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Abstract. The class of ‘self-neglecting’ functions at the heart of Beurling slow variation is
expanded by permitting a positive asymptotic limit function λ(t), in place of the usual limit
1, necessarily satisfying the following ‘self-neglect’ condition:

λ(x)λ(y) = λ(x + yλ(x)),

known as the Go�ląb–Schinzel functional equation, a relative of the Cauchy equation (which
is itself also central to Karamata regular variation). This equation, due independently to
Aczél and Go�ląb, occurring in the study of one-parameter subgroups, is here accessory to
the λ -Uniform Convergence Theorem (λ-UCT) for the recent, flow-motivated, ‘Beurling
regular variation’. Positive solutions, when continuous, are known to be λ(t) = 1+at (below
a new, ‘flow’, proof is given); a = 0 recovers the usual limit 1 for self-neglecting functions.
The λ-UCT allows the inclusion of Karamata multiplicative regular variation in the Beurling
theory of regular variation, with λ(t) = 1 + t being the relevant case here, and generalizes
Bloom’s theorem concerning self-neglecting functions.
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1. Regular variation, self-neglecting and Beurling functions

The Karamata theory of regular variation studies functions f : (0,∞) → (0,∞)
with

f(tx)/f(x) → g(t) as x → ∞ ∀t, (RV )

(and f is slowly varying if g = 1), or equivalently in isomorphic additive form

h(x + t) − h(x) → k(t) ∀t, (RV+)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-014-0260-z&domain=pdf
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for h : R → R. Our reference for regular variation is [8] (BGT below). The
Beurling theory of slow variation, originating in Beurling’s generalization (for
which see [41,45]—cf. [14]) of the Wiener Tauberian Theorem, studies func-
tions f with

f(x + tϕ(x))/f(x) → 1 ∀t, (BSV )

where ϕ is positive (on R+ := [0,∞)) and itself satisfies (BSV ) with ϕ for f,
i.e.

ϕ(x + tϕ(x))/ϕ(x) → 1 ∀t; (BSVϕ)

call such a ϕ ‘Beurling-slow’. If convergence here is locally uniform in t, then
ϕ is said to be self-neglecting (BGT §2.11; cf. [41,45]), i.e.

ϕ(x + uϕ(x))/ϕ(x) → 1, locally uniformly in u. (SN)

Bloom [19] shows that a continuous Beurling-slow ϕ satisfies SN, and that
ϕ(x) = o(x). More generally, a Baire/measurable ϕ with a little more regularity
(e.g. the Darboux property) satisfies SN ; this may be viewed as a Bloom
dichotomy : a Beurling-slow function is either self-neglecting or pathological—
see [17] (or the more detailed [15] and [16], to which we refer below) or Sect. 5.

Although (BSV ) includes via ϕ = 1 the Karamata additive slow version
(i.e. RV+ with k = 0), it excludes ϕ(x) = x and the multiplicative Karamata
format (RV ), which, but for ϕ(x) = o(x), it would capture. So one aim here is
to expand the notion of self-neglect to allow direct specialization to the multi-
plicative Karamata form; our approach is motivated by recent work extending
Beurling slow variation to Beurling regular variation. We recall from [16] that
f is ϕ-regularly varying if as x → ∞

f(x + tϕ(x))/f(x) → g(t), ∀t, (BRV )

and ϕ, the auxiliary function, is self-neglecting. In Theorem 2 below we show
that the multiplicative Karamata theory can be incorporated in a Beurling
framework, but only if one replaces the limit 1 occurring above in (BSVϕ) with
a more general limit λ(t)—yielding what we call self-equivarying functions with
limit λ (definition below); exactly as with its Beurling analogue, Karamata
multiplicative theory then takes its uniformity from the uniformity possessed
by ϕ(x) = x. The case ϕ(x) = 1 specializes to the Uniform Convergence
Theorem of Karamata additive theory (UCT)—see BGT §1.2.

The recent Beurling theory of regular variation was established using the
affine combinatorics of [15], where SN was deduced for Baire/measurable ϕ
under various side-conditions including the Darboux property, more general
than Bloom’s continuity (as above) and more natural, since it implies contin-
uous orbits for the underlying differential flows of Beurling variation in the
measure case—defined by ẋ(t) = ϕ(x(t)). (See also its natural occurrence in
[31].) In [16] it is shown that the uniformity in (SN) passes ‘out’ to uniformity
in (BRV ) and noted that conversely if ϕ(x) = o(x), then the assumption of



Vol. 89 (2015) Beurling regular variation, Bloom dichotomy 727

uniformity, but only in (BRV ), passes ‘in’ the uniformity to the auxiliary func-
tion, when both are measurable or both have the Baire property (briefly: are
Baire)—see BGT §3.10 for the ‘ϕ monotonic’ paradigm. Our methods focus on
the in-out transfer of uniformity by considering a natural context of asymptotic
equivalence, one that includes the Karamata multiplicative theory directly.

Definition. We say that f and g are Beurling ϕ-equivarying, or f is Beurling
ϕ -equivarying with g, if

f(x + tϕ(x))/g(x) → 1 as x → ∞, for all t > 0. (BEϕ)

We call f, g uniformly Beurling ϕ-equivarying if

f(x + tϕ(x))/g(x) → 1 as x → ∞, on compact sets of t > 0. (UBEϕ)

For appropriate ϕ (as below), these actually yield equivalence relations on
functions satisfying (BSV ); indeed transitivity follows from

f(x + tϕ(x))
h(x)

=
f(x + tϕ(x))

g(x)
· g(x)
g(x + tϕ(x))

· g(x + tϕ(x))
h(x)

. (1)

Proceeding as in (1) justifies the preferred symmetric terminology in an appar-
ently asymmetric context; we omit the routine details, save to assert:

Proposition 1. (Symmetry) For f, g satisfying (BSV ):
(i) if f is Beurling ϕ -equivarying with g, then g is Beurling ϕ -equivarying

with f ;
(ii) similarly for f uniformly Beurling ϕ-equivarying with g.

