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1. Introduction

The notion of orthogonality goes a long way back in time and various exten-
sions have been introduced over the last decades. In particular, proposing the
notion of orthogonality in normed linear spaces has been the object of exten-
sive efforts of many mathematicians. The most natural notion of orthogonality
arises in the case where the norm ‖.‖ derives from an inner product. In this
case x ⊥ y if and only if 〈x, y〉 = 0. The notion of orthogonality in an inner
product space has the following interesting properties:
• λx ⊥ μx if and only if ‖λμx‖ = 0 for all λ, μ ∈ R (Non-degeneracy).
• Let {xi}∞

i=1, {yi}∞
i=1 be two sequences such that x = limi→∞ xi and y =

limi→∞ yi. If xi ⊥ yi for each i ∈ N, then x ⊥ y (Continuity).
• x ⊥ y implies μx ⊥ μy for all x, y ∈ X and μ ∈ R (Simplification).
• For every x, y ∈ X linearly independent, there exists a real number a such

that y ⊥ x + ay (x + ay ⊥ y) (Right (left) existence).
• x ⊥ y implies μx ⊥ λy for all x, y ∈ X and λ, μ ∈ R (Homogeneity).
• x ⊥ y implies y ⊥ x for all x, y ∈ X (Symmetry).
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• x ⊥ y and x ⊥ z imply x ⊥ (y + z) for all x, y, z ∈ X (Right additivity).
• y ⊥ x and z ⊥ x imply y + z ⊥ x for all x, y, z ∈ X (Left additivity).
• For any x, y ∈ X linearly independent, there exists at most one real number

a such that y ⊥ x + ay (x + ay ⊥ y) (Right (left) uniqueness).

The existence property is the most important, since either the right existence
or the left existence property can keep the concept of orthogonality from being
vacuous.

We state two known orthogonalities introduced in normed linear spaces. In
a normed linear space X, a vector x is said to be orthogonal to y in the sense
of Singer [1] if the following relation holds:

x ⊥S y whenever ‖x‖‖y‖ = 0 or
∥
∥
∥
∥

x

‖x‖ − y

‖y‖
∥
∥
∥
∥

=
∥
∥
∥
∥

x

‖x‖ +
y

‖y‖
∥
∥
∥
∥

.

Alsina et al. [4] introduced the following orthogonality relation:

x ⊥w y whenever ‖x‖‖y‖ = 0 or
∥
∥
∥
∥

x

‖x‖ +
y

‖y‖
∥
∥
∥
∥

=
√

2.

Some other known orthogonalities in normed linear spaces can be found in
[1,3,6,14] and references therein. The above orthogonalities are based on the
concept of angular distance between nonzero vectors x and y in a normed
linear space (X, ‖.‖) which was defined as α[x, y] :=

∥
∥
∥

x
‖x‖ − y

‖y‖
∥
∥
∥. There are

interesting characterizations of inner product spaces connected with the con-
cept of angular distance [4,5,7,13]. Another way to obtain characterizations
of inner product spaces and other geometric properties of the space such as
strict convexity and smoothness is to force some of the generalized orthogonal-
ities to fulfill some properties of orthogonality such as homogeneity, symmetry,
additivity and uniqueness.

In this paper, we present a new orthogonality in a normed linear space which
is based on an angular distance inequality. Some properties of this orthogonal-
ity are discussed. We also find a new approach to the Singer orthogonality in
terms of an angular distance inequality. Some related geometric properties of
normed linear spaces are discussed. Finally a characterization of inner product
spaces is obtained. In this paper (X, ‖.‖) always denotes a real normed linear
space and SX is the corresponding unit sphere.

2. Orthogonality and angular distance

In this section, we present a new orthogonality in a normed linear space
(X, ‖.‖) which is based on an angular distance inequality. Some properties
of this orthogonality are also discussed.
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Definition 1. Let (X, ‖.‖) be a normed linear space and x, y ∈ X. We say that
x is orthogonal to y and we denote it by x ⊥+ y, if ‖x‖‖y‖ = 0 or the following
two statements hold:

(i) {x, y} is linearly independent,
(ii) α[x + ty, y] + α[x + ty,−y] ≤ α[x, y] + α[x,−y] for all t ∈ R. (1)

We note that if {x, y} is an independent set, then x + ty 	= 0 for all t ∈ R

and so α[x + ty, y] and α[x + ty,−y] in inequality (1) are well defined. Let

gx,y(t) := α[x + ty, y] + α[x + ty,−y].

Then two independent vectors x and y are orthogonal if and only if

gx,y(t) ≤ gx,y(0), for all t ∈ R. (2)

It is not difficult to check that this notion of orthogonality is not symmetric
in general.

Lemma 1. Let X be an inner product space, x, y ∈ X be two linearly indepen-
dent vectors and t ∈ R be arbitrary. Then the following two inequalities are
equivalent.

(i) α[x + ty, y] + α[x + ty,−y] ≤ α[x, y] + α[x,−y],
(ii) α[x + ty, y]α[x + ty,−y] ≤ α[x, y]α[x,−y].

