
Aequat. Math. 89 (2015), 949–956
c© Springer Basel 2014
0001-9054/15/040949-8
published online September 16, 2014
DOI 10.1007/s00010-014-0296-0 Aequationes Mathematicae

A variant of Wigner’s functional equation

Aleksej Turnšek

Abstract. We characterize mappings between inner product spaces satisfying a certain pair of
functional equations. As a consequence a short proof of Wigner’s theorem for real, complex
or quaternionic inner spaces is presented.
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1. Introduction

Let H and K be inner product spaces (not necessarily complete) over F = R,C
or H, where R is the field of real numbers, C is the field of complex numbers
and H is the field of quaternions. Let us say that a mapping f : H → K satisfies
condition (W ) if

|〈f(x), f(y)〉| = |〈x, y〉| (x, y ∈ H)

and it satisfies condition (R) if

Re〈f(x), f(y)〉 = Re〈x, y〉 (x, y ∈ H).

Suppose for a moment that H and K are complex inner product spaces
and f : H → K is a mapping satisfying 〈f(x), f(y)〉 = 〈x, y〉, x, y ∈ H, or
〈f(x), f(y)〉 = 〈y, x〉, x, y ∈ H. Then a mapping f certainly satisfies both
conditions (W ) and (R). Can we say something more about the mapping f?
It follows easily from 〈f(x), f(y)〉 = 〈x, y〉, x, y ∈ H, that f is a linear isom-
etry. Similarly, it follows from 〈f(x), f(y)〉 = 〈y, x〉, x, y ∈ H, that f is an
anti-linear isometry, where anti-linear means f(λx + μy) = λ∗f(x) + μ∗f(y),
λ, μ ∈ C, and the star denotes complex conjugation. So, the natural question
is whether linear or anti-linear isometries are the only solutions of the pair
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of functional equations (W ) and (R). In Theorem 2.2 we show that this is
indeed the case. Recall that the identity and conjugation are the only contin-
uous automorphisms C → C, hence linear isometries or anti-linear isometries,
that are solutions of (W ) and (R), are precisely all mappings f : H → K
satisfying 〈f(x), f(y)〉 = ϕ(〈x, y〉), x, y ∈ H, where ϕ : C → C is a continuous
automorphism. This is precisely what happens also in the quaternionic case.
In Theorem 2.3 we prove that solutions of (W ) and (R) in the quaternionic
setting are mappings f such that 〈f(x), f(y)〉 = ϕ(〈x, y〉), x, y ∈ H, where
ϕ : H → H is an automorphism.

The famous Wigner’s theorem says that in the case of inner product spaces
over C the solutions of functional equation (W ) are mappings f of the form
f(x) = σ(x)Ux, x ∈ H, where U : H → K is either a linear isometry or
an anti-linear isometry and σ : H → C is a so called phase function, which
means that its values are of modulus one. This celebrated result plays a very
important role in quantum mechanics and in representation theory in physics.

There are several proofs of this result, see [2,4–7,9,11,13] to list just some
of them. The quaternionic version of Wigner’s theorem is proved in [12] and
in [10] Uhlhorn’s generalization of Wigner’s theorem, see [14], it is proved in
quaternionic indefinite inner product spaces. For generalizations to Hilbert C∗

-modules see [1,8].
As a consequence of Theorem 2.2 and Theorem 2.3 we are able to give a

short, elementary and unified proof of Wigner’s theorem for real, complex or
quaternionic inner spaces. Our approach is not new, we follow the ideas of
Bargmann, Sharma and Almeida, see [2,11,12].

Let us introduce some notations and basic facts about quaternions. Recall
that the field of quaternions H = {ξ0 + ξ1i + ξ2j + ξ3k : ξ0, ξ1, ξ2, ξ3 ∈ R}. For
ξ = ξ0 + ξ1i + ξ2j + ξ3k, ξ∗ is defined by ξ∗ = ξ0 − ξ1i − ξ2j − ξ3k and |ξ| by
|ξ| =