The two equivalence relations call for a study of ‘self-equivalence’ in Beurling
regular variation terms—henceforth termed equivariation, or equivariance.

Definition. (i) For ϕ(x) = O(x), we say that ϕ > 0 is self-equivarying, ϕ ∈
SE, with limit λ, if uniformly

ϕ(x + tϕ(x))/ϕ(x) → λ(t) as x → ∞, on compact sets of t > 0. (SEλ)

(ii) For ϕ(x) = O(x), we say that ϕ > 0 is weakly self-equivarying, ϕ ∈ WSE
with limit λ, if pointwise

ϕ(x + tϕ(x))/ϕ(x) → λ(t) as x → ∞, for all t > 0. (WSE)

(iii) For (positive) ϕ ∈ WSE, we set for t > 0

λϕ(t) := limx→∞
ϕ(x + tϕ(x))

ϕ(x)
, and λϕ(0) := 1. (2)

Preservation of SE and SN under equivariance (see Th. 5), and charac-
terizing the limit λϕ above for self-equivarying ϕ (see Th. 0) thus call for
attention. The latter is linked to the Cauchy functional equation for additive
functions (for which see [3,37]), which already plays a key role in determining
the index theory of Karamata regular variation—see [9]. Here, for Beurling
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regular variation, there is an analogous functional equation satisfied by the
limit functions λϕ, namely the Go�ląb-Schinzel equation

λ(x)λ(y) = λ(x + yλ(x)) (∀x, y), (GS)

first considered by Aczél [1] in work on geometric objects and independently by
Go�ląb in the study of 3-parameter affine subgroups of the plane. We refer to it
as Beurling’s functional equation of self-neglect and solutions that are positive
on R+ as Beurling functions. Its additive equivalent for κ = κλ := log λ is

κ(x + yλ(x)) − κ(x) = κ(y), or Δλ
yκ(x) = κ(y) (3)

(in mixed form), where

Δλ
yκ(x) := κ(x + yλ(x)) − κ(x), (4)

stresses the underlying ‘Beurling difference-operator’. Viewing inputs as time,
λ represents a local time-change – for connections here to the theory of flows
see [6, Ch. 4]; cf. [16], the earlier [9,44]. Aczél originally observed in 1957 that
the non-zero differentiable solutions of an equivalent form of (GS) take the
form 1+ax ; independently, a general analysis of its solutions was undertaken
by Go�ląb in collaboration with Schinzel in 1959 ([30]) and was amplified in
1965 by Popa’s semi-group perspective via x ∗λ y := x + yλ(x) [47] (see also
[34,35] and [21, Th. 1(ii)2o]), surprisingly consonant with Beurling’s ‘general-
ized’ convolution approach to the Wiener Tauberian theorem. Popa [47] also
characterized real measurable solutions of (GS), but a description of the gen-
eral solution had to wait till Javor [34] and Wo�lodźko [49], both in 1968; [49]
also studied the continuous complex-variable case (complemented by Baron
[5] in 1989). This was reviewed in [2] in 1970, but the complex-variable task
was not completed until 1977 by Plaumann and Strambach [46]; for a recent
text-book account see [3, Ch. 19] or the more recent survey [24] or [33], which
includes generalizations of (GS) and a discussion of applications in algebra,
meteorology and fluid mechanics—see for instance [36]. The key concept in this
literature is micro-periodicity of solution functions (i.e. whether functions have
arbitrarily small periods, and so a dense set of periods), an idea due to Burstin
in 1915 [26] and �Lomnicki in 1918 [40] (a measurable micro-periodic function
is constant modulo a null set—see e.g. [25, Prop. 2]). Of interest is Theorem A
below due to Popa, based on the Steinhaus subgroup theorem applied to the
set of periods (an additive subgroup). Though the proof is given in the mea-
sure case, the category case is similar. Recall that ‘quasi everywhere’ means
‘off a negligible set’, be it meagre or null.

Theorem A. ([47, Th. 2]) measure case, [23] Baire case; [22] cf. [32]
Christensen-measurable case). Every measurable/Baire solution of the Go�ląb–
Schinzel equation is either continuous or quasi everywhere zero.

Our interest is only in solutions that are positive on R+, so when they
are Baire or measurable (as will be the case for λϕ for Baire/measurable ϕ),
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Theorem A implies that the Beurling functions are necessarily continuous and
of the form 1 + ax with a ≥ 0. More is true: if f : R → R solves (GS) and is
positive on some (non-trivial) interval, then f is necessarily continuous, by a
result of Brzdęk [21, Cor 3]—cf. the analysis of ‘local boundedness’ in [23]; it
follows that any Beurling function λ : R+ → R, since it may be extended to a
solution of (GS) over R (see [25, Th. 1]), is continuous, as it is positive on R+.
See also [33] and [42]. In view of their importance here, we give a new analysis
(in §6) of this affine representation via the topological dynamics approach that
underpins regular variation.

A brief comparison with Cauchy’s exponential equation:

f(x)f(y) = f(x + y) (∀x, y), (CFE)

is helpful here; just as its continuous solutions are indeed the exponentials eat,
those of (GS) are the linear part1of the same exponential: 1 + at. Recall also
that additive functions if continuous are linear and so differentiable; they are
continuous if Baire (Banach [4, Ch. I, § 3, Th. 4]), if measurable (Fréchet),
if bounded on a non-null measurable set (Ostrowski’s Theorem, refining Dar-
boux’s result for intervals), or on a non-meagre Baire set (Mehdi [39]); see
[37], or the more recent account in [13]. Such automatic continuity results are
mirrored in Beck’s ‘algebraic flows’ in a metric space, which when bounded by
a monotone function of the flow’s distance from some set K are continuous at
points of K ([6, Th. 1.65]). The latter approach motivates a new proof of the
Aczél-Go�ląb–Schinzel representation (in §6) and perhaps explains why (GS)
has analogues, though not exact replicates, and possesses similarly to (CFE)
unbounded discontinuous solutions, granted the existence of a Hamel basis
(see [30]). [2] notes that 1Q, the indicator of the rationals (Dirichlet’s func-
tion), is a measurable, bounded discontinuous solution to (GS)—a contrast to
Ostrowski’s Theorem, but see [23].