Proof. Inequality (i) holds if and only if
∥
∥
∥
∥

x + ty

‖x + ty‖ − y

‖y‖
∥
∥
∥
∥

2

+
∥
∥
∥
∥

x + ty

‖x + ty‖ +
y

‖y‖
∥
∥
∥
∥

2

+ 2α[x + ty, y]α[x + ty,−y]

≤
∥
∥
∥
∥

x

‖x‖ − y

‖y‖
∥
∥
∥
∥

2

+
∥
∥
∥
∥

x

‖x‖ +
y

‖y‖
∥
∥
∥
∥

2

+ 2α[x, y]α[x,−y].

Equivalently, we obtain the following inequality

2 − 2〈x + ty, y〉
‖x + ty‖‖y‖ + 2 +

2〈x + ty, y〉
‖x + ty‖‖y‖ + 2α[x + ty, y]α[x + ty,−y]

≤ 2 − 2〈x, y〉
‖x‖‖y‖ + 2 +

2〈x, y〉
‖x‖‖y‖ + 2α[x, y]α[x,−y]

and this is true if and only if inequality (ii) holds. �

In the next theorem we show that the orthogonality ⊥+ is equivalent to
the standard definition of orthogonality when the underlying space is an inner
product space.

Theorem 2.1. Let X be an inner product space and x, y ∈ X. Then x ⊥+ y if
and only if 〈x, y〉 = 0.
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Proof. If x and y are linearly dependent, then the proof is obvious. Let x, y ∈ X
be linearly independent and t ∈ R. The following relations hold:

α[x + ty, y] + α[x + ty,−y] ≤ α[x, y] + α[x,−y]
⇔ α[x + ty, y]α[x + ty,−y] ≤ α[x, y]α[x,−y] (by Lemma 1)

⇔
(

4 − 4〈 x + ty

‖x + ty‖ ,
y

‖y‖〉2
) 1

2

≤
(

4 − 4〈 x

‖x‖ ,
y

‖y‖〉2
) 1

2

⇔ 〈x, y〉2
‖x‖2‖y‖2 ≤ 〈x + ty, y〉2

‖x + ty‖2‖y‖2
⇔ ‖x + ty‖|〈x, y〉| ≤ ‖x‖|〈x + ty, y〉|. (3)

Let x ⊥+ y. Putting t = −〈x,y〉
‖y‖2 in (3) we obtain 〈x, y〉 = 0. Conversely, if

〈x, y〉 = 0, then (3) holds and so gx,y(t) ≤ gx,y(0) for all t ∈ R and hence
x ⊥+ y. �

It is obvious that the orthogonality ⊥+ satisfies non-degeneracy, continuity
and simplification. In the following we state an example in which the orthog-
onality is not right existent in general.

Example 1. Let X be a Minkowski plane with the l∞ norm and let x = (0, 1)
and y = (1, 0). We show that x 	⊥+ ax + y for all a ∈ R. We consider four
cases.

(i) If a > 1, then by taking t ∈
(

− 1
a , 1

−1−a

)

we have x 	⊥+ ax + y.

(ii) If a < −1, then by taking t ∈
(

1
1−a , −1

a

)

we have x 	⊥+ ax + y.

(iii) If 0 ≤ a ≤ 1, then by taking t ∈
(

− 1
a , −1

a+1

)

we have x 	⊥+ ax + y.

(iv) If −1 ≤ a < 0, then by taking t ∈
(

0, 1
1−a

)

we have x 	⊥+ ax + y.

Now we discuss the homogeneity and left existence properties of the orthog-
onality ⊥+. First we state the following lemma which can be proved by using
the same method as in [8, Lemma 2.1].

Lemma 2. Let (X, ‖.‖) be a normed linear space and x, y ∈ X be two indepen-
dent vectors. Then
(i) limt→±∞ α[x + ty, y] + α[x + ty,−y] = 2,
(ii) limt→±∞ α[x + ty,−y] − α[x + ty, y] = ±2.

Theorem 2.2. The orthogonality ⊥+ is left existent and homogenous.

Proof. Let x, y ∈ X be two linearly independent vectors. We shall show that
there exists t0 ∈ R such that x + t0y ⊥+ y. From (2) it is enough to prove
that there exists t0 ∈ R such that the function gx+t0y,y(t) takes a maximum
at t = 0. We note that

gx+t0y,y(t) ≤ gx+t0y,y(0) if and only if gx,y(t0 + t) ≤ gx,y(t0). (4)
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The function gx,y(t) is continuous and limt→±∞ gx,y(t) = 2 from Lemma 2.
Moreover, 2 ≤ gx,y(t) ≤ 4 for all t ∈ R by the triangle inequality. Thus gx,y(t)
takes a maximum at some t0 ∈ R, i.e. gx,y(t) ≤ gx,y(t0) for all t ∈ R. Now the
result follows from (4).

