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Abstract. We discuss a rather general condition under which the inequality of Jensen works
for certain convex combinations of points not all in the domain of convexity of the function
under attention. Based on this fact, an extension of the Hardy–Littlewood–Pólya theorem
of majorization is proved and a new insight is given into the problem of risk aversion in
mathematical finance.

Mathematics Subject Classification. Primary 26B25, Secondary 26D15.

Keywords. Convex function, Supporting hyperplane, Positive measure, Doubly stochastic

matrix.

1. Introduction

The important role played by the classical inequality of Jensen in mathematics,
probability theory, economics, statistical physics, information theory etc. is
well known. See the books of Niculescu and Persson [12], Pečarić et al. [18]
and Simon [19]. The aim of this paper is to discuss a rather general condition
under which the inequality of Jensen works in a framework that includes a
large variety of nonconvex functions and to provide on this basis applications
to majorization theory and mathematical finance.

The possibility to extend the inequality of Jensen outside the framework of
convex functions was first noticed twenty years ago by Dragomirescu and Ivan
[4]. Later, Pearce and Pečarić [17] and Czinder and Páles [3] have considered
the special case of mixed convexity (assuming the symmetry of the graph with
respect to the inflection point). For related results, see the papers of Florea
and Niculescu [5], Niculescu and Spiridon [14], and Mihai and Niculescu [11].

The inequality of Jensen characterizes the behavior of a continuous convex
function with respect to a mass distribution on its domain. More precisely, if
f is a continuous convex function on a compact convex subset K of RN and
μ is a Borel probability measure on K having the barycenter
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bμ =
∫

K

xdμ(x),

then the value of f at bμ does not exceed the mean value of f over K, that is,

f(bμ) ≤
∫

K

f(x)dμ(x).

A moment’s reflection reveals that the essence of this inequality is the fact
that bμ is a point of convexity of f relative to its domain K. The precise
meaning of the notion of point of convexity is given in Definition 1.1 below,
which is stated in the framework of real-valued continuous functions f defined
on a compact convex subset K of RN .

Definition 1.1. A point a ∈ K is a point of convexity of the function f relative
to the convex subset V of K if a ∈ V and

f(a) ≤
n∑

k=1

λkf(xk), (J)

for every family of points x1, . . . , xn in V and every family of positive weights
λ1, . . . , λn with

∑n
k=1 λk = 1 and

∑n
k=1 λkxk = a.

The point a is a point of concavity if it is a point of convexity for
−f (equivalently, if the inequality (J) works in the reversed way).

In what follows, the set V that appears in Definition 1.1 will be referred
to as a neighborhood of convexity of a. Here, the term of neighborhood has an
extended meaning and is not necessarily ascribed to the topology of RN . In
order to avoid the trivial case where V = {a} , we will always assume that
V is an infinite set; for example, this happens when a belongs to the relative
interior of V (the interior within the affine hull of V ).

For the function f(x, y) = x2 −y2, the origin is a point of convexity relative
to the Ox axis, and a point of concavity relative to the Oy axis. With respect
to the plane topology, both axes have empty interior.

If a function f : K → R is convex, then every point of K is a point of
convexity relative to the whole domain K (and this fact characterizes the
property of convexity of f).

Definition 1.1 is motivated mainly by the existence of nonconvex functions
that admit points of convexity relative to the whole domain (or at least to a
neighborhood of convexity where the function is not convex). An illustration
is offered by the nonconvex function g(x) =

∣∣x2 − 1
∣∣; all points in (−∞,−1] ∪

[1,∞) are points of convexity relative to the entire real set R.
Every point of local minimum of a continuous function f : [0, 1] → R is

a point of convexity. Thus, every nowhere differentiable continuous function
f : [0, 1] → R admits points of convexity despite the fact that it is not convex
on any nondegenerate interval.
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The idea of point of convexity is not entirely new. In an equivalent form, it
is present in the paper of Dragomirescu and Ivan [4]. The technique of convex
minorants, described by Steele [20] at pp. 96–99, is also close to the concept
of point of convexity.

A different concept of punctual convexity is discussed in the recent paper
of Florea and Păltănea [6].

2. The existence of points of convexity

The following lemma indicates a simple geometric condition under which a
point is a point of convexity relative to the whole domain.

