 (1 − q − p) t + (2q − 1)
. (35)

In the case of the homographic w.p., Fp,q is the following affine function:

Fp,q(t) =
t − pt

(1−p)(1−t)+pt

qt
(1−q)(1−t)+qt − pt

(1−p)(1−t)+pt

=
(1 − 2p) (2q − 1)

q − p
t +

1 − 2p

q − p
(1 − q) . (36)

Observe that in both cases the function Fp,q is also defined at the extremal
weights t = 0, 1.

Whichever be the pair (p, q), the dyadic w.p. is not a (p, q)-simple w.p.. To
prove this assertion let us consider the Aumann equation (6) with I = R

+ as
the domain of its variables. For the harmonic mean H(x, y) = 2xy/(x + y),
whose functional weight λH is given by

λH(x, y) =
x

x + y
,

the equality

Λ(λH ;w) =
wx

wx + (1 − w)y
is derived from (28) and (15). Thus, in computing the quotient

λH − Λ(λH ; p)
Λ(λH ; q) − Λ(λH ; p)

,
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the affine function (36) takes part again; i.e.,

λH − Λ(λH ; p)
Λ(λH ; q) − Λ(λH ; p)

= Fp,q(λH),

where Fp,q is given by (36). An analogous computation, this time for the
geometric mean G(x, y) = xy, gives

λG(x, y) =
√

x√
x +

√
y
, Λ(λH ;w) =

x1−wyw − x

y − x
;

and therefore,

λH − Λ(λH ; p)
Λ(λH ; q) − Λ(λH ; p)

=
(y/x)

1
2−p − 1

(y/x)q−p − 1
= F ∗

p,q(λG),

where

F ∗
p,q(t) =

(1 − t)1−2p − t1−2p

(1 − t)2(q−p) − t2(q−p)
.

Since F ∗
p,q(0) = 1 = F ∗

p,q(1), if F ∗
p,q(t) was an affine function, then, it should

be F ∗
p,q(t) ≡ 1; hence, F ∗

p,q 	= Fp,q and the dyadic w.p. is not (p, q) -simple for
any pair (p, q), as affirmed. The same computations prove the assertion for a
domain of the variables of the form I = |a, b| ⊆ R

+, while the case I = R is
managed by a previous introduction of a logarithmic change of coordinates.

The study of simple weighting procedures in connection with the Aumann
generalized equation is justified by the following:

Proposition 12. Let Λ be a (p, q)-simple w.p.. A mean M with functional weight
λ solves the Aumann generalized equation ( 30) if and only if the equality

(λ ◦ TM )(x, y) = Fp,q(λ(x, y)), (37)

holds for every x, y ∈ I, x 	= y.

In the equality (37), TM is the mean-type map defined by (31) and Fp,q is
the function given by (33).

Proof. From (16), (19) and (31), it is derived as

M(Mp(x, y),Mq(x, y)) = (1−(λ ◦ TM )(x, y))Mp(x, y)+(λ ◦ TM )(x, y)Mq(x, y)
= Mp(x, y) + (Mq(x, y) − Mp(x, y))(λ ◦ TM )(x, y);

thus, Eq. (30) is satisfied by M if and only if

M(x, y) − Mp(x, y)
Mq(x, y) − Mp(x, y)

= (λ ◦ TM )(x, y), x 	= y;

whence, after equality (15), equality (37) is obtained. �

A first consequence of Proposition 12 is stated in the following:
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Corollary 13. Let Λ be a (p, q)-simple w.p. defined on a class of means contain-
ing the weighted arithmetic means {Lα : 0 < α < 1}. Then, Lα is a solution
of the Aumann generalized equation (30) if and only if α is a fixed point of the
map Fp,q.

Proof. Since the functional weight of the weighted arithmetic mean Lα is
λ(x, y) ≡ α, the equality (37) of Proposition 12 take the form

α = Fp,q(α)

and it is satisfied if and only if α is a fixed point of Fp,q. �

Observe that the corollary is also true for the extremal weights α = 0, 1
provided that Fp,q is defined on [0, 1].