For the proof of the homogeneity property of orthogonality, we may assume
that x, y ∈ X are linearly independent vectors and μ and λ are two nonzero
real numbers. The following implications hold:

x ⊥+ y ⇔ α[x + ty, y] + α[x + ty,−y] ≤ α[x, y] + α[x,−y] ∀ t ∈ R

⇔ α

[

μ

(

x +
tλ

μ
y

)

, y

]

+ α

[

μ

(

x +
tλ

μ
y

)

, y

]

≤ α[x, y] + α[x,−y]

∀ t ∈ R

⇔ α[μx + tλy, λy] + α[μx + tλy,−λy] ≤ α[μx, λy] + α[μx,−λy]
∀ t ∈ R

⇔ μx ⊥+ λy.

�

3. Singer orthogonality by an angular distance inequality

In this section we express an orthogonality relation in terms of an angular
distance inequality. We show that this notion of orthogonality is equivalent
to the Singer orthogonality. We also define the concept of acute and obtuse
angles in normed linear spaces based on the equivalent definition of the Singer
orthogonality.

Definition 2. Let (X, ‖.‖) be a normed linear space and x, y ∈ X. We say that
x is orthogonal to y and we denote it by x ⊥− y if ‖x‖‖y‖ = 0 or the following
two statements hold:

(i) {x, y} is linearly independent.
(ii) |α[x,−y] − α[x, y]| ≤ |α[x + ty,−y] − α[x + ty, y]| for all t ∈ R. (5)

We note that if {x, y} is an independent set, then x + ty 	= 0 for all t ∈ R

and so α[x + ty, y] and α[x + ty,−y] in the inequality (5) are well defined. Let

h(t) := α[x + ty,−y] − α[x + ty, y].

Then two independent vectors x and y are orthogonal if and only if

|h(0)| ≤ |h(t)|, for all t ∈ R. (6)

Theorem 3.1. Let (X, ‖.‖) be a normed linear space. Then the orthogonality
⊥− and the Singer orthogonality are equivalent.
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Proof. Let x, y be two nonzero vectors in X. If x ⊥− y, then |h(0)| ≤ |h(t)|
for all t ∈ R. On the other hand since −2 ≤ h(t) ≤ 2 and by Lemma 2

lim
t→±∞ α[x + ty,−y] − α[x + ty, y] = ±2,

so by the continuity of h(t), there exists a real number t0 such that h(t0) = 0
and |h(0)| ≤ |h(t0)| = 0 and hence |h(0)| = 0 which means x ⊥S y. The
converse is obvious. �

Remark 1. Let x, y ∈ X be two linearly independent vectors. Then there exists
a unique t0 ∈ R such that

|h(t0)| ≤ |h(t)|, for all t ∈ R.

As it was shown in Theorem 3.1, there exists a number t0 ∈ R such that
|h(t0)| = 0. Hence

∥
∥
∥

x+t0y
‖x+t0y‖ + y

‖y‖
∥
∥
∥ =

∥
∥
∥

x+t0y
‖x+t0y‖ − y

‖y‖
∥
∥
∥. Now the uniqueness

property of the Singer orthogonality [15, Theorem 2] implies that the above t0
is unique.

The concept of angle between two vectors in a normed linear space has been
introduced in different ways [8,12], so that they coincide with the standard
definition of angle in inner product spaces. Now inspired by the new approach
to the Singer orthogonality we define acute and obtuse angles in normed linear
spaces as follows:

Definition 3. Let (X, ‖.‖) be a normed linear space and x, y ∈ X be two
independent vectors. The angle between x and y is called an acute (obtuse)
angle if there exists a unique number t0 ∈ (−∞, 0)

(

t0 ∈ (0,∞)
)

such that

|h(t0)| ≤ |h(t)| for all t ∈ R. (7)

Moreover, the angle between x and y is right if

|h(0)| ≤ |h(t)| for all t ∈ R. (8)

Example 2. Consider the space R
2 with the l3 norm and let x = (5, 0), y =

(4, 2), z = (−4, 2) and w = (0, 5). Then the angle between x and y is acute,
the angle between x and z is obtuse and the angle between x and w is right
(see Fig. 1).

In the following theorem we show that in an inner product space the def-
inition of acute and obtuse angles is equivalent to their standard definition.
First we need the following lemma which can be proved with the same method
as in Lemma 1.

Lemma 3. Let X be an inner product space, x, y ∈ X be independent vectors
and t ∈ R. Then the following two inequalities are equivalent.
(i) |α[x,−y] − α[x, y]| ≤ |α[x + ty,−y] − α[x + ty, y]|,
(ii) α[x + ty,−y]α[x + ty, y] ≤ α[x,−y]α[x, y].
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Figure 1. Example of acute, obtuse and right angles. a x =
(5, 0), y = (4, 2), b x = (5, 0), z = (−4, 2), c x = (5, 0), w =
(0, 5)
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Theorem 3.2. Let X be an inner product space and x, y ∈ X be two independent
vectors. Then

(i) The angle between x and y is acute if and only if

0 < cos−1 〈x, y〉
‖x‖‖y‖ < π/2.