√
ξ20 + ξ21 + ξ22 + ξ23 . When ξ ∈ C, then ξ∗ denotes a conjugate complex

number and when ξ ∈ R, then ξ∗ is just ξ.
We will say that ξ0 is the real part of ξ. Quaternions ξ0 + ξ1i + ξ2j + ξ3k

can be identified with ordered pairs (ξ0, ξ) ∈ R×R
3, where ξ = ξ1i+ ξ2j+ ξ3k

and the triple i, j,k is the standard orthonormal basis of R3.
Let H be a (left) vector space over F. An inner product space (H, 〈·, ·〉) is

a vector space together with the inner product 〈·, ·〉 : H × H → F satisfying

(i) 〈x, y〉 = 〈y, x〉∗

(ii) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉
(iii) 〈x, αy + βz〉 = 〈x, y〉α∗ + 〈x, z〉β∗

(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0

for all α, β ∈ F and all x, y, z ∈ H. If 〈·, ·〉 is an inner product on H, then
‖x‖ =

√〈x, x〉 is a norm on H. The geometry of quaternionic inner product
spaces is similar to that of complex inner product spaces. For example, the



Vol. 89 (2015) A variant of Wigner’s functional equation 951

Cauchy–Schwarz inequality |〈x, y〉| ≤ ‖x‖‖y‖, x, y ∈ H, holds and the notion of
orthogonal complement is as in complex inner product spaces. Two mappings
f, g : H → K are phase equivalent if f(x) = σ(x)g(x), x ∈ H, where σ : H →
F, |σ(x)| = 1, x ∈ H, is a phase function.

2. Results

The next proposition shows that a mapping satisfying functional equation (W )
has a property close to linearity. See also [11, Lemma 5] for a different proof
in the case of complex inner product spaces.

Proposition 2.1. Let H and K be inner product spaces over F and suppose that
f : H → K satisfies (W ).
(1) Let x ∈ H and λ ∈ F. Then f(λx) = λ′f(x), where λ′ ∈ F, and |λ′| = |λ|.
(2) Let x and y be nonzero orthogonal vectors. Then f(x+y) = ‖x‖−2〈f(x+

y), f(x)〉f(x) + ‖y‖−2〈f(x + y), f(y)〉f(y).

Proof. (1) |〈f(λx), f(x)〉| = |〈λx, x〉| = ‖λx‖‖x‖ = ‖f(λx)‖‖f(x)‖. By the
equality condition in the Cauchy–Schwarz inequality it follows that f(λx)
and f(x) are linearly dependent. Thus f(λx) = λ′f(x) for some λ′ ∈ F.
Since f preserves the length of vectors it follows that |λ′| = |λ|.

(2) Let x and y be nonzero orthogonal vectors and denote α = ‖x‖−2〈f(x +
y), f(x)〉 and β = ‖y‖−2〈f(x+y), f(y)〉. Note that |α| = |β| = 1 and that
〈f(x + y), f(x)〉 = α‖x‖2, 〈f(x + y), f(y)〉 = β‖y‖2.

Then

‖f(x + y) − αf(x) − βf(y)‖2 = ‖f(x + y)‖2 + ‖αf(x)‖2 + ‖βf(y)‖2
− 2Re〈f(x + y), αf(x)〉 − 2Re〈f(x + y), βf(y)〉

= ‖x + y‖2 + ‖x‖2 + ‖y‖2 −2Re〈f(x + y), f(x)〉α∗ −2Re〈f(x + y), f(y)〉β∗

= 2‖x‖2 + 2‖y‖2 − 2Re αα∗‖x‖2 − 2Re ββ∗‖y‖2 = 0.

�
Remark 2.1. Note that λ′ in the previous proposition in general depends on λ
and x, that is λ′ = λ′(λ, x).

As already mentioned in the introduction, if H and K are complex inner
product spaces and f : H → K is a linear or anti-linear isometry, then f satis-
fies conditions (W ) and (R). The next theorem shows that the converse is true.

Theorem 2.2. Let H and K be inner product spaces over C and suppose that
f : H → K satisfies conditions (W ) and (R). Then f is either a linear isometry
or an anti-linear isometry.