Lemma 2.1. Assume that f is a real-valued continuous function defined on a
compact convex subset K of RN . If f admits a supporting hyperplane at a point
a, then a is a point of convexity of f relative to K.

In other words, every point at which the subdifferential is nonempty is a
point of convexity.

Proof. Indeed, the existence of a supporting hyperplane at a is equivalent to
the existence of an affine function h(x) = 〈x, v〉 + c (for suitable v ∈ R

N and
c ∈ R) such that

f(a) = h(a) and f(x) ≥ h(x) for all x ∈ K.

If μ is a Borel probability measure, its barycenter is given by the formula

bμ =
∫

K

xdμ(x),

so that if bμ = a, then

f(a) = h(a) = h

(∫
K

xdμ(x)
)

=
∫

K

h(x)dμ(x) ≤
∫

K

f(x)dμ(x).

�
Remark 2.2. Another sufficient condition for convexity at a point, formulated
in terms of secant line slopes, can be found in the papers of Niculescu and
Stephan [15,16]. However, as shown by the case of polynomials of fourth degree,
that condition does not overcome the result of Lemma 2.1.

As is well known, the usual property of convexity assures the existence of a
supporting hyperplane at each interior point. See [12], Theorem 3.7.1, p. 128.
This explains why Jensen’s inequality works nicely in the context of continuous
convex functions.

In the case of differentiable functions, the supporting hyperplane is unique
and coincides with the tangent hyperplane. For such functions, Lemma 2.1
asserts that every point where the tangent hyperplane lies below/above the
graph is a point of convexity/concavity.
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Figure 1. A point of convexity of the function xex relative
to the whole real axis

Example. In the one real variable case, the existence of points of convexity of
a nonconvex differentiable function (such as xex, x2e−x, log2 x, log x

x etc.) can
be easily proved by looking at the position of the tangent line with respect to
the graph.

For example, the function xex is concave on (−∞,−2] and convex on
[−2,∞) (and attains a global minimum at x = −1). See Fig. 1.

Based on Lemma 2.1, one can easily show that every point x ≥ −1 is a
point of convexity of f relative to the whole real axis. Therefore

n∑
k=1

λkxkexk ≥
(

n∑
k=1

λkxk

)
e
∑n

k=1 λkxk ,

whenever
∑n

k=1 λkxk ≥ −1.
In the special case where

∑n
k=1 λkxk ≥ 0, this inequality can be deduced

from Chebyshev’s inequality and the convexity of the exponential function.
Borwein and Girgensohn [2] proved that

n∑
k=1

xkexk ≥ max {2, e(1 − 1/n)}
n

n∑
k=1

x2
k,

for every family of real numbers x1, x2, . . . , xn such that
∑n

k=1 xk ≥ 0. The
extension of their result to the weighted case (subject to the condition

∑n
k=1

λkxk ≥ 0) is an open problem.

Example. The two real variables function

f(x, y) = e−x2−y2
, (x, y) ∈ R

2,

exhibits the phenomenon of relative concavity. Indeed, its graph is the rotation
graph of the function z = e−x2

around the Oz axis and this makes it possible
to apply Lemma 2.1 by means of calculus of one real variable. See Fig. 2.
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Figure 2. A point of concavity of the function e−x2−y2
and

a neighborhood of concavity of it

The convexity properties of the function f can be described in a more
convenient way by viewing it as a function of complex variable, via the formula
f(w) = e−|w|2 .

The function f is strictly concave on the compact disc D1/
√

2 (0) and attains
a global maximum at the origin. The tangent plane at the graph of f at any
point w0 = (x0, y0) with ‖w0‖ ≤ 1/2, is above the graph over a neighborhood
of w0 including the closed disc Dr∗ (0), where r∗ = 1. 183 802 . . . is the solution
of the equation e−1/4( 3

2 − x) = e−x2
. As a consequence,

n∑
k=1

λke−|wk|2 ≤ e−M2

for all points w1, . . . , wn ∈ Dr∗ (0) and all λ1, . . . , λn > 0 such that
∑n

k=1 λk =

1 and
∣∣∣∣

n∑
k=1

λkwk

∣∣∣∣ = M ≤ 1/2. Notice that Jensen’s inequality yields this

conclusion only when w1, . . . , wn ∈ D1/
√

2 (0) .