(ii) The angle between x and y is obtuse if and only if

π/2 < cos−1 〈x, y〉
‖x‖‖y‖ < π.

Proof. Let t ∈ R. The following relations hold:

|α[x,−y] − α[x, y]| ≤ |α[x + ty,−y] − α[x + ty, y]|
⇔ α[x + ty,−y]α[x + ty, y] ≤ α[x,−y]α[x, y] (by Lemma 3)

⇔ ‖x + ty‖|〈x, y〉| ≤ ‖x‖|〈x + ty, y〉|. (by (3))
(9)

If 〈x, y〉 ≥ 0, then for all t ≥ 0,

‖x + ty‖|〈x, y〉| ≤ (‖x‖ + t‖y‖)|〈x, y〉|
≤ ‖x‖〈x, y〉 + t‖y‖2‖x‖
= ‖x‖|〈x + ty, y〉|.

(10)

If 〈x, y〉 ≤ 0, then for all t ≤ 0,

‖x + ty‖|〈x, y〉| ≤ (‖x‖ + |t|‖y‖)|〈x, y〉|
≤ −(‖x‖〈x, y〉 + t‖y‖2‖x‖)

= ‖x‖|〈x + ty, y〉|.
(11)

(i) Let the angle between x and y be acute in terms of Definition 3. In general,
0 ≤ cos−1 〈x,y〉

‖x‖‖y‖ ≤ π but since x and y are linearly independent vectors,
from the conditions for the Cauchy–Schwarz inequality to be an equality we
conclude that |〈x,y〉|

‖x‖‖y‖ 	= 1 and 0 < cos−1 〈x,y〉
‖x‖‖y‖ < π. Assume if possible that

cos−1 〈x,y〉
‖x‖‖y‖ ≥ π/2. Then 〈x, y〉 ≤ 0. By using (9) and (11) we have |h(0)| ≤

|h(t)| for all t ≤ 0, which is impossible by the definition of acute angle.
Conversely, assume that 0 < cos−1 〈x,y〉

‖x‖‖y‖ < π/2. We will show that the
angle between x and y is acute in terms of Definition 3. Assume that there
exists a unique t0 ∈ [0,∞) such that |h(t0)| ≤ |h(t)| for all t ∈ R. Therefore
|h(0)| ≤ |h(t)| for all t ∈ (−∞, 0) and so (9) holds for all t ≤ 0 and by putting
t = −〈x,y〉

‖y‖2 in the last inequality of (9), we have ‖x + ty‖|〈x, y〉| = 0. But
since x and y are linearly independent vectors, ‖x + ty‖ 	= 0 for all t ∈ R. So
|〈x, y〉| = 0 and therefore cos−1 〈x,y〉

‖x‖‖y‖ = π/2, which is a contradiction.
(ii) The proof is similar to the proof of part (i). �
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In the next theorem we show that the notion of acute and obtuse angles
between two independent vectors x and y is symmetric. First we state the
following lemma which can be proved by [8, Theorems 2.4 and 2.5].

Lemma 4. Let (X.‖.‖) be a normed linear space and x, y ∈ X be two inde-
pendent vectors. Define the functions h+(t) :=

∥
∥
∥

x+ty
‖x+ty‖ + y

‖y‖
∥
∥
∥ and h−(t) :=

∥
∥
∥

x+ty
‖x+ty‖ − y

‖y‖
∥
∥
∥. The functions h+(t) and h−(t) are increasing and decreasing

respectively. If the space (X, ‖.‖) is strictly convex, then the functions h+(t)
and h−(t) are strictly increasing and decreasing respectively.

Proposition 1. The angle between two linearly independent vectors x and y is
acute (obtuse) if and only if the angle between y and x is acute (obtuse).

Proof. Let x and y be two independent vectors in X. Then by the uniqueness
property of the Singer orthogonality there exist two real numbers t1 and t2 such
that, x+t1y ⊥S y and y+t2x ⊥S x. It is enough to show that t1 and t2 have the
same sign. If we denote h(t) by more precise notation hx,y(t), then the functions
hx,y(t) = α[x+ty,−y]−α[x+ty, y] and hy,x(t) = α[y+tx,−x]−α[y+tx, x] are
increasing by Lemma 4 and since hx,y(t1) = hy,x(t2) = 0 and hx,y(0) = hy,x(0),
obviously, t1 and t2 have the same sign. �

Although in an inner product space the orthogonality relations ⊥+ and ⊥−
(Singer orthogonality) coincide with each other, the following remark shows
that these orthogonalities are different in a general normed linear space.

Remark 2. Let X be a Minkowski plane with the l∞ norm and let x = (1, 0)
and y = (0, 1). Then x ⊥− y, since α[x, y] = α[x,−y] = 1 but x 	⊥+ y, since

α[x ± y, y] + α[x ± y,−y] = 3 � 2 = α[x, y] + α[x,−y].

On the other hand if we consider the vectors x = (1, 1) and y = (0, 1) we will
see that x ⊥+ y but x 	⊥− y.