The equality (37) can be iterated; namely,

(λ ◦ T 2
M )(x, y) = (λ ◦ TM )(TM (x, y)) = Fp,q(λ(TM (x, y))) = F 2

p,q(λ(x, y)),

and, after an inductive reasoning, for every n ∈ N,

(λ ◦ Tn
M )(x, y) = Fn

p,q(λ(x, y)), x 	= y. (38)

It is clear from (38) that the solutions of the Aumann generalized equation
closely depend on the asymptotic behavior of the map Fp,q.

In order to pass to the limit in (37) and (38), in the remaining of this
section let us frequently consider means M which are regular enough so that
their corresponding functional weights λM are continuously extendable to the
whole I2. Under this assumption, the images λ(I2) and λ(Δ(I2)) are both
intervals; clearly λ(Δ(I2)) ⊆ λ(I2) ⊆ [0, 1].

Theorem 14. Let M be a mean with functional weight λ and suppose that
M solves the Aumann generalized equation (30) for a (p, q)-simple w.p. Mw.
Then,

i) the restriction Fp,q|λ(I2) = fp,q is a self map of λ(I2); i.e., fp,q :
λ(I2) → λ(I2);
moreover, assuming that λ is (extendable to a) continuous on I2,

ii) for every α ∈ λ(I2), α ∈ Fix(fp,q) or fn
p,q(α) converges, when n ↑ ∞, to

a fixed point of fp,q; and
iii) Fix(fp,q) = λ(Δ(I2)).

Loosely speaking, the theorem says that the asymptotic behavior of the
map Fp,q is extremely simple on the image λ(I2) of a regular solution of the
Aumann generalized equation.

Proof. If the Aumann generalized equation is solved by a mean M with func-
tional weight λ and α ∈ λ(I2), then, there exists (x0, y0) ∈ I2 such that
α = λ(x0, y0), and Proposition 12 shows that Fp,q(α) = Fp,q(λ(x0, y0)) =
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λ(TM (x0, y0)) ∈ λ(I2). This proves the assertion i). Now, assuming that λ is
continuous on I2 and that α /∈ Fix(fp,q), it is deduced from (38) that

fn
p,q(α) = λ(Tn

M (x0, y0)), n ∈ N.

The sequence of the second of this equality is convergent by Proposition 10
and the continuity of λ; thus, the sequence {fn

p,q(α)} is convergent and clearly
converges to a fixed point of fp,q, as affirmed by ii). To prove iii), let us take
limits in the equalities (37) and (38) as follows: first, for a given x ∈ I, make
y approach x in (37) to obtain

λ(x, x) = λ(TM (x, x)) = lim
y→x

(λ ◦ TM )(x, y) = lim
y→x

fp,q(λ(x, y)) = fp,q(λ(x, x)),

whence, in view of the arbitrariness of x, it is deduced that λ(Δ(I2)) ⊆
Fix(fp,q). The opposite inclusion follows from observing that if α = λ(x, y) ∈
Fix(fp,q), then, making n ↑ ∞ in (38) yields

λ(M(x, y),M(x, y)) = lim
n↑∞

(λ ◦ Tn
M )(x, y) = lim

n↑∞
fn

p,q(λ(x, y)) = α;

i.e., α ∈ λ(Δ(I2)). �

The assertion iii) of the previous theorem implies that Fix(fp,q) = λ(Δ(I2))
is a closed interval contained in λ(I2). Thus, writing λ(I2) = |α, β| , λ(Δ(I2))
= [α0, β0], L = |α, α0) and R = (β0, β|, the interval λ(I2) is expressed as the
disjoint union

λ(I2) = L ∪ λ(Δ(I2)) ∪ R,

and the following corollary of Theorem 14 can be stated.

Corollary 15. Under the hypotheses of Theorem 14, the inequalities

fp,q(t)

⎧

⎨

⎩

> t, t ∈ L
= t, t ∈ λ(Δ(I2))
< t, t ∈ R

(39)

are satisfied by the restriction Fp,q|λ(I2) = fp,q.

