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Abstract. The class of ‘self-neglecting’ functions at the heart of Beurling slow variation is
expanded by permitting a positive asymptotic limit function A(¢), in place of the usual limit
1, necessarily satisfying the following ‘self-neglect’ condition:

A@)A(y) = Az + yA(2)),

known as the Gotgb—Schinzel functional equation, a relative of the Cauchy equation (which
is itself also central to Karamata regular variation). This equation, due independently to
Aczél and Golab, occurring in the study of one-parameter subgroups, is here accessory to
the X -Uniform Convergence Theorem (A-UCT) for the recent, flow-motivated, ‘Beurling
regular variation’. Positive solutions, when continuous, are known to be A(t) = 1+ at (below
a new, ‘flow’, proof is given); a = 0 recovers the usual limit 1 for self-neglecting functions.
The A\-UCT allows the inclusion of Karamata multiplicative regular variation in the Beurling
theory of regular variation, with A(¢) = 1 + ¢ being the relevant case here, and generalizes
Bloom’s theorem concerning self-neglecting functions.
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1. Regular variation, self-neglecting and Beurling functions

The Karamata theory of regular variation studies functions f : (0, 00) — (0, c0)
with

fltx)/f(z) — g(t) as © — o0 Vi, (RV)
(and f is slowly varying if g = 1), or equivalently in isomorphic additive form
h(z +t) — h(z) — k(t) Vi, (RV,)
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for h : R — R. Our reference for regular variation is [8] (BGT below). The
Beurling theory of slow variation, originating in Beurling’s generalization (for
which see [41,45]—cf. [14]) of the Wiener Tauberian Theorem, studies func-
tions f with

flx+to(@)/f(x) =1 Vi, (BSV)

where ¢ is positive (on Ry :=[0,00)) and itself satisfies (BSV') with ¢ for f,
ie.
ple+tp()/pe) =1V (BSV,)

call such a ¢ ‘Beurling-slow’. If convergence here is locally uniform in ¢, then
© is said to be self-neglecting (BGT §2.11; cf. [41,45]), i.e.

o(xz +up(x))/p(x) — 1, locally uniformly in w. (SN)

Bloom [19] shows that a continuous Beurling-slow ¢ satisfies SN, and that
o(x) = o(x). More generally, a Baire/measurable ¢ with a little more regularity
(e.g. the Darboux property) satisfies SN; this may be viewed as a Bloom
dichotomy: a Beurling-slow function is either self-neglecting or pathological—
see [17] (or the more detailed [15] and [16], to which we refer below) or Sect. 5.

Although (BSV) includes via ¢ = 1 the Karamata additive slow version
(i.e. RV} with k = 0), it excludes ¢(x) = z and the multiplicative Karamata
format (RV'), which, but for ¢(x) = o(z), it would capture. So one aim here is
to expand the notion of self-neglect to allow direct specialization to the multi-
plicative Karamata form; our approach is motivated by recent work extending
Beurling slow variation to Beurling regular variation. We recall from [16] that
f is @-regularly varying if as  — oo

flx+te(@))/f(x) —g(t), Vi, (BRV)

and , the auxiliary function, is self-neglecting. In Theorem 2 below we show
that the multiplicative Karamata theory can be incorporated in a Beurling
framework, but only if one replaces the limit 1 occurring above in (BSV,,) with
a more general limit \(¢)—yielding what we call self-equivarying functions with
limit A\ (definition below); exactly as with its Beurling analogue, Karamata
multiplicative theory then takes its uniformity from the uniformity possessed
by ¢(x) = x. The case p(x) = 1 specializes to the Uniform Convergence
Theorem of Karamata additive theory (UCT)—see BGT §1.2.

The recent Beurling theory of regular variation was established using the
affine combinatorics of [15], where SN was deduced for Baire/measurable ¢
under various side-conditions including the Darboux property, more general
than Bloom’s continuity (as above) and more natural, since it implies contin-
uous orbits for the underlying differential flows of Beurling variation in the
measure case—defined by @(t) = @(z(t)). (See also its natural occurrence in
[31].) In [16] it is shown that the uniformity in (SN) passes ‘out’ to uniformity
in (BRV') and noted that conversely if ¢(z) = o(x), then the assumption of
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uniformity, but only in (BRV'), passes ‘in’ the uniformity to the auxiliary func-
tion, when both are measurable or both have the Baire property (briefly: are
Baire)—see BGT §3.10 for the ‘¢ monotonic’ paradigm. Our methods focus on
the in-out transfer of uniformity by considering a natural context of asymptotic
equivalence, one that includes the Karamata multiplicative theory directly.