Proof. Let 0 �= x ∈ H. By Proposition 2.1 f(ix) = λ(x)f(x), where |λ(x)| = 1.
Then from
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Re〈λ(x)f(x), f(x)〉 = Re〈f(ix), f(x)〉 = Re〈ix, x〉 = 0,

it follows that Reλ(x) = 0, hence λ(x) = ±i, x ∈ H. Suppose that f(ix) =
if(x) for some 0 �= x ∈ H. Then

−Im〈f(x), f(y)〉 = Re i〈f(x), f(y)〉 = Re〈f(ix), f(y)〉 = Re〈ix, y〉
= Re i〈x, y〉 = −Im〈x, y〉.

Hence 〈f(x), f(y)〉 = 〈x, y〉 for all y ∈ H. If f(ix) = if(x) for all x ∈ H
this shows that 〈f(x), f(y)〉 = 〈x, y〉 for all x, y ∈ H. But then f is a linear
isometry.

Similarly, f is an anti-linear isometry in the case f(ix) = −if(x) for all
x ∈ H. It remains to show that the third possibility, that is f(ix) = if(x) and
f(ix′) = −if(x′) for some nonzero x, x′ ∈ H, leads to a contradiction. Indeed,
since f(ix) = if(x), it follows by the previous consideration that

〈f(x), f(ix′)〉 = 〈x, ix′〉 = −i〈x, x′〉.
On the other hand, since f(ix′) = −if(x′), we get

〈f(x), f(ix′)〉 = 〈f(x),−if(x′)〉 = i〈f(x), f(x′)〉 = i〈x, x′〉.
If dimH = 1 this is a contradiction. If dimH ≥ 2, then x and x′ must be
orthogonal and furthermore, for any two non orthogonal vectors, say u and v,
either f(iu) = if(u) and f(iv) = if(v) or f(iu) = −if(u) and f(iv) = −if(v).
Now choose z �= 0 which is neither orthogonal to x nor to x′, say z = x + x′.
Then f(iz) = if(z) since z and x are not orthogonal and f(iz) = −if(z)
since z and x′ are not orthogonal. This is a contradiction and the proof is
completed. �

The next theorem is a quaternionic analogue of the previous one.

Theorem 2.3. Let H and K be quaternionic inner product spaces with dim H ≥
2 and f : H → K be a mapping satisfying (W ) and (R). Then there is a unit
quaternion ξ such that ξf is a linear isometry.

Proof. Let x �= 0. Then by Proposition 2.1 f(ix) = λ(x)f(x), f(jx) = μ(x)
f(x), f(kx) = ν(x)f(x), where |λ(x)| = |μ(x)| = |ν(x)| = 1. Next,

Re〈f(ix), f(x)〉 = Re〈ix, x〉 = 0

implies that Reλ(x) = 0. Similarly we conclude that Reμ(x) = Reν(x) = 0.
From

Reλ(x)μ(x)∗‖f(x)‖2 = Re〈λ(x)f(x), μ(x)f(x)〉=Re〈f(ix), f(jx)〉=Re〈ix, jx〉
= Reij∗‖x‖2 = 0,

it follows that Reλ(x)μ(x)∗ = 0. Similarly, Reλ(x)ν(x)∗ = Reμ(x)ν(x)∗ = 0.
Write
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λ(x) = λ1(x)i + λ2(x)j + λ3(x)k, μ(x) = μ1(x)i + μ2(x)j + μ3(x)k.

Then

Reλ(x)μ(x)∗ = λ1(x)μ1(x) + λ2(x)μ2(x) + λ3(x)μ3(x) = 0.

Let ν(x) = ν1(x)i + ν2(x)j + ν3(x)k. Then Reλ(x)ν(x)∗ = Reμ(x)ν(x)∗ = 0
implies that

λ1(x)ν1(x) + λ2(x)ν2(x) + λ3(x)ν3(x) = μ1(x)ν1(x) + μ2(x)ν2(x)
+μ3(x)ν3(x) = 0.

Hence the matrix

Q(x) =

⎡

⎣
λ1(x) μ1(x) ν1(x)
λ2(x) μ2(x) ν2(x)
λ3(x) μ3(x) ν3(x)

⎤

⎦ ∈ M3(R)

is orthogonal, that is Q(x)Q(x)T = Q(x)TQ(x) = I.
Let x and y be nonzero orthogonal vectors and by Proposition 2.1 write

f(x + y) = αf(x) + βf(y), |α| = |β| = 1.