Proof. If L 	= ∅, then, fp,q(t) ≶ t, t ∈ L, by Theorem 14, iii). Assuming that
fp,q(t) < t, t ∈ L, the sequence {fn

p,q(t)} would decrease to a fixed point t0 of
fp,q such that t0 < α0, an absurdity. Thus, fp,q(t) > t, t ∈ L, as affirmed. The
proof of the inequality for t ∈ R is similar provided that R 	= ∅. �

As shown at the end of the next section, the inequalities in (39) are closely
related to the stability properties of the fixed points α0, β0.

Now, suppose that Fp,q has a unique fixed point α ∈ (0, 1); i.e., Fix(Fp,q) =
{α}. If M is a mean solving the Aumann generalized equation (30) and its func-
tional weight λ is continuous on I2, then, Theorem 14 ii)–iii) yields λ(x, x) = α
and

lim
n↑∞

Fn
p,q(λ(x, y)) = α, (x, y) ∈ I2. (40)
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The equality (40) expresses the fact that, under the assumptions of Theorem
14, α must be an attractive fixed point of fp,q. Thus, the following was proved:

Corollary 16. Assuming that there exists a solution M to the Aumann gener-
alized equation (30) whose functional weight λ is continuous on I2, if Fp,q has
a unique fixed point α ∈ (0, 1), then, α must be an attractive fixed point of the
map fp,q.

To end this section, let us remark that the regularity condition on the mean
M can be relaxed in Theorem 14 and its corollaries. The following observation
serves as a clue: given a pair of weights p, q, p < q, the inequality

Mp(x, y) < Mq(x, y)

holds among the coordinate functions Mp, Mq of the map TM when x < y by
the strict monotonicity of the w.p.. Clearly, a similar inequality holds between
the first and second coordinate functions of the iterated map Tn

M (x, y), n ∈ N;
in other words, when x < y, the point Tn

M (x, y) ∈ Δ+(I2) = {(x, y) ∈ I2 : x <
y}, n ∈ N. In this way, the passage to the limit in the equalities (37) and (38)
take, respectively, the forms

lim
y↓x

λ(x, y) = lim
y↓x

(λ ◦ TM )(x, y) = lim
y↓x

fp,q(λ(x, y)) = fp,q(lim
y↓x

λ(x, y)) (41)

and

lim
z↓M(x,y)

λ(M(x, y), z) = lim
n↑∞

(λ ◦ Tn
M )(x, y) = lim

n↑∞
fn

p,q(λ(x, y)) (42)

provided that there exist the limits involved in their terms. Since Tn
M (x, y) ∈

Δ−(I2) = {(x, y) ∈ I2 : x > y}, n ∈ N, equalities like (41) and (42) with
limy↑x λ(x, y) replacing limy↓x λ(x, y) are obtained when x > y. In this way, the
restriction Fp,q|λ(Δ+(I2)) = f+

p,q turns out to be a self map of λ(Δ+(I2)); i.e.,
f+

p,q : λ(Δ+(I2)) → λ(Δ+(I2)). Moreover, assuming that x �→ limy↓x λ(x, y) =
λ+(x) exists and is continuous for every x ∈ I, it can be proved that Fix(f+

p,q) =
λ+(I)

Summarizing, these observations enable us to extend both Theorem 14 and
its corollaries to the cases in which the limits limy↑x λ(x, y) and limy↓x λ(x, y)
may differ from one another like, for instance, in the means of the form

M(x, y) = (1 − α)min{x, y} + α max{x, y}, (α ∈ [0, 1] \ {1/2}).

5. The Aumann generalized equation for simple weighting procedures

In this final section, the theory developed in Sect. 4 is applied to solve some
instances of the Aumann generalized equation for simple weighting procedures.
Solutions belonging to the classes SM1(I) or SM1

S(I) are sought for the equa-
tion with the purpose of simplifying the statements, which will be eventually
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exemplified by the weighting procedures introduced at the end of Sect. 2. Let
us begin with the following:

Theorem 17. Let Mw be a (p, q)-simple w.p. defined on GM0(I) so that the
map Fp,q reduces to the identity; i.e., Fp,q(t) = t, t ∈ (0, 1). Then, the arith-
metic mean A(x, y) = (x+ y)/2 is the general solution in the class SM1(I) to
the Aumann generalized equation (30) for the w.p. Mw.