Definition. We say that f and g are Beurling p-equivarying, or f is Beurling
@ -equivarying with g, if
flx+tp(x))/g(x) — 1 as & — oo, for all ¢ > 0. (BE,)
We call f, g uniformly Beurling p-equivarying if
flz+tp(z))/g(x) — 1 as & — oo, on compact sets of ¢ > 0. (UBE,)

For appropriate ¢ (as below), these actually yield equivalence relations on
functions satisfying (BSV); indeed transitivity follows from

fatio) fattow) o) glertpl@)

h(z) g(x) 9(z + to(z)) h(z)
Proceeding as in (1) justifies the preferred symmetric terminology in an appar-
ently asymmetric context; we omit the routine details, save to assert:

Proposition 1. (Symmetry) For f, g satisfying (BSV ):
(i) if f is Beurling ¢ -equivarying with g, then g is Beurling ¢ -equivarying
with f;
(i1) similarly for [ uniformly Beurling -equivarying with g.
The two equivalence relations call for a study of ‘self-equivalence’ in Beurling
regular variation terms—henceforth termed equivariation, or equivariance.
Definition. (i) For ¢(x) = O(z), we say that ¢ > 0 is self-equivarying, ¢ €
SE, with limit X, if uniformly
ol +to(x))/e(x) — A(t) as © — oo, on compact sets of £ > 0.  (SEj)
(ii) For ¢(x) = O(x), we say that ¢ > 0is weakly self-equivarying, p € WSE
with limit A, if pointwise
oz +tp(x))/e(x) — A(t) as © — oo, for all ¢ > 0. (WSE)
(ili) For (positive) ¢ € WSE, we set for t > 0
p(z + to(r))
p(x)
Preservation of SE and SN under equivariance (see Th. 5), and charac-
terizing the limit A, above for self-equivarying ¢ (see Th. 0) thus call for
attention. The latter is linked to the Cauchy functional equation for additive

functions (for which see [3,37]), which already plays a key role in determining
the index theory of Karamata regular variation—see [9]. Here, for Beurling

Ap(t) :=limy 00 , and A, (0) := 1. (2)
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regular variation, there is an analogous functional equation satisfied by the
limit functions A,, namely the Golgb-Schinzel equation

A@)A(y) = Az +yA(z)) (Va,y), (GS)
first considered by Aczél [1] in work on geometric objects and independently by
Golab in the study of 3-parameter affine subgroups of the plane. We refer to it

as Beurling’s functional equation of self-neglect and solutions that are positive
on Ry as Beurling functions. Its additive equivalent for k = k) :=log A is

W@+ yA) — 5(e) = wly), or Aw(z) = n(y) 3)
(in mixed form), where
Ajk(z) = Kz +yA(@)) — K(), (4)

stresses the underlying ‘Beurling difference-operator’. Viewing inputs as time,
A represents a local time-change — for connections here to the theory of flows
see [6, Ch. 4]; cf. [16], the earlier [9,44]. Aczél originally observed in 1957 that
the non-zero differentiable solutions of an equivalent form of (GS) take the
form 1+ ax ; independently, a general analysis of its solutions was undertaken
by Gotab in collaboration with Schinzel in 1959 ([30]) and was amplified in
1965 by Popa’s semi-group perspective via z ) y := x + yA(z) [47] (see also
[34,35] and [21, Th. 1(ii)2°]), surprisingly consonant with Beurling’s ‘general-
ized’ convolution approach to the Wiener Tauberian theorem. Popa [47] also
characterized real measurable solutions of (G.S), but a description of the gen-
eral solution had to wait till Javor [34] and Wotodzko [49], both in 1968; [49]
also studied the continuous complex-variable case (complemented by Baron
[5] in 1989). This was reviewed in [2] in 1970, but the complex-variable task
was not completed until 1977 by Plaumann and Strambach [46]; for a recent
text-book account see [3, Ch. 19] or the more recent survey [24] or [33], which
includes generalizations of (GS) and a discussion of applications in algebra,
meteorology and fluid mechanics—see for instance [36]. The key concept in this
literature is micro-periodicity of solution functions (i.e. whether functions have
arbitrarily small periods, and so a dense set of periods), an idea due to Burstin
in 1915 [26] and Lomnicki in 1918 [40] (a measurable micro-periodic function
is constant modulo a null set—see e.g. [25, Prop. 2]). Of interest is Theorem A
below due to Popa, based on the Steinhaus subgroup theorem applied to the
set of periods (an additive subgroup). Though the proof is given in the mea-
sure case, the category case is similar. Recall that ‘quasi everywhere’ means
‘off a negligible set’, be it meagre or null.