4. Orthogonality and some related constants

There are a lot of quantitative descriptions of geometrical properties of normed
linear spaces which can give a better understanding about the shape of their
unit balls. One way to provide these descriptions is to define geometric con-
stants in normed linear spaces. For example the following constant was defined
by Gao and Lau [9].

g(X) = inf{α(y) : y ∈ SX}, G(X) = sup{α(y) : y ∈ SX}, (12)

where α(y) = inf{max{‖x − y‖, ‖x + y‖}, x ∈ SX}, for all y ∈ SX . They also
defined

j(X) = inf{β(y) : y ∈ SX}, J(X) = sup{β(y) : y ∈ SX}, (13)
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where β(y) = sup{min{‖x − y‖, ‖x + y‖}, x ∈ SX}, for all y ∈ SX .
In this section we introduce new constants in normed linear spaces. The

relationship of the new constants and the above constants is extensively stud-
ied. We also indicate some relations between these constants and the orthog-
onalities mentioned in the previous sections. Let (X, ‖.‖) be a normed linear
space. We define the following constants:

g̃(X) := inf{α̃(x, y) : x, y are linearly independent},

G̃(X) := sup{α̃(x, y) : x, y are linearly independent},
(14)

where α̃(x, y) := inf
{

max
{ ∥

∥
∥

x+ty
‖x+ty‖ − y

‖y‖
∥
∥
∥ ,

∥
∥
∥

x+ty
‖x+ty‖ + y

‖y‖
∥
∥
∥

}

, t ∈ R

}

. We

also define

j̃(X) := inf{β̃(x, y) : x, y are linearly independent},

J̃(X) := sup{β̃(x, y) : x, y are linearly independent},
(15)

where β̃(x, y) := sup
{

min
{∥

∥
∥

x+ty
‖x+ty‖ − y

‖y‖
∥
∥
∥ ,

∥
∥
∥

x+ty
‖x+ty‖ + y

‖y‖
∥
∥
∥

}

, t ∈ R

}

.

In the following lemma we show that α̃(x, y) and β̃(x, y) are equal.

Lemma 5. Let (X, ‖.‖) be a normed linear space and x, y ∈ X be two inde-
pendent vectors. Then there exists a unique t0 ∈ R, such that h+(t0) = h−(t0)
and also α̃(x, y) = β̃(x, y) = h+(t0) = h−(t0).

Proof. By the uniqueness property of the Singer orthogonality [15] there
exists a unique t0 ∈ R such that h+(t0) = h−(t0). First we show that
α̃(x, y) = h+(t0). By Lemma 4, the functions h+(t) and h−(t) are increas-
ing and decreasing respectively. Let

q(t) := max{h+(t), h−(t)} =
{

h−(t) t ≤ t0
h+(t) t ≥ t0

.

Clearly q(t) ≥ h+(t0), for all t ∈ R. So h+(t0) is a lower bound for the set
{q(t), t ∈ R}. Since q(t0) = h+(t0), we have α̃(x, y) = h+(t0). Similarly we
can show that β̃(x, y) = h+(t0) and so the result holds. �

Here we indicate a relation between the orthogonalities ⊥+ and ⊥−. Let
x, y ∈ X be two independent vectors. If we define γ(x, y) := max{α[x+ty, y]+
α[x + ty,−y], t ∈ R}, then we have the following proposition.

Proposition 2. Let (X, ‖.‖) be a normed linear space. Then

(i) If ⊥+ is equivalent to ⊥−, then γ(x, y) = 2α̃(x, y) (for all independent
vectors x, y).

(ii) If x ⊥− y and γ(x, y) = 2α̃(x, y), then x ⊥+ y (for all independent
vectors x, y).
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Proof. (i) Suppose that ⊥+ is equivalent to ⊥−. For every x, y ∈ X, there
exists a unique t0 ∈ R such that x + t0y ⊥− y and by Lemma 5, α[x +
t0y, y] = α[x + t0y,−y] = α̃(x, y). On the other hand since ⊥+ and ⊥−
are equivalent, x + t0y ⊥+ y, i.e. gx,y(t) ≤ gx,y(t0) for all t ∈ R and so
γ(x, y) = maxt gx,y(t) = gx,y(t0) = h+(t0) + h−(t0) = 2α̃(x, y).

(ii) If x ⊥− y, then h−(0) = h+(0) = α̃(x, y). Since γ(x, y) = 2α̃(x, y),
maxt gx,y(t) = γ(x, y) = 2α̃(x, y) = h−(0) + h+(0) = gx,y(0). So x ⊥+ y.

�

Due to Lemma 5, g̃(X) = j̃(X) and G̃(X) = J̃(X). In the sequel we just
apply the constants (14). Now we provide some relations between the constants
(14) and the constants which were defined by Gao and Lau (12).

Proposition 3. Let (X, ‖.‖) be a normed linear space and x, y ∈ SX be two
independent vectors. Then
(i) α(y) ≤ α̃(x, y).
(ii) If dim(X) = 2, then α(y) = α̃(x, y).