The real variable case also has nontrivial implications in the case of matrix
functions. The function F (X) = trace(f(X)) is convex/concave on the linear
space Sym(n,R), of all self-adjoint (that is, symmetric) matrices in Mn(R),
whenever f : R → R is convex/concave. See the paper of Lieb and Pedersen
[8] for details. Thus, in the case of f(x) = xex, the function F is concave
on the convex set Symsp⊂(−∞,−2](n,R), of all symmetric matrices in Mn(R)
whose spectrum is included in (−∞,−2]; the function F is convex on the set
Symsp⊂[−2,∞)(n,R), of all symmetric matrices in Mn(R) whose spectrum is
included in (−2,∞].

The following result is a direct consequence of functional calculus with self-
adjoint matrices. If λ1, . . . , λn are positive numbers such that

∑n
k=1 λk = 1
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and A1, . . . , An are matrices in Symsp⊂(−∞,−2](n,R)∪Symsp⊂[−2,∞)(n,R) such
that

∑n
k=1 λkAk ≥ −In, then

n∑
k=1

λk trace
(
AkeAk

) ≥ trace

[(
n∑

k=1

λkAk

)
e
∑n

k=1 λkAk

]
.

3. The extension of Hardy–Littlewood–Pólya theorem of majorization

The notion of point of convexity leads to a very large generalization of the
Hardy–Littlewood–Pólya theorem of majorization. Given a vector x = (x1, . . . ,
xN ) in R

N , let x↓ be the vector with the same entries as x but rearranged in
decreasing order,

x↓
1 ≥ · · · ≥ x↓

N .

The vector x is majorized by y (abbreviated, x ≺ y) if
k∑

i = 1

x↓
i ≤

k∑
i = 1

y↓
i for k = 1, . . . , N − 1

and
N∑

i = 1

x↓
i =

N∑
i = 1

y↓
i .

The concept of majorization admits an order-free characterization based
on the notion of doubly stochastic matrix. Recall that a matrix A ∈ Mn(R) is
doubly stochastic if it has nonnegative entries and each row and each column
sums to unity.

Theorem 3.1. (Hardy, Littlewood and Pólya [7]). Let x and y be two vectors
in R

N , whose entries belong to an interval I. Then the following statements
are equivalent:
(a) x ≺ y;
(b) there is a doubly stochastic matrix A = (aij)1≤i,j≤N such that x = Ay;
(c) the inequality

∑N
i=1 f(xi) ≤ ∑N

i=1 f(yi) holds for every continuous convex
function f : I → R.

An alternative characterization of the relation of majorization is given by
the Schur–Horn theorem: x ≺ y in R

N if and only if the components of x and
y are respectively the diagonal elements and the eigenvalues of a self-adjoint
matrix. The details can be found in the book of Marshall, Olkin and Arnold
[10], pp. 300–302.

The notion of majorization is generalized by weighted majorization, which
refers to probability measures rather than vectors. This is done by identifying
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any vector x = (x1, . . . , xN ) in R
N with the probability measure 1

N

∑N
i=1 δxi

,
where δxi

denotes the Dirac measure concentrated at xi.

We define the relation of majorization
m∑

i=1

λiδxi
≺

n∑
j=1

μjδyj
, (2)

between two positive discrete measures supported at points in R
N , by requiring

the existence of an m × n-dimensional matrix A = (aij)i,j such that

aij ≥ 0, for all i, j (3)
n∑

j=1

aij = 1, i = 1, . . . ,m (4)

μj =
m∑

i=1

aijλi, j = 1, . . . , n (5)

and

xi =
n∑

j=1

aijyj , i = 1, ...,m. (6)

The matrices verifying the conditions 3 and 4 are called stochastic on rows.
When m = n and all weights λi and μj are equal to each other, the condition
(5) assures the stochasticity on columns, so in that case we deal with doubly
stochastic matrices.