Remarks

1. If ϕ is Baire, then λϕ is Baire, being the limit of functions ϕn(t) :=
ϕ(n + tϕ(n))/ϕ(n), for n ∈ N, which are Baire as each t → n + tϕ(n)
is a homeomorphism, since ϕ > 0. Similarly for measurability.

2. If λϕ is continuous in (SE), then for ε > 0 and tn → t

|ϕ(x + tnϕ(x))/ϕ(x) − λϕ(t)| < ε, for large enough n and x. (SSE)

1 Interestingly, (GS) implies a self-differential property:

d

du
λ(uλ(t) + t) = λ(uλ(t) + t) · λ′(u)

λ(u)
.
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This strong self-equivariance condition (SSE) could be adopted in place
of (SEλ), with continuity of λ immediate—motive enough to study
ϕ ∈ SE.

3. For λ(t) ≡ 1, (SEλ) differs from (SN) in requiring O(x) rather than o(x).
4. If ϕ(x) = ax with a > 0, then ϕ(x) = O(x) and we have an affine form:2

ϕ(x + tϕ(x))/ϕ(x) = a(x + atx)/ax = 1 + at = λϕ(t).

We now establish the significance of (GS) for Beurling regular variation.

Theorem 0. (A Characterization Theorem). For Baire/measurable ϕ ∈ SE the
limit function λϕ satisfies (GS), so is continuous, and if positive has the form
λ(t) = 1 + at.

Furthermore, a ≥ 0 is required for λϕ when ϕ satisfies the order condition
ϕ(x) = O(x). Also, up to re-scaling, there are only the two limits λϕ: small-
order limit λ(t) ≡ 1 and large-order limit λ(t) ≡ 1 + t.

Proof. Suppose that ϕ ∈ SE; writing y := x + uϕ(x) and s = vλϕ(u) note
that

ϕ(x + (u + s)ϕ(x))
ϕ(x)

=
ϕ(y + s ϕ(x)

ϕ(x+uϕ(x))ϕ(y))

ϕ(y)
· ϕ(x + uϕ(x))

ϕ(x)
. (5)

The left-most and right-most terms tend to λϕ(u + s) and λϕ(u) respectively.
Now sϕ(x)/ϕ(x + uϕ(x)) → s/λϕ(u) = v. Let x → ∞ to get

λϕ(u + s)/λϕ(u) = λϕ (v) ,

as required. For ϕ Baire/measurable, λϕ is Baire/measurable and satisfies (GS)
so, by Theorem A, is continuous. By the above results of Go�ląb and Schinzel,
and Wo�lodźko (or see [3, Ch. 19 Prop.1]), we conclude that

λϕ(t) = 1 + at.

The condition ϕ(t) = O(t) yields a ≥ 0.
Given ϕ ∈ WSE, re-scaling to ψ(t) = ϕ(t)/b with b > 0 yields

λϕ(t) = lim
x

ϕ(x + btϕ(x)/b)/ϕ(x) = lim
x

ψ(x + btψ(x))/ψ(x) = λψ(bt),

i.e. λϕ/b(bt) = λϕ(t). So if λϕ(t) = 1 + at, taking b = 1/a yields λaϕ(t/a) =
1 + t. �

Remark We note for completeness of §6 that, for λ > 0 and differentiable,
differentiating (GS) w.r.t. y yields λ′(y) = λ′(x + yλ(x)) and in particular
λ′(x) = λ′(0), whence λ(x) = 1 + ax, as λ(0) = 1.

2 Affine functions f : Rd → R are termed linear in [37, § 7.7]. This usage sits well with the
context of R as a field over Q, to which the Beurling equation seems less suited.
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Corollary. (Representation for SE) For Baire/measurable ϕ ∈ SE with posi-
tive limit λϕ the function ψ(x) := ϕ(x)/λϕ(x) is self-neglecting and so

ϕ(x) ∼ λϕ(x)

x∫

0

e(u)du for some continuous e with e → 0.

Proof. By Theorem 0, we may assume that λϕ(x) = 1 + ax for some a > 0,
otherwise there is nothing to prove. So ψ(x) = O(1), as ϕ(x) = O(x). Fix
t > 0; then sx := tψ(x)/ϕ(x) → 0. Now λϕ(x)/λϕ(x + tψ(x)) → 1, so

ψ(x + tψ(x))/ψ(x)=ϕ(x + sxϕ(x))/ϕ(x) · λϕ(x)/λϕ(x + tψ(x)) → λϕ(0)=1.

So ψ ∈ SN and the representation follows from a result of Bloom and Shea
(see [19]; cf. [16]). �

2. Combinatorial preliminaries

We summarize from [15] the combinatorial framework needed here: Baire and
measurable cases are handled together by working bi-topologically, using the
Euclidean topology in the Baire case (the primary case) and the density topol-
ogy in the measure case; see [10,12,13]. We work in the affine group Aff
acting on (R,+) using the notation

γn(t) = cnt + zn,

where cn → c0 = c > 0 and zn → 0 as n → ∞, as in Theorem B below. These
are to be viewed as (self-) homeomorphisms of R under either the Euclidean
topology, or the density topology. We recall the following result from [15].

Theorem B. (Affine Two-sets Theorem) For cn → c > 0 and zn → 0, if
cB ⊆ A for A,B non-negligible (measurable/Baire), then for quasi all b ∈ B
there exists an infinite set M = Mb ⊆ N such that

{γm(b) = cmb + zm : m ∈ M} ⊆ A.