Proof. That the arithmetic mean A = L1/2 solves Eq. (30) is a consequence of
Corollary 13 and the hypothesis on Fp,q. Conversely, suppose that a symmetric
and continuous mean M with functional weight λ is a solution to (30). By
Proposition 1, iv), the symmetry of M is equivalent to the equality

λ(x, y) + λ(y, x) = 1, x 	= y. (43)

Moreover, Proposition 12 and the hypothesis on Fp,q yield

(λ ◦ TM )(x, y) = Fp,q(λ(x, y)) = λ(x, y), x 	= y;

whence, for every n ∈ N,

(λ ◦ Tn
M )(x, y) = λ(x, y), x 	= y. (44)

Since M is a C1 mean, its functional weight λ can be continuously extended
to I2 by Proposition 1, ii), and therefore, a passage to the limit n ↑ ∞ in ( 44)
yields, after Proposition 10,

λ(M(x, y),M(x, y)) = λ(x, y), x 	= y.

From this equality and the symmetry of M , it is deduced that the functional
weight λ is also a symmetric function; i.e.,

λ(x, y) = λ(y, x). (45)

Finally, equalities (43) and (45) yield

λ(x, y) =
1
2
;

i.e., M = A. �

A result similar to Theorem 17 can be established in the non symmetric
case if the symmetry condition is replaced by λ(x, x) ≡ α ∈ [0, 1]. Observe that
the weighted arithmetic mean La becomes the general solution in this case.

A slight modification of Theorem 17 applies to the sectionally linear w.p..
In fact, it is easily derived from (35) that Fp,q(0) = 0, Fp,q(1) = 1 and

Fp,q(t)

⎧

⎨

⎩

> t, if p + q < 1
= t, if p + q = 1
< t, if p + q > 1

, t ∈ (0, 1); (46)

so that the following result can be stated.



Vol. 89 (2015) The Aumann functional equation 1071

Proposition 18. The Aumann generalized equation (30) with weights p, q (0 <
p < 1/2 < q < 1) for the sectionally linear w.p. has the arithmetic mean A as
its general solution in the class SM1

S(I) provided that p+ q = 1. There are no
solutions to the equation belonging to the class SM1

S(I) when p + q 	= 1.

Proof. As established in Example 4, the sectionally linear w.p. is strictly
monotonic on the class GM0

S(I). Now, if p + q = 1, the proof follows from
(46) and, mutatis mutandis, from the proof of Theorem 17. When p + q < 1,
limn↑∞ Fn

p,q(t) = 1, while limn↑∞ Fn
p,q(t) = 0 in the case in which p + q > 1;

therefore, if a mean M ∈ SM1
S(I) with functional weight λ solves Eq. (30),

then
1
2

= λ(M(x, y),M(x, y)) = lim
n↑∞

Fn
p,q(λ(x, y)) =

{

0
1 ,

an absurdity. Thence, there are no solutions belonging to the class SM1
S(I)

to Eq. (30) in these cases. �
Other solutions to Eq. (30) do appear for the sectionally linear w.p. when

they are sought in more ample classes of means. For instance, M(x, y) =
max{x, y} ∈ SM0(I) solves Eq. (30) when 0 < p < 1/2 < q < 1.

Now, consider the function Fp,q corresponding to the homographic w.p. as
given by (36). Since 0 < p < 1/2 < q < 1 , this affine function satisfies

0 < Fp,q(0) =
1 − 2p

q − p
(1 − q) < q

1 − 2p

q − p
= Fp,q(1) < 1;

and therefore, Fp,q has a unique attractive fixed point in [0, 1] given by

α =
(1 − 2p) (1 − q)

q − p − (1 − 2p) (2q − 1)
. (47)

Observe that α = 1/2 if and only if p + q = 1. All these facts are employed in
the proof of the following result.