We are now in a position to state the following generalization of the Hardy–
Littlewood–Pólya theorem of majorization:

Theorem 3.2. Suppose that f is a real-valued function defined on a compact
convex subset K of RN and

∑m
i=1 λiδxi

and
∑n

j=1 μjδyj
are two positive dis-

crete measures concentrated at points in K. If x1, . . . ,xm are points of convex-
ity of f relative to K and

m∑
i=1

λiδxi
≺

n∑
j=1

μjδyj
,

then
m∑

i=1

λif(xi) ≤
n∑

j=1

μjf(yj). (7)

Proof. By our hypothesis, there exists an m × n-dimensional matrix A =
(aij)i,j that is stochastic on rows and verifies the conditions (5) and (6). The
last condition shows that each point xi is the barycenter of the probability
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measure
∑n

j=1 aijδyj
. By Jensen’s inequality, we infer that

f(xi) ≤
n∑

j=1

aijf(yj).

Multiplying each side by λi and then summing up over i from 1 to m, we
conclude that

m∑
i=1

λif(xi) ≤
m∑

i=1

⎛
⎝λi

n∑
j=1

aijf(yj)

⎞
⎠ =

n∑
j=1

(
m∑

i=1

aijλi

)
f(yj) =

n∑
j=1

μjf(yj),

and the proof of (7) is done. �

Example. The well known Gauss–Lucas theorem on the distribution of the
critical points of a polynomial asserts that the roots (μk)n−1

k=1 of the derivative
P ′ of any complex polynomial P ∈ C[z] of degree n ≥ 2 lie in the smallest
convex polygon containing the roots (λj)n

j=1 of the polynomial P . This led
Malamud [9] to the interesting remark that the two families of roots are actu-
ally related by the relation of majorization. Based on this remark, he was able
to prove the following conjecture raised by de Bruijn and Springer in 1947: for
any convex function f : C → R and any polynomial P of degree n ≥ 2,

1
n − 1

n−1∑
k=1

f(μk) ≤ 1
n

n∑
j=1

f(λj),

where (λj)n
j=1 and (μk)n−1

k=1 are respectively the roots of P and P ′.
Theorem 3.2 allows us to relax the condition of convexity by asking only

that all the roots μk of P ′ be points of convexity for f. According to a remark
above concerning the function e−|w|2 , this implies that

1
n − 1

n−1∑
k=1

e−|μk|2 ≥ 1
n

n∑
j=1

e−|λj |2 ,

whenever the roots μ1, . . . , μn−1 belong to D1/2 (0) and λ1, . . . , λn belong to
D1.18 (0) . An example of a polynomial verifying these conditions is P (z) =
4z3 − 3z.

Example. A second application of Theorem 3.2 refers to the function f(x) =
log2 x. This function is convex on the interval (0, e] and concave on [e,∞). The
Hardy–Littlewood–Pólya theorem of majorization easily yields the implication

(x1, . . . , xn) ≺ (y1, . . . , yn) ⇒
n∑

i=1

log2 xi ≤
n∑

i=1

log2 yi (8)
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whenever x1, . . . , xn and y1, . . . , yn belong to (0, e]. According to Lemma 2.1,
all points in (0, 2] are points of convexity of f relative to (0, a∗], where

a∗ = 5.495 869 874 . . .

is the solution of the equation log2 x− log2 2 = (log 2) (x−2). By Theorem 3.2,
the implication (8) still works when x1, . . . , xn ∈ (0, 2] and y1, . . . , yn ∈ (0, a∗].
Recently, B̂ırsan, Neff and Lankeit [1] noticed still another case where an in-
equality of the form (8) holds true. Precisely, they proved that for every two
triplets x1, x2, x3 and y1, y2, y3 of positive numbers which satisfy the conditions

x1 + x2 + x3 ≤ y1 + y2 + y3, x1x2 + x2x3 + x3x1 ≤ y1y2 + y2y3 + y3y1

and x1x2x3 = y1y2y3, we have
3∑

i=1

log2 xi ≤
3∑

i=1

log2 yi.

This suggests a new concept of majorization for n-tuples of positive ele-
ments, based on elementary symmetric functions. As it is beyond the scope of
this paper, we will not go into the details.

Theorem 3.2 provides the following extension of Popoviciu’s inequality:

Theorem 3.3. Suppose that f is a real-valued function defined on an interval I.
If a, b, c belong to I and a+b

2 , a+c
2 and b+c

2 are points of convexity of f relative
to the entire interval I, then

f (a) + f (b) + f (c)
3

+ f

(
a + b + c

3

)

≥ 2
3

[
f

(
a + b

2

)
+ f

(
a + c

2

)
+ f

(
b + c

2

)]
. (9)

Proof. Without loss of generality we may assume that a ≥ b ≥ c. Then
a + b

2
≥ a + c

2
≥ b + c

2
and a ≥ a + b + c

3
≥ c.