As in [16], Theorem 1 below needs only the case c = 1; however, Theorem 3
needs the case c �= 1.

3. Uniform convergence theorem

This section closely mirrors [16, § 4] in verifying the generalization needed here;
some care is needed to distinguish SE from SN, likewise UBEϕ involving 1
as limit—from WSE involving a general limit λ. Our convention is to write
fN := f and fD = g, (“N for numerator, D for denomintor”) and also

h := log ϕ hN := log fN and hD := log fD.
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Definition. (i) For ϕ ∈ SE we call {un} with limit u a 1-witness sequence at
u (for non-uniformity in fN over fD) if there are ε0 > 0 and a divergent
sequence xn → +∞ with

|hN(xn + unϕ(xn)) − hD(xn)| > ε0 ∀ n ∈ N. (6)

(ii) For ϕ ∈ WSE we call {un} with limit u a WSE -witness sequence at u
(for non-uniformity in ϕ ) if there are ε0 > 0 and a divergent sequence
xn with

|h(xn + unϕ(xn)) − h(xn) − κ(u)| > ε0 ∀ n ∈ N. (7)

We call {un} with limit u a divergent WSE-witness sequence if also

h(xn + unϕ(xn)) − h(xn) → ±∞.

So this divergence gives a special type of WSE-witness sequence.

Below, uniform near a point u means ‘uniformly on sequences converging to
u’—equivalent to local uniformity at u (on compact neighbourhoods of u).

Lemma 1. (Shift Lemma: uniformity preservation under shift)
(i) Let ϕ ∈ SE. For any u, convergence in (BEϕ) is uniform near t = 0 iff

it is uniform near t = u.
(ii) Let ϕ ∈ WSE with limit λϕ: for any u, convergence in (WSE) is uniform

near t = 0 iff it is uniform near t = u.

Proof. Since in case (i) hN(xn +uϕ(xn))−hD(xn) → 0 and in case (ii) h(xn +
uϕ(xn)) − h(xn) − κ(u) → 0 we argue routinely, as in [15]. �
Theorem 1 follows from the argument presented in [16, Th. 2] with mini-
mal amendments, so a sketch suffices; the detailed proof of Theorem 3 below
(responding to the presence of λ in WSE) is a paradigm for the SE case here.

Theorem 1. (λ-Uniform convergence theorem, λ-UCT) For ϕ ∈ SE with limit
λ = λϕ, if f, g, ϕ have the Baire property (are measurable) and satisfy (BEϕ),
then they satisfy (UBEϕ).

Proof. Suppose otherwise. By Theorem A the limit λϕ is continuous. Now we
begin as in [16, Th. 2]; let un be a 1-witness sequence for the non-uniformity
of f over g. For some xn → ∞ and ε0 > 0 one has (6). By the Shift Lemma (i),
we may assume that u = 0. So we will write zn for un. As ϕ is self-equivarying
for any ε > 0 and with K := {zn : n = 0, 1, 2, ..} (compact) for large enough n

|h(xn + znϕ(xn)) − h(xn) − κ(zn)| ≤ ε ∀ n ∈ N.

But κ is continuous, so that κ(zn) → log λ(0) = 0, and so

cn := ϕ(xn + znϕ(xn))/ϕ(xn) −→ 1 = λϕ(0). (8)

Write yn := xn + znϕ(xn). Then yn = xn(1 + znϕ(xn)/xn) → ∞, and

|hN(yn) − hD(xn)| ≥ ε0.
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Continue verbatim as in [16], applying Theorem B to γn(s) := cns + zn to
derive a contradiction to (6). �

As an immediate corollary we have:

Theorem 2. (Beurling and Karamata UCT) For ϕ ∈ SN, if f, ϕ have the Baire
property (are measurable) and satisfy (BRV ), then they satisfy (BRV ) locally
uniformly.

For ϕ(x) = x, if f has the Baire property (is measurable) and satisfies
(RV ), then f satisfies

f(tx)/f(x) → g(t), as x → ∞ locally uniformly in t. (RV )

Proof. In Theorem 1, take g = f. �

Theorem 1 invites an extension of Beurling regular variation based on
ϕ ∈ SE, i.e. beyond SN. That extension yields only multiplicative Karamata
regular variation—because, by Theorem 0, up to rescaling (“in t”), there is
only one ‘canonical’ alternative beyond SN, namely λϕ(t) = 1 + t, occurring
e.g. for ϕ(x) = x. Here one has f(x + tϕ(x))/f(x) = f(x(1 + t))/f(x) so the
unit shift on t below is inevitable.

Theorem 1′. (Extended regular variation) For ϕ ∈ SE if f, ϕ have the Baire
property (are measurable), λϕ(t) = 1 + t, and f satisfies, for t > 0,

f(x + tϕ(x))/f(x) → γ(t),

then γ(t) = (1 + t)ρ for some ρ ∈ R.

Proof. In Theorem 1, again with g = f, (UBEϕ) holds. So for γ(t) :=
lim f(x + tϕ(x))/f(x), writing y = x + sϕ(x) and noting that tϕ(x)/ϕ(y) →
v := t/λϕ(s), by (UBEϕ) one has

γ(s + t) = lim
f(x + (s + t)ϕ(x))

f(x)

= lim
f(y + [tϕ(x)/ϕ(y)]ϕ(y))

f(y)
· f(x + sϕ(x))

f(x)
= γ(v)γ(s)

(as y → ∞ when x → ∞), or, with u for s,

γ(u + vλϕ(u)) = γ(u)γ(v),

where λϕ(t) = 1 + t. Putting G(t) = γ(t − 1), x = 1 + u, y := 1 + v, one has

G(xy) = γ(u + v + uv) = γ(u)γ(v) = G(x)G(y).