Proposition 19. The Aumann generalized equation (30) with weights p, q (0 <
p < 1/2 < q < 1) for the homographic w.p. admits a solution belonging to
SM1

S(I) if and only if p + q = 1. In any other case, the equality λ(x, x) =
α, x ∈ I, with α given by (47) is satisfied by every C1 solution to the equation.

Proof. As seen in Example 5, the homographic w.p. is strictly monotonic on
the class GM0

S(I). If p + q = 1, then α = 1/2 is the unique fixed point of Fp,q

so that, by Corollary 13, the arithmetic mean A solves Eq. (30). Conversely, if
Eq. (30) admits a solution in SM1

S(I), then, by Theorem 14, ii),
1
2

= λ(M(x, y),M(x, y)) = lim
n↑∞

Fn
p,q(λ(x, y)) = α,

hence p + q = 1.
When p + q 	= 1, by Theorem 14, iii), the equality

λ(x, x) = α, x ∈ I,
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holds for the functional weight λ of a C1 solution to the equation. �

In the example furnished by the homographic w.p., Eq. (30) with weights
p, q satisfying p + q = 1 is solved by other means different from the arith-
metic one; e.g., the harmonic mean H(x, y) = 2xy/(x + y). Thus, when Fp,q

has a unique fixed point, the general solution in the class SM1(I) to the Au-
mann generalized equation does not typically reduce to the arithmetic mean.
Nevertheless, the uniqueness of solution which is characteristic of the case
Fp,q(t) ≡ t can be recovered by imposing additional restrictions on the dy-
namic of the map Fp,q. As a matter of fact, suppose that Fp,q has a unique
fixed point α ∈ (0, 1) which is repulsive. Thus, if M were a C1 solution to the
Aumann generalized equation with λ 	= α, then, given a small enough δ > 0,
there would be a certain (x0, y0) ∈ I2 such that 0 < |λ(x0, y0) − α| < δ. It fol-
lows that the sequence {fn

p,q(λ(x0, y0))} would not converge to α when n ↑ ∞,
which contradicts Corollary 16 of the previous section. This observation proves
the following:

Theorem 20. Let Mw be a (p, q)-simple w.p. defined on GM0(I) such that
the map Fp,q has in (0, 1) a unique fixed point α; i.e., Fix(Fp,q) = {α}. If
α is a repulsive fixed point, then, the weighted arithmetic mean La(x, y) =
(1 − α)x + αy is the general solution in the class GM1(I) to the Aumann
generalized equation (30) for the w.p. Mw.

Proof. See the previous discussion. �

The last result of this section is concerned with a version of the previous
theorem for the remaining case in which Fix(Fp,q) is an interval; specifically,
Fix(Fp,q) = [α0, β0] � [0, 1]. If α0 > 0 and there exists δ > 0 such that
{Fn

p,q(t)} is not convergent for any t ∈ (α0 − δ, α0), then, it is said that α0 is
repulsive from the left. The notion of repulsion (from the right) for the fixed
point β0 at the right end of the interval is analogously defined provided that
β0 < 1. For brevity, it will be said that α0 or β0 are repulsive fixed points. The
situation should be compared with the one described by Corollary 15 of Sect.
4.

Theorem 21. Let Mw be a (p, q)-simple w.p. defined on GM0(I) such that the
map Fp,q satisfies Fix(Fp,q) = [α0, β0] � [0, 1]. Assuming that the end points
α0 and β0 are both repulsive, then, the inequalities

min{Lα0(x, y), Lβ0(x, y)} ≤ M(x, y) ≤ max{Lα0(x, y), Lβ0(x, y)}, x, y ∈ I,
(48)

are satisfied by every solution M ∈ GM1(I) to the Aumann generalized equa-
tion (30) for the w.p. Mw.

Proof. By Proposition 2, the inequalities (48) are equivalent to the inequalities

α0 ≤ λ(x, y) ≤ β0, x, y ∈ I,
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for the functional weight λ of a mean M . Thus, in view of Theorem 14, iii), the
theorem affirms that the equality λ(I2) = λ(Δ(I2)) holds for every solution
M ∈ GM1(I). This last equality follows from an argument similar to that used
to prove Theorem 20. �
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