We attach to the points a, b, c two sextic families of points:

x1 = x2 =
a + b

2
, x3 = x4 =

a + c

2
, x5 = x6 =

b + c

2

y1 = a, y2 = y3 = y4 =
a + b + c

3
, y5 = b, y6 = c

if a ≥ (a + b + c)/3 ≥ b ≥ c, and

x1 = x2 =
a + b

2
, x3 = x4 =

a + c

2
, x5 = x6 =

b + c

2

y1 = a, y2 = b, y3 = y4 = y5 =
a + b + c

3
, y6 = c
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if a ≥ b ≥ (a + b + c)/3 ≥ c. In both cases 1
6

∑6
i=1 δxi

≺ 1
6

∑6
i=1 δyi

, and thus
the inequality (9) follows from Theorem 3.2. �

Popoviciu noticed that under the presence of continuity, the inequality (9)
works for all triplets a, b, c ∈ I if and only if the function f is convex. See [12],
p. 12. Theorem 3.3 allows this inequality to work for certain triplets a, b, c even
when f is not convex. For example, this is the case for the function log2 x, and
all points a, b, c ∈ (0, a∗] such that a+b

2 , a+c
2 , b+c

2 ∈ (0, 2].

Remark 3.4. The theory of points of convexity and our generalization of the
Hardy–Littlewood–Pólya theorem stated in Theorem 3.2 extend verbatim to
the context of spaces with global nonpositive curvature. See [13] for the theory
of convex functions on such spaces.

4. An application to mathematical finance

In the context of probability theory, Jensen’s inequality is generally stated in
the following form: if X is a random variable and f is a continuous convex
function on an open interval containing the range of X, then

f(E(X)) ≤ E(f(X)),

provided that both expectations E(X) and E(f(X)) exist and are finite.
A nice illustration of this inequality in mathematical finance refers to the

so called risk aversion, the reluctance of someone who wants to invest his life
savings into a stock that may have high expected returns (but also involves a
chance of losing value), preferring to put his or her money into a bank account
with a low but guaranteed interest rate. Indeed, if the utility function f is
concave, then

f(E(X)) ≥ E(f(X)).

Using the technique of pushing-forward measures (i.e., of image measures),
we will show that this inequality still works when f is continuous and E(X)
is a point of concavity of f relative to its whole domain. This follows from the
following technical result.

Theorem 4.1. Suppose that f is a real-valued continuous function defined on
an open interval I and X is a random variable associated with a probability
space (Ω,Σ, μ) such that

(i) the range of X is included in the interval I;
(ii) the expectations E(X) and E(f(X)) exist and are finite;
(iii) E(X) is a point of convexity of f relative to I.

Then

f(E(X)) ≤
∫

Ω

f(X(ω))dμ(ω).
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Proof. Since X : Ω → I is a μ-integrable map, the push-forward measure ν,
given by the formula ν(A) = μ(X−1(A)), is a Borel probability measure on I
with barycenter bν =

∫
Ω

X(ω)dμ(ω) = E(X). We have to prove that

f(bν) ≤
∫

I

f(x)dν(x).

When ν is a discrete measure, this follows from the fact that bν is a point
of convexity. If the range of X is included in a compact subinterval K of
I, then the support of ν is included in K and we have to use the following
approximation argument proved in [12], Lemma 4.1.10, p. 183: every Borel
probability measure ν on a compact convex set K is the pointwise limit of
a net of discrete Borel probability measures να on K, each having the same
barycenter as ν.

In the general case, we approximate X by the sequence of bounded random
variables Xn = sup {inf {X,n} ,−n} . �

5. Concluding remarks

In this paper we introduced the concept of convexity at a point relative to
a convex subset of the domain. This fact made Jensen’s inequality available
to a large variety of nonconvex functions and shed new light on the Hardy–
Littlewood–Pólya theorem of majorization. In turn, the probabilistic form of
Jensen’s inequality (as stated in Theorem 4.1) is put in a more general per-
spective of the problem of risk aversion.

Most likely the notion of convexity at a point could have a practical pur-
pose in optimization theory, information theory, the design of communication
systems etc.
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