As G is Baire/measurable, G(x) = xρ for some ρ (see [3, Ch. 3]), so γ(t) =
G(1 + t) = (1 + t)ρ. �
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4. Stability properties of Beurling functions

There is a literature surrounding (GS) and its generalizations devoted to sta-
bility properties in the sense of Hyers-Ulam—for the general context and the
literature concerned with (GS), initiated by Ger and his collaborators, see for
example [27], cf. [28], and the more recent [20,30–32,34]. We pursue a related
agenda, but motivated by the regular variation view of the interplay between
ϕ ∈ WSE and λϕ. We begin with a rigidity property noting first a formula,
an instance of which is the doubling formula λ(2t) = λ (t/λ(t)) λ(t). We omit
the routine proof.

Lemma 2. (Internal time-change) For λ satisfying (GS) the internal time-
change μ(t) := λ(βt) with β �= 0 yields a solution to (GS). Also one has

μ(t) = λ(βt) = λ(t)λ (αt/λ(t)) , with α := β − 1.

Proposition 2. (Slow time-changing) For λ ∈ SE and w(.) Baire satisfying

lim
x→∞

w(x + uλ(x))
w(x)

= 1 and lim
x→∞ w(x) = β := 1 + α, ∀u,

the time-changed function μ(x) := λ(x)w(x) is a solution of (GS) iff

w(t) = λ (αt/λ(t)) .

In particular, for β = 1, we have w(t) = λ(0) = 1.

Proof. Put μ(x) = λ(x)w(x); if μ is a solution of (GS), then μ(t) = μ(x +
tμ(x))/μ(x). Substituting into this identity,

λ(x + tλ(x)w(x))
λ(x)

w(x + tλ(x)w(x))
w(x)

= λ(t)w(t).

Using λ(t) = λ(x + tλ(x))/λ(x) twice, we have

w(t) =
λ(x + tλ(x) + t[w(x) − 1] · λ(x)

λ(x+tλ(x)) · [λ(x + tλ(x))])

λ(x + tλ(x))

·w(x + tλ(x)w(x))
w(x)

.

Put y := x + tλ(x) and u(x) := t(w(x) − 1)/λ(t); then
λ(y + u(x)λ(y))

λ(y)
w(x + [tw(x)]λ(x))

w(x)
= w(t),

or

λ(u(x))
w(x + [tw(x)]λ(x))

w(x)
= w(t).

As λ ∈ SE, if w is Baire and λ-slowly varying and bounded, then by λ-UCT
w(x + [tw(x)]λ(x))

w(x)
→ 1.
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So if w(x) → 1 + α, then u(x) → tα/λ(t), and so w(t) = λ (αt/λ(t)) .
For the converse, apply Lemma 2. �

Example Taking λ(t) = 1 + t, we have w(t) = 1 + αt/(1 + t) and

μ(t) = (1 + t)
(

1 +
αt

1 + t

)
= (1 + t) + αt = 1 + (1 + α)t.

Theorem 3 below enables an extension of Bloom’s Theorem (see §1 and 5)
with WSE replacing the original ‘slow Beurling’. Analogous to the Divergence
Theorem of [15], but more subtle, an extra twist calls here for a detailed proof.
It should be borne in mind that λϕ below is not known to satisfy (GS); that will
be deduced later in Th. 4. The continuity assumption at 0 seems an inevitable
‘connection’ of the two parts of the definition (2).

Theorem 3. (Divergence Theorem—Baire/measurable) For ϕ Baire/ measur-
able in WSE with limit λϕ continuous at 0: if un with limit u is a WSE-
witness sequence to the non-uniformity of ϕ over ϕ, then either un is a diver-
gent witness sequence, or for some divergent sequence xn

ϕ(xn + unϕ(xn))/ϕ(xn) → λϕ(u).

Proof. Begin as in the proof of Theorem 2, except that here hN = hD = h =
log ϕ. Let un with limit u be a WSE-witness sequence to the non-uniformity
of ϕ over ϕ, with limit λ; for some xn → ∞ and ε0 > 0 one has (7) with
κ = log λ. By the Shift Lemma (ii), we may assume that u = 0. So we will
write zn for un. That is, with yn := xn + znϕ(xn),

|h(yn) − h(xn)| > ε0.

Note that yn = xn(1 + znϕ(xn)/xn) is divergent. Assume the non-divergence
of {h(yn) − h(xn)}. Consider any convergent subsequence; we show its limit is
0, by contradiction. Working down a subsequence, suppose that

cn := ϕ(xn + unϕ(xn))/ϕ(xn) −→ c ∈ (0,∞), with c �= 1. (9)

As |h(yn) − h(xn)| > ε0, passing to the limit we obtain

log c ≥ ε0 > 0.

Choose η0 with 0 < η0 < 1
2 log c and let η = η0/6.

Suppose now that κ has the Baire property and is continuous on a co-
meagre set S–see [43, Th. 8.1] or [38, § 28]. Take T0 := S, set inductively
Tn+1 := cTn ∩ Tn and T−(n+1) := c−1T−n ∩ T−n, and put T :=

⋂+∞
n=−∞ Tn.

Then ct ∈ T and c−1t ∈ T for t ∈ T : each Tn and so T is co-meagre. So the
restriction κ|T is continuous on T .

By assumption there is δ0 > 0 such that for s ∈ (0, δ0)

|κ(c−1s) − κ(s)| < η.
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For x = {xn}, working in T, put

V x
n (η) := {s ∈ T : |h(xn + sϕ(xn)) − h(xn) − κ (s) | ≤ η},

Hx
k (η) :=

⋂
n≥k

V x
n (η),

and likewise for y = {yn}. These are Baire sets, and

T =
⋃

k
Hx

k (η) =
⋃

k
Hy

k (η), (10)

as ϕ ∈ WSE. The increasing sequence of sets {Hx
k (η)} covers T ∩(0, δ0). So for

some k the set Hx
k (η)∩ (0, δ0) is non-negligible. As c−1Hx

k (η) is non-negligible,
so is c−1Hx

k (η) ∩ T as well as Hx
k (η) ∩ cT and Hx

k (η) ∩ T ; by (10), for some l
the set

B := c−1[Hx
k (η) ∩ (0, δ0)] ∩ Hy

l (η)

is also non-negligible. Take A := T ∩Hx
k (η); then B ⊆ Hy

l (η) and cB ⊆ A with
A,B non-negligible. Applying Theorem B of §2 to the maps γm(s) := cns+ zn

with c = limn cn, there exist b ∈ B and an infinite set M such that

{cmb + zm : m ∈ M} ⊆ A = Hx
k (η),

and as bc ∈ (0, δ0)

|κ(b) − κ(bc)| < η.