Proof. (i) Obviously the set
{

max
{∥

∥
∥

x+ty
‖x+ty‖ − y

∥
∥
∥ ,

∥
∥
∥

x+ty
‖x+ty‖ + y

∥
∥
∥

}

, t ∈ R

}

is

a subset of
{

max{‖x − y‖, ‖x + y‖}, x ∈ SX

}

. So α(y) ≤ α̃(x, y).
(ii) In order to prove that α̃(x, y) ≤ α(y),

it is sufficient to show that for all u ∈ SX there exists t ∈ R, such that

max
{∥

∥
∥

x+ty
‖x+ty‖ − y

∥
∥
∥ ,

∥
∥
∥

x+ty
‖x+ty‖ + y

∥
∥
∥

}

≤ max{‖u − y‖, ‖u + y‖}. Let u ∈ SX ,

we can find s1, s2 ∈ R such that u = s1x + s2y. Since ‖u‖ = 1, u = s1x+s2y
‖s1x+s2y‖ .

If s1 	= 0, then u =
s1

(

x+
s2
s1

y
)

|s1|‖x+
s2
s1

y‖ and by putting t := s2
s1

, we have

max{‖u − y‖, ‖u + y‖} = max
{∥

∥
∥
∥

x + ty

‖x + ty‖ − y

∥
∥
∥
∥

,

∥
∥
∥
∥

x + ty

‖x + ty‖ + y

∥
∥
∥
∥

}

.

If s1 = 0, then since ‖u‖ = ‖y‖ = 1, u = ±y and for all t ∈ R,

max
{∥

∥
∥
∥

x + ty

‖x + ty‖ − y

∥
∥
∥
∥

,

∥
∥
∥
∥

x + ty

‖x + ty‖ + y

∥
∥
∥
∥

}

≤ max{‖u − y‖, ‖u + y‖} = 2.

�

Corollary 1. Let (X, ‖.‖) be a normed linear space, then

(i) g(X) ≤ g̃(X) and G̃(X) ≤ G(X).
(ii) If dim(X) = 2, then g(X) = g̃(X) and G̃(X) = G(X).

Along with some results due to [9], we organize the following consequences
which complete the comparison between the new constants and the constants
defined by Gao and Lau.
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Theorem 4.1. Let (X, ‖.‖) be a normed linear space. Then 1 ≤ g̃(X) ≤ √
2 ≤

G̃(X) ≤ 2 and g̃(X)G̃(X) = 2.

Proof. Obviously 1 ≤ g̃(X) and G̃(X) ≤ 2. Let x and y be two indepen-
dent vectors in SX . By Lemma 5, there exists a unique t0 ∈ R such that∥
∥
∥

x+t0y
‖x+t0y‖ − y

∥
∥
∥ =

∥
∥
∥

x+t0y
‖x+t0y‖ + y

∥
∥
∥ = α̃(x, y), let z = x+t0y

‖x+t0y‖ , p = z+y
α̃(x,y) ,

q = z−y
α̃(x,y) . By considering the triangles determined by −y, y, z and p, q, 0,

we have

α̃(x, y) =
‖z − y‖

‖p‖ =
2‖y‖

‖p − q‖ ,

so ‖p − q‖ = 2
α̃(x,y) . Similarly we have ‖p + q‖ = 2

α̃(x,y) by considering the
triangles determined by −z, z, y and −p, q, 0. So α̃(p, q) = 2

α̃(x,y) and we can
assume that

g̃(X) ≤ α̃(x, y) ≤
√

2 ≤ α̃(p, q) ≤ G̃(X),

or

g̃(X) ≤ α̃(p, q) ≤
√

2 ≤ α̃(x, y) ≤ G̃(X).

Now we want to prove g̃(X)G̃(X) = 2. For all n ∈ N there exist xn and yn in
X, such that α̃(xn, yn) < g̃(X) + 1/n. There also exist pn and qn in X such
that α̃(xn, yn)α̃(pn, qn) = 2. So for all n ∈ N,

2 < g̃(X)α̃(pn, qn) +
α̃(pn, qn)

n
≤ g̃(X)G̃(X) +

α̃(pn, qn)
n

.

This implies that for sufficiently large values of n, 2 ≤ g̃(X)G̃(X). On the
other hand for all n ∈ N, we can choose xn

′, yn
′ ∈ X such that G̃(X) −

1/n < α̃(xn
′, yn

′) and by the same argument as in the above we obtain that
g̃(X)G̃(X) ≤ 2. �

A normed linear space is called uniformly convex if for any 0 < ε ≤ 2,
there exists δ(ε) > 0 such that for x, y ∈ SX with ‖x − y‖ ≥ ε, we have
‖x + y‖ < 2 − 2δ(ε). Let δ0(ε) = inf{1 − 1/2‖x + y‖ : x, y ∈ SX , ‖x − y‖ ≥ ε}
be the modulus of convexity of X. Clearly X is uniformly convex if and only
if δ0(ε) > 0. A relationship between δ0(ε) and the constant J(X) was proved
by Gao and Lau [9,10]. Now using these notions we prove that G̃(X) = J(X)
and g̃(X) = g(X).