Then

Re(α‖x‖2) = Re〈αf(x) + βf(y), f(x)〉 = Re〈f(x + y),
f(x)〉 = Re〈x + y, x〉 = ‖x‖2.

Hence α = 1, similarly we get β = 1. Thus f is orthogonally additive, that is
f(x + y) = f(x) + f(y) whenever x and y are orthogonal. Now ix and iy are
also orthogonal and

f(i(x + y)) = f(ix + iy) = f(ix) + f(iy) = λ(x)f(x) + λ(y)f(y). (1)

On the other hand,

f(i(x + y)) = λ(x + y)f(x + y) = λ(x + y)f(x) + λ(x + y)f(y). (2)

From (1) and (2) it follows that

λ(x) = λ(y) = λ(x + y), (3)

whenever x and y are nonzero orthogonal vectors. Next we will show that λ
is a constant function. Choose any 0 �= u ∈ H. First we show that λ(γu) =
λ(u), γ ∈ H. Let u′ be orthogonal to u. Then u′ is orthogonal also to γu, hence
by (3) λ(u) = λ(u′) = λ(γu). Now choose any v ∈ H. If u and v are linearly
dependent, that is v = γu for some γ ∈ H, then we already know that λ(v) =
λ(u). If u and v are linearly independent, then write u = γx+δy, v = γ′x+δ′y,
where x, y are orthogonal vectors, γ, γ′, δ, δ′ ∈ H. By (3)

λ(u) = λ(γx + δy) = λ(γx) = λ(γ′x) = λ(γ′x + δ′y) = λ(v).

Analogous reasoning shows that μ and ν are constant functions and so the
matrix Q(x) = Q is a constant matrix.
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Now let x, y ∈ H be arbitrary and write

〈x, y〉 = α0 + α1i + α2j + α3k = (α0,α), 〈f(x), f(y)〉
= α0 + β1i + β2j + β3k = (α0,β).

From Re〈ix, y〉 = Re〈f(ix), f(y)〉 = Re(λ〈f(x), f(y)〉 it follows that

α1 = λ1β1 + λ2β2 + λ3β3.

Similarly,

α2 = μ1β1 + μ2β2 + μ3β3, α3 = ν1β1 + ν2β2 + ν3β3,

hence β = Qα. This shows that

〈f(x), f(y)〉 = (α0,β) = (α0, Qα) = ϕ((α0,α)) = ϕ(〈x, y〉),
where ϕ : H → H is defined by ϕ((ξ0, ξ)) = (ξ0, Qξ), ξ = ξ0 + ξ1i+ ξ2j + ξ3k =
(ξ0, ξ). It is easy to check, see [10], that ϕ is an automorphism in the case
det Q = 1, and an anti-automorphism in the case detQ = −1. Let us show
that ϕ is an automorphism. Indeed, let x ∈ H be a unit vector and α ∈ H.
Then by Proposition 2.1 f(αx) = α′f(x), hence

α′ = 〈α′f(x), f(x)〉 = 〈f(αx), f(x)〉 = ϕ(〈αx, x〉) = ϕ(α).

Now let α, β ∈ H be arbitrary, x ∈ H be a unit vector and compute

ϕ(αβ∗) = ϕ(〈αx, βx〉) = 〈f(αx), f(βx)〉 = 〈ϕ(α)f(x), ϕ(β)f(x)〉 = ϕ(α)ϕ(β∗).

Thus ϕ is indeed an automorphism. Since ϕ must take the center onto itself,
this means that ϕ(R) = R. Then the Skolem–Noether theorem [3, p. 262]
says that ϕ is an inner automorphism, that is ϕ(α) = ξ∗αξ for some unit
quaternion ξ. Then from 〈f(x), f(y)〉 = ϕ(〈x, y〉) = ξ∗〈x, y〉ξ it follows that
〈ξf(x), ξf(y)〉 = 〈x, y〉, x, y ∈ H, from which it follows that ξf is a linear
isometry. �

Now we are ready to prove Wigner’s theorem. We follow [2,11,12].

Theorem 2.4. Let H and K be inner product spaces over F and f : H → K be
a mapping satisfying

|〈f(x), f(y)〉| = |〈x, y〉| (x, y ∈ H).