That is, as B ⊆ Hy
l (η),there is b ∈ Hy

l (η) and an infinite Mt such that

{γm(b) := cmb + zm : m ∈ Mt} ⊆ Hx
k (η).

In particular, for this b and m ∈ Mb with m > k, l one has

b ∈ V y
m(η) and γm(b) ∈ V x

m(η).

As t := cb ∈ T and γm(b) ∈ T , we have by the continuity of κ|T at t, since
γm(b) → cb, that for all m large enough

|κ(t) − κ(γm(b))| ≤ η. (11)

Fix such an m. As γm(b) ∈ V x
m(η),

|h(xm + γm(b)ϕ(xm)) − h(xm) − κ(γm(b))| ≤ η. (12)

But γm(b) = cmb + zm = zm + bϕ(ym)/ϕ(xm), so

xm + γm(b)ϕ(xm) = xm + zmϕ(xm) + bϕ(ym) = ym + bϕ(ym),

‘absorbing’ the affine shift component of γm(b) into y. So, by (12),

|h(ym + bϕ(ym)) − h(xm) − κ(γm(b))| ≤ η.

But b ∈ V y
m(η), so

|h(ym + bϕ(ym)) − h(ym) − κ(b))| ≤ η.
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Using the triangle inequality, and combining the last two inequalities with (11),
we have

|h(ym) − h(xm)| ≤ |h(ym + bϕ(ym)) − h(ym) − κ(b)|
+|κ(b) − κ(cb)| + |κ(cb) − κ(γm(b))|
+|h(ym + tϕ(ym)) − h(xm) − κ(γm(b))|

≤ 4η < η0.

For large m one has log c − η0 < h(ym) − h(xm) < log c + η0, so for any one
such large m we have log c − η0 < h(ym) − h(xm) < η0, that is, log c < 2η0
contradicting the choice of η0. Thus c = 1.

Now suppose that κ is measurable. Proceed as before, but now apply Luzin’s
Theorem ([43], Ch. 8) to select T ⊆ [c, 2c] ∪ [1, 2] such that |T ∩ [1, 2]| > 2/3
and |T ∩ [c, 2c]| > 3c/4 with κ|T continuous on T . As before, put

V x
n (η) := {s ∈ T : |h(xn + sϕ(xn)) − h(xn) − κ (s) | ≤ η},

Hx
k (η) :=

⋂
n≥k

V x
n (η),

and likewise for y = {yn}. These are measurable sets, and

T =
⋃

k
Hx

k (η) =
⋃

k
Hy

k (η), (13)

since ϕ ∈ WSE. The increasing sequence of sets {Hy
l (η)} covers T ∩ [c, 2c].

So |(T ∩ [c, 2c]) ∩ Hx
k (η)| > 2|T ∩ [c, 2c]|/3 for some k. So in particular Hx

k (η)
is non-null, and furthermore, |T ∩ [c, 2c]\Hx

k (η)| < |T ∩ [c, 2c]|/3 < c/3. So
|[1, 2]\c−1Hx

k (η)| < 1/3; but |T ∩ [1, 2]| > 2/3, so |c−1Hx
k (η) ∩ [1, 2]| > 0; by

(13), for some l the set

B := c−1Hx
k (η)) ∩ Hy

l (η)

is also non-null. Taking A := Hx
k (η), one has B ⊆ Hy

l (η) and cB ⊆ A with
A,B non-null. From here continue as in the Baire argument. �

5. The extended Bloom dichotomy

The preceding section implies the Bloom dichotomy—that ϕ Beurling-slow
(i.e. ϕ with λϕ = 1) is either self-neglecting or pathological—extends to WSE:
when ϕ ∈ WSE either ϕ ∈ SE, or ϕ is ‘pathological’. (For other occurrences
of dichotomy in this area see [11–13].) Indeed, ϕ ∈ WSE says merely that the
limit function λϕ is well-defined, but nothing about whether λϕ satisfies (GS ).
However, if λϕ is continuous at the origin and ϕ has just the kind of regularity
considered in the Generalized Bloom Theorem of [15], then in fact ϕ ∈ SE,
so that λϕ satisfies (GS) and takes a simple form. This brings to mind, as
an analogy, Lévy’s Continuity (or Convergence) Theorem, see [50, Ch.18], or
[29, 9.8.2], that if a sequence of characteristic functions converges pointwise
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to a limit function which is continuous at the origin, then that limit is itself
a characteristic function; the continuity assumption is critical, as Bochner’s
theorem asserts the converse: a positive-definite function λ, normalized so that
λ(0) = 1, and continuous at the origin is a characteristic function (cf. [48,
1.4.3]).

Theorem 4. (Bloom’s Theorem for weak self-equivariance) For ϕ ∈ WSE with
limit function λϕ continuous at 0 and ϕ(x) = O(x), if ϕ is Baire/measurable
and has any of the following properties:

(i) ϕ has the Darboux property (in particular, ϕ is continuous),
(ii) ϕ(x) has bounded range on (0,∞),
(iii) ϕ(x)/x is bounded in (0,∞),
(iv) ϕ(x) is increasing in (0,∞),
— then ϕ ∈ SE and so λϕ is continuous.