Theorem 4.2. Let (X, ‖.‖) be a normed linear space. Then G̃(X) = sup{ε : ε <

2 − 2δ0(ε)}. Moreover, G̃(X) = J(X) and g̃(X) = g(X).

Proof. Let ε0 = sup{ε : ε < 2−2δ0(ε)}, first we show that G̃(X) ≤ ε0. Since by
Theorem 4.1 G̃(X) ≤ 2, the inequality is obvious if ε0 = 2. So we can assume
that ε0 < 2. Let ε > ε0 and x, y ∈ X. Then either

∥
∥
∥

x+ty
‖x+ty‖ − y

‖y‖
∥
∥
∥ ≤ ε, or
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∥
∥
∥

x+ty
‖x+ty‖ − y

‖y‖
∥
∥
∥ ≥ ε. In the latter case, we have

∥
∥
∥

x+ty
‖x+ty‖ + y

‖y‖
∥
∥
∥ ≤ 2−2δ0(ε) ≤

ε. Hence β̃(x, y) ≤ ε. Since x, y, ε are arbitrary, we have G̃(X) ≤ ε0.
On the other hand, Let 0 < η < ε0/3, and ε = ε0 − η. Then there exist

x, y ∈ SX such that ‖x − y‖ > ε and ‖x + y‖ > 2 − 2δ0(ε) − 2η. So

β̃(x, y) ≥ min{‖y − x‖, ‖y + x‖}
≥ min{ε, 2 − 2δ0(ε) − 2η}
≥ min{ε, ε − 2η}
≥ ε0 − 3η.

Since η is arbitrary, we have G̃(X) ≥ β̃(x, y) ≥ ε0. Now by using [9, Theorem
2.5 and Theorem 3.3] and since by Theorem 4.1, g̃(X)G̃(X) = 2, we have
G̃(X) = J(X) and g̃(X) = g(X). �

A normed linear space is called uniformly non square if there exists a δ > 0
such that for x, y ∈ SX , either

∥
∥
∥
∥

1
2
(x + y)

∥
∥
∥
∥

≤ 1 − δ or
∥
∥
∥
∥

1
2
(x − y)

∥
∥
∥
∥

≤ 1 − δ.

Using the the constant G̃(X) and [9, Theorem 3.4] we obtain a necessary and
sufficient condition for uniform non squareness in normed linear spaces.

Corollary 2. Let (X, ‖.‖) be a normed linear space. Then X is uniformly non
square if and only if G̃(X) < 2.

4.1. Examples

In the following we compute the constants (14) for lp and Lp spaces.

Example 3. Let p and q be two positive numbers such that 1/p + 1/q = 1.
Then
(i) For 2 ≤ p < ∞, g̃(lp) = 21/p and G̃(lp) = 21/q.
(ii) For 1 ≤ p < 2, g̃(lp) = 21/q and G̃(lp) = 21/p.
(iii) g̃(l∞) = 1 and G̃(l∞) = 2.

We recall the Clarkson inequality when p ≥ 2, x, y ∈ X,

2(‖x‖p + ‖y‖p) ≤ ‖x + y‖p + ‖x − y‖p ≤ 2p−1(‖x‖p + ‖y‖p),

and when 1 < p ≤ 2 these inequalities hold in the reverse sense.
(i) By the Clarkson inequality we have 21/p ≤ α̃(x, y) ≤ 21/q and so 21/p ≤

g̃(lP ) but since α̃(e1, e2) = 21/p, g̃(lp) = 21/p and G̃(lp) = 21/q.
(ii) We have 21/q ≤ α̃(x, y) ≤ 21/p. So G̃(lp) ≤ 21/p, we also have α̃(e1, e2) =

21/p. Hence G̃(lp) = 21/p and g̃(lp) = 21/q.
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(iii) Clearly 1 ≥ g̃(l∞). Since α̃(e1, e2) = 1, g̃(l∞) = 1 and G̃(l∞) = 2.

Example 4. Let p and q be two positive numbers such that 1/p + 1/q = 1.
Then

(i) For 2 ≤ p < ∞, g̃(Lp) = 21/p and G̃(Lp) = 21/q.
(ii) For 1 ≤ p < 2, g̃(Lp) = 21/q and G̃(Lp) = 21/p.
(iii) g̃(L∞) = 1 and G̃(L∞) = 2.
(i) By the Clarkson inequality we have 21/p ≤ α̃(x, y) ≤ 21/q and G̃(Lp) ≤

21/q. If x(t) = 1 and

y(t) =
{

1 0 ≤ t < 1/2
−1 1/2 ≤ t ≤ 1

then α̃(x, y) = 21/q. So G̃(Lp) = 21/q and g̃(Lp) = 21/p.
(ii) For 1 ≤ p < 2 we have 21/q ≤ α̃(x, y) ≤ 21/p and 21/q ≤ g̃(Lp). If we take

x(t) and y(t) as in part (i), then g̃(Lp) = 21/q and G̃(Lp) = 21/p.
(iii) Clearly G̃(L∞) ≤ 2. By taking x(t) and y(t) as in part (i), G̃(L∞) = 2

and as a result g̃(L∞) = 1.