(i) If F = R and dim H ≥ 2, then f is phase equivalent to a linear isometry.
(ii) If F = C and dim H ≥ 2, then f is phase equivalent to either a linear

isometry or to an anti-linear isometry.
(iii) If F = H and dim H ≥ 3, then f is phase equivalent to a linear isometry.

Proof. Choose and fix a unit vector e ∈ H and let V = {e}⊥. Let 0 �= x ∈ V
be arbitrary and by Proposition 2.1 write

f(e + x) = 〈f(e + x), f(e)〉f(e) + ‖x‖−2〈f(e + x), f(x)〉f(x)
= α(x)f(e) + β(x)f(x).
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Then

α(x)∗f(e + x) = f(e) + α(x)∗β(x)f(x).

Define a mapping g : (e + V) ∪ V → K as follows:

g(e) = f(e), g(x) = α(x)∗β(x)f(x), g(e + x) = g(e) + g(x),

where 0 �= x ∈ V. Then g is phase equivalent to f , hence

|〈g(x), g(y)〉| = |〈x, y〉|, (4)

and

|1 + 〈g(x), g(y)〉| = |〈g(e + x), g(e + y)〉| = |〈e + x, e + y〉| = |1 + 〈x, y〉| (5)

for all x, y ∈ V. From (4) and (5) it follows that Re〈g(x), g(y)〉 = Re〈x, y〉 for
all x, y ∈ V. If F = R, then clearly g|V : V → K is a linear isometry. In the
complex case Theorem 2.2 implies that g|V : V → K is either a linear isometry
or an anti-linear isometry. In the quaternionic case we use Theorem 2.3 to
conclude that ξg|V : V → K is a linear isometry for some unit quaternion ξ.
Let us finish the proof in the quaternionic case, the others being analogous.
Extend ξg|V to a linear isometry U : H → K, that is Ue = ξg(e), Ux = ξg(x)
if x ∈ V and U(λe + x) = λUe + Ux. It remains to show that U and f are
phase equivalent. If λ = 0 they are, so suppose that λ �= 0. Then

f(λe + x) = f(λ(e + λ−1x)) = λ′f(e + λ−1x) = λ′α(λ−1x)g(e + λ−1x)

= λ′α(λ−1x)ξ∗U(e + λ−1x) = λ′α(λ−1x)ξ∗λ−1U(λe + x).

Since |λ′α(λ−1x)ξ∗λ−1| = 1, f and U are indeed phase equivalent and the
proof is completed. �

Remark 2.2. In dimension one any operator that preserves the modulus of
the inner product is Wigner equivalent to the identity operator. Indeed, after
a suitable identification, any such mapping f can be regarded as a mapping
f : F → F and then f(x) = σ(x)x, where σ is a phase function defined by
σ(x) = f(x)x−1 if x �= 0 and σ(0) = 1.

Remark 2.3. It is known that the quaternionic version of Wigner’s theorem
does not hold if dimH = 2. An easy counter example of Wigner’s theorem in
this case is the following. Let x, y ∈ H be unit orthogonal vectors, take any
z ∈ H and write it as z = αx + βy. If α = 0, define f(z) = β∗y. If α �= 0,
define f(z) = α∗x + α−1β∗αy. See [2,12] for the details.
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[10] Šemrl, P.: Generalized symmetry transformations on quaternionic indefinite inner prod-
uct spaces: an extension of quaternionic version of Wigner’s theorem. Commun. Math.
Phys. 242(3), 579–584 (2003)

[11] Sharma, C.S., Almeida, D.F.: A direct proof of Wigner’s theorem on maps which
preserve transition probabilities between pure states of quantum systems. Ann.
Phys. 197, 300–309 (1990)

[12] Sharma, C.S., Almeida, D.F.: Additive isometries on a quaternionic Hilbert space. J.
Math. Phys. 31, 1035–1041 (1990)

[13] Sharma, C.S., Almeida, D.F.: The first mathematical proof of Wigner’s theorem. J. Nat.
Geom. 2, 113–123 (1992)

[14] Uhlhorn, U.: Representation of symmetry transformations in quantum mechanics. Ark.
Fys. 23, 307–340 (1963)

Aleksej Turnšek
Faculty of Maritime Studies and Transport
University of Ljubljana
Pot pomorščakov 4
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