Proof. Apply Theorem 3 and use the Darboux property as in the Beurling-
Darboux UCT of [15, Th. 4] to argue as with Bloom’s Theorem that there are
no divergent witness sequences; otherwise, proceed as in [15, Th. 3]. �

Theorem 5. (i) For ϕ ∈ SE, if ψ > 0 is smooth, Beurling-slow and Beurling
ϕ-equivarying with ϕ, then ψ ∈ SE and ϕ is ψ-equivarying with ψ; and
likewise for SN, mutatis mutandis, so in particular:

(ii) For ϕ ∈ SN, if ψ > 0 is smooth and Beurling ϕ-equivarying with ϕ, then
ψ ∈ SN .

Proof. Notice first that for any fixed u > 0, we have

ψ(x)/ ϕ(x) = ψ(x)/ ψ(x + uϕ(x)) · ψ(x + uϕ(x))/ ϕ(x) → 1,

since ψ satisfies (BSV ) and ψ is Beurling ϕ -equivarying with ϕ. So one has
ψ(x) = O(x) in the SE case and ψ(x) = o(x) in the SN case. Since ψ is
Beurling ϕ-equivarying with ϕ, by Theorem 1, as ψ is measurable

ψ(x + uϕ(x))/ϕ(x) → 1, loc unif. in u.

In particular, since t[ψ(x)/ϕ(x)] → t, one has as before

ψ(x + tψ(x))/ ψ(x) = ψ(x + t[ψ(x)/ϕ(x)]ϕ(x))/ ϕ(x) · ϕ(x)/ ψ(x) → 1.

So ψ ∈ WSE with limit λ = 1. But ψ is continuous, so by Th. 4 ψ ∈ SE.
As to role reversal here, similarly to Prop. 1, both terms on the right below

tend to 1 locally uniformly in t as x → ∞ :

ϕ(x + tψ(x))/ ψ(x) = ϕ(x + t[ψ(x)/ϕ(x)]ϕ(x))/ ϕ(x) · ϕ(x)/ ψ(x) → 1,

as ϕ ∈ SE by the opening remark of the proof. �

Remark Above, if one assumed instead that ψ ∈ WSE with limit λψ and as
before that ψ is Beurling ϕ-equivarying with ϕ, then for any fixed u > 0
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ϕ(x)
ψ(x)

=
ϕ(x)

ψ(x + uϕ(x))
ψ(x + uϕ(x))

ψ(x)
→ λψ(u),

implying that λψ(u) is constant. From here continuing the proof as above
yields ψ ∈ SE with limit λψ, so that λψ = 1, i.e. ψ is Beurling-slow.

6. Continuous Beurling functions

In this section we offer a new proof that every continuous solution λ of (GS), in
particular every Beurling function, is differentiable, assuming that λ satisfies
λ(t) > 1 for arbitrarily small t > 0. In fact, the latter assumption already
implies continuity (as then λ ≥ 1, so a fortiori is positive—see Prop. 4 below),
by results of Brzdęk [21] combined with [25], as noted after Theorem A (in §1)
(See also ‘Added in Proof’ at end.). Our approach is via a discrete analogue
of the obvious differentiation approach to solving (GS), using the constancy
of Δλ

uκ(x). First we clarify the continuity and differentiability conditions of
Theorem 0 (for an alternative see [21, Cor. 6 and 7]).

Lemma 3. For λ satisfying (GS), if λ is continuous at some point t where
λ(t) �= 0, then it is continuous whenever it is non-zero. Similarly, if λ is
differentiable at some point t where λ(t) �= 0, then it is differentiable at all
points.

Proof. From (GS) for u �= 0 and fixed t with λ(t) �= 0 one has the ‘Δλ-identity’
1

λ(t)
Δλ

uλ(t) =
λ(t + uλ(t)) − λ(t)

λ(t)
= λ(u) − 1. (Δλ)

The linear monotonic map y(u) := t + uλ(t) carries any open neighbourhood
of u = 0 to an open neighbourhood of t, and likewise for its inverse. The
equivalence of global continuity and continuity at u = 0 follows from this
identity (since λ(0) = 1). As to differentiability, the argument is almost the
same (upon division by u �= 0). �

The following recurrence occurs in [30, Lemma 7], [6,19].

Definition. For u > 0 and ϕ : R+ → R define the Beck ϕ-sequence tn(u)
by the recurrence tn := Tϕ

u (tn−1) = tn−1 + uϕ(tn−1) with t0 = 0. (Though
we do not assume ϕ to be monotone, this generalizes the Beck iteration of
γ(x) := Tϕ

1 (x) = x + ϕ(x) via γn+1(x) = γ1(γn(x)), used in bounding flows—
see [6, 1.64]; cf. [19] or BGT §2.11 and [15, § 6]). Call the Beck sequence a Bloom
partition if tn(u) diverges to +∞, in which case define the Beck u-step norm
of T (u-step distance from the origin) to be the integer n = nT (u) such that

tn(u) ≤ T < tn+1(u).

Our first observation is motivated by summing the differences κ(ti)−κ(ti−1) =
κ(u).
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Lemma 4. (cf. [25, Lemma 7]) For λ, any solution to (GS), and tn = tn(u) its
Beck λ-sequence above,

λ(tn) = λ(u)n.

Proof. From (GS) one has λ(ti)/λ(ti−1) = λ(ti−1 + uλ(ti−1))/λ(ti−1) = λ(u);
now take products for i = 1, ..., n and use λ(t0) = 1. �

The following, though quite distinct, resembles a result due to Beck [6, 1.69]
and relies on (14), a formula noted also in [30, Lemma 8].