Remark 3. Let X = lp, 2 < p < ∞. Then G̃(lp) 	= G(lp). Since G̃(lp) = 21/q

and as in [9, Theorem 3.1], G(lp) = 21/p.

4.2. A characterization of inner product spaces

Let X be a normed linear space. Then

x ⊥w y whenever ‖x‖‖y‖ = 0 or
∥
∥
∥
∥

x

‖x‖ +
y

‖y‖
∥
∥
∥
∥

=
√

2.

It is known that the orthogonality ⊥w is non-degenerate, symmetric and
existent [4]. Dimmine et al. [8] showed that this notion of orthogonality is
not homogeneous in general. He also mentioned the problem of whether the
additivity of the orthogonality characterizes inner product spaces or not.
In the sequel we show that the answer to this problem is affirmative when
dim(X) ≥ 3. First we need the following two lemmas.

Lemma 6. [2, Proposition 1] Let X be a normed linear space, λ > 0, 0 < ε < 2
and δ(ε) denotes the modulus of convexity of the space. Then the properties
Pλ, Qε and Rε are equivalent when λ = ε(4 − ε2)−1/2 and
Pλ : x, y ∈ SX ‖x + λy‖ = ‖x − λy‖ implies ‖x + λy‖ = 1 + λ2,
Qε : x, y ∈ SX ‖x − y‖ = ε implies ‖x + y‖2 = 4 − ε2,
Rε : δ(ε) = 1 − (1 − ε2/4)1/2.

Lemma 7. [11, Theorem 5] Let X be a normed linear space with dim(X) ≥ 3.
If the Singer orthogonality is additive, then X is an inner product space.
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Theorem 4.3. Let (X, ‖.‖) be a normed linear space and dim(X) ≥ 3. Then
the following are equivalent.

(i) The orthogonality ⊥w is additive,
(ii) The Singer orthogonality is additive,
(iii) X is an inner product space.

Proof. Using Lemma 7, it suffices to show that (i) implies (ii). First we show
that the following statements are equivalent:

(a) The orthogonality ⊥w is homogeneous.
(b) g̃(X) = G̃(X).
(c) The orthogonality ⊥w is equivalent to the Singer orthogonality.

(a) ⇒ (b): Let x, y ∈ X. By the existence and homogeneity properties of the
orthogonality ⊥w, there exists t0 ∈ R such that α[x+t0y, y] = α[x+t0y,−y] =√

2. So α̃(x, y) =
√

2 for all x, y ∈ X and as a result g̃(X) = G̃(X) =
√

2.
(b) ⇒ (c): Let x, y ∈ X and x ⊥w y. Using Lemma 6 and the fact that
g̃(X) = G̃(X) =

√
2, we have x ⊥S y. On the other hand if x ⊥S y, then

α[x, y] = α[x,−y]. It is enough to show that α[x, y] =
√

2. Since g̃(X) =
G̃(X) =

√
2, we have α[x, y] =

√
2 and therefore x ⊥w y.

(c)⇒ (a): It is obvious, since the Singer orthogonality is homogeneous.
(i) ⇒ (ii) Suppose that the orthogonality ⊥w is additive. We show that ⊥w

is homogeneous. For this purpose it suffices to show that x ⊥w y implies
x ⊥w −y. Let x ⊥w y and y 	= 0, by the existence property of the orthogonality
⊥w, there exists a ∈ R such that ay − x ⊥w y. Using the additivity we have
x ⊥w −y. So by the above equivalent statements, the Singer orthogonality is
additive. �

In the following we show that the assumption dim(X) ≥ 3 in the previous
theorem is essential. We show that in the two dimensional case there exists
a strictly convex normed linear space which is not an inner product space,
but the orthogonality ⊥w is additive. In fact, by considering the example
which was mentioned by Diminnie et al. [8], we have a strictly convex normed
linear space which is not an inner product space, but the orthogonality ⊥w

is homogeneous (see [8, p. 203]). Now we can see that the orthogonality ⊥w

is also additive in this space. Let x, y, z ∈ X, x ⊥w y and z ⊥w y. We show
that x + z ⊥w y. We may assume that x, y, z 	= 0, clearly the sets {x, y} and
{y, z} are linearly independent. Assume z = αx + βy, for some real numbers
α 	= 0 and β. So αx + βy ⊥w y and by the homogeneity of the orthogonality
we have x+ β

αy ⊥w y. On the other hand, by the hypothesis of strict convexity

of the space and Lemma 4 the function h+(t) =
∥
∥
∥

x+ty
‖x+ty‖ + y

‖y‖
∥
∥
∥ is strictly

increasing and so there exists just one t ∈ R such that x + ty ⊥w y. Therefore
β = 0 and z = αx and by the homogeneity of the orthogonality we have
x + z = (α + 1)x ⊥w y.
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