Proposition 4. (Bounding Formula) For λ, any solution of (GS), and tn its
associated Beck sequence, defined by tn := tn−1 + uλ(tn−1), with u > 0, if
λ(u) �= 1, then

tn(u) = u
λ(u)n − 1
λ(u) − 1

= (λ(u)n − 1)
/

λ(u) − 1
u

. (14)

Suppose further that λ is continuous and in any neighbourhood of the origin
there is u > 0 with λ(u) > 1 ; then λ(T ) ≥ 1 for all T > 0. Moreover, given
T, ε > 0, for all small enough u > 0 with λ(u) > 1 and with n = nT (u), the
Beck u-step norm of T :

(1 − ε)λ(u)n − 1
λ(u)n+1 − 1

λ(u) − 1
u

<
λ(T ) − 1

T
<

(1 + ε)λ(u)n − 1
λ(u)n − 1

λ(u) − 1
u

. (15)

Proof. As ti − ti−1 = uλ(ti−1) = uλ(u)i−1, by Lemma 4, summation of the
differences over i = 1, ..., n yields the result (since t0 = 0).

Now fix T. As there are arbitrarily small u > 0 with λ(u) > 1, there are
arbitrarily small u > 0 with tn(u) divergent, by (14), and with λ(tn(u)) > 1,
by Lemma 4. So by continuity λ(T ) ≥ 1.

Fix ε > 0. Again by continuity at T, there is δε > 0 such that for each t with
|t − T | < δε one has λ(t) �= 0 and |λ(T )/λ(t) − 1| < ε. Consider 0 < u < δε

with λ(u) > 1 and tn+1 − tn < δε; the latter is possible, since by (14) and
continuity, uλ(u)n < T (λ(u) − 1) + u → 0. For any such u, put n := nT (u).
As |tn(u) − T | < δε, and λ(tn(u)) = λ(u)n, by Lemma 4, one has

(1 − ε)λ(u)n < λ(T ) < (1 + ε)λ(u)n

(1 − ε)λ(u)n − 1
T

<
λ(T ) − 1

T
<

(1 + ε)λ(u)n − 1
T

.

Approximating T from below and above by tn and tn+1 gives (15). �
Theorem 6. If λ is a continuous solution of (GS), with λ(u) > 0 for all u > 0,
then λ is differentiable (and so of form λ(t) = 1 + at); in particular, this is so
if there are arbitrarily small u > 0 with λ(u) > 1.

Proof. Note first that if 0 < λ(u) < 1 for some u > 0, then tn(u) is monotone
increasing for such u and converges to τ = u/(1 − λ(u)) by (14). Then, by
continuity, λ(τ) = limn λ(tn) = limn λ(u)n = 0, contradicting positivity. Thus
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positivity implies that λ(u) ≥ 1 for all u > 0. The latter conclusion holds also
if λ(u) > 1 for arbitrarily small u > 0, by Prop. 4.

We shall now prove that (λ(u) − 1) /u has a limit as u → 0, i.e. λ is
differentiable at the origin and so everywhere, by Lemma 3. For the purposes
of this proof only, call a sequence un nice if it is null (i.e. satisfies un → 0),
and λ(un) ≤ 2 for all n. By the continuity of λ at 0, any null sequence may be
assumed to be nice, and satisfy λ(un) → 1.

We claim that for every nice sequence un the corresponding quotient
sequence (λ(un) − 1) /un is bounded. Otherwise, there is a nice sequence un

with {(λ(un) − 1) /un } unbounded. Take T = 1 and let ε > 0 be arbitrary.
Choose δε as in the proof of Proposition 4. Without loss of generality suppose
that (λ(un) − 1) /un > 2, so that, in particular, λ(un) > 1 and Proposition 4
applies to T = 1 for all n.

For m=m(n)=nT (un), as tm(un)≤T =1<tm+1(un), by (14)

λ(un) ≤ λ(un)m(n) ≤ 1 +
λ(un) − 1

un
≤ λ(un)m(n)+1.

As {(λ(un) − 1) /un } is unbounded, so is λ(un)m(n)+1 and λ(un)m(n) (as
λ(un) < 2). By Lemma 4, λ(un)m(n) = λ(tm(un)) and |λ(tm(un)) − λ(1)| < δε

for all n with un < δε so that λ(un)m(n) → λ(1), a contradiction to the
unboundedness assumption.

Now we may suppose, by passing to a subsequence if necessary, that for
every nice sequence un the corresponding quotient sequence (λ(un)−1) /un is
not only bounded but in fact convergent. If the limit of the quotient sequence
is 0 for each nice sequence, then λ′(0) = 0, so by the Δλ-identity of Lemma
3, λ′(t) = 0 for all t; then λ(t) is constant (and so equal to 1). If, however,
the limit of the quotients is not always zero, then fix a nice sequence un with
positive quotient limit ρ. Here again λ(un) > 1 for all n.

Next fix any T > 0 with λ(T ) > 1 (possible as otherwise λ is again con-
stant). Again take m = m(n) = nT (un). Then, as in the unbounded case
above, λ(un)m(n) = λ(tm(un)) → λ(T ) > 1. Then, by (15),

(λ(T ) − 1)/T = limn→∞(λ(un) − 1)/un = ρ, i.e. λ(T ) = 1 + ρT.

But this holds also in an interval around T, making λ differentiable with deriv-
ative ρ in an interval around T and so everywhere, including the origin, by
Lemma 3. �

Remark By Proposition 3, nu ≤ tn(u) ≤ T for n = nT (u), so u ≤ T/n. So if
λ(t) = 1 + at, then λ(u)n ≤ (1 + aT/n)n → eaT as u → 0, explaining why the
unbounded case in the proof above does not arise.

Added in proof The thrust of Theorem 6 above was to explain why conti-
nuity entails differentiability here; this is a matter to which we will return
elsewhere—with a recent perspective inspired by [7]—see [18]. As to our
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assumptions: (working in R+) if f > 0, then f ≥ 1. Indeed, otherwise,
suppose f(u) < 1 for some u > 0; then v := u/(1 − f(u)) > 0, and
0 < f(v) = f(u + vf(u)) = f(u)f(v), implying f(u) = 1, a contradiction.
So f(x + y) = f(x)f(y/f(x)) ≥ f(x) for x, y > 0; so f is (weakly) increasing,
and so continuous somewhere, and hence everywhere.
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