Theorem A. ([47, Th. 2]) measure case, [23] Baire case; [22] cf. [32]
Christensen-measurable case). Every measurable/Baire solution of the Golgh—
Schinzel equation is either continuous or quasi everywhere zero.

Our interest is only in solutions that are positive on Ry, so when they
are Baire or measurable (as will be the case for A\, for Baire/measurable ¢),
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Theorem A implies that the Beurling functions are necessarily continuous and
of the form 1+ ax with a > 0. More is true: if f: R — R solves (GS) and is
positive on some (non-trivial) interval, then f is necessarily continuous, by a
result of Brzdek [21, Cor 3]—cf. the analysis of ‘local boundedness’ in [23]; it
follows that any Beurling function A : Ry — R, since it may be extended to a
solution of (GS) over R (see [25, Th. 1]), is continuous, as it is positive on R..
See also [33] and [42]. In view of their importance here, we give a new analysis
(in §6) of this affine representation via the topological dynamics approach that
underpins regular variation.
A brief comparison with Cauchy’s exponential equation:

f@)fly) = fz+y) (Vo,y), (CFE)

is helpful here; just as its continuous solutions are indeed the exponentials e®f,
those of (GS) are the linear part'of the same exponential: 1 + at. Recall also
that additive functions if continuous are linear and so differentiable; they are
continuous if Baire (Banach [4, Ch. I, § 3, Th. 4]), if measurable (Fréchet),
if bounded on a non-null measurable set (Ostrowski’s Theorem, refining Dar-
boux’s result for intervals), or on a non-meagre Baire set (Mehdi [39]); see
[37], or the more recent account in [13]. Such automatic continuity results are
mirrored in Beck’s ‘algebraic flows’ in a metric space, which when bounded by
a monotone function of the flow’s distance from some set K are continuous at
points of K ([6, Th. 1.65]). The latter approach motivates a new proof of the
Aczél-Gotab—Schinzel representation (in §6) and perhaps explains why (GS)
has analogues, though not exact replicates, and possesses similarly to (CFFE)
unbounded discontinuous solutions, granted the existence of a Hamel basis
(see [30]). [2] notes that 1g, the indicator of the rationals (Dirichlet’s func-
tion), is a measurable, bounded discontinuous solution to (GS)—a contrast to
Ostrowski’s Theorem, but see [23].

Remarks

1. If ¢ is Baire, then A, is Baire, being the limit of functions ¢,(t) :=
o(n + te(n))/e(n), for n € N, which are Baire as each t — n + tp(n)
is a homeomorphism, since ¢ > 0. Similarly for measurability.

2. If A\, is continuous in (SE), then for e > 0 and t,, — ¢

lo(z + thp(x))/p(x) — Ap(t)| < e, for large enough n and x. (SSE)

I Interestingly, (G'S) implies a self-differential property:

d _ A (u)
@/\(u)\(t) +t) = AuA(t) + 1) - o)
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This strong self-equivariance condition (SSE) could be adopted in place
of (SE)), with continuity of A immediate—motive enough to study
peSE.

For A(t) =1, (SE)) differs from (SN) in requiring O(z) rather than o(z).
4. If p(x) = ax with a > 0, then ¢(z) = O(z) and we have an affine form:>

oz +to(x))/p(x) = alx + atz) /az = 1+ at = A\, (t).

©w

We now establish the significance of (GS) for Beurling regular variation.

Theorem 0. (A Characterization Theorem). For Baire/measurable p € SE the
limit function \, satisfies (GS), so is continuous, and if positive has the form
At) =1+ at.

Furthermore, a > 0 is required for A, when ¢ satisfies the order condition
o(x) = O(x). Also, up to re-scaling, there are only the two limits \,: small-
order limit A(t) = 1 and large-order limit \(t) =1 +t.

Proof. Suppose that ¢ € SE; writing y := x + up(z) and s = vA,(u) note
that

()
plo+ (ut s)p(@) _ YW+ 55atnmv®) ol +up(@) )
() ¢(y) (@)
The left-most and right-most terms tend to A, (u + s) and A, (u) respectively.
Now sp(x)/¢(z +up(x)) — s/A,(u) = v. Let & — oo to get
Ap(u+8)/Ap(u) = Ap (v),

as required. For ¢ Baire/measurable, A, is Baire/measurable and satisfies (GS)
80, by Theorem A, is continuous. By the above results of Gotab and Schinzel,
and Wolodzko (or see [3, Ch. 19 Prop.1]), we conclude that

Ap(t) =1+ at.

The condition ¢(t) = O(t) yields a > 0.
Given ¢ € WSE, re-scaling to 1(t) = ¢(t)/b with b > 0 yields

Ap(t) = i (4 biip() /0) sp(r) = i + b () o) = A (b,

ie. Agyp(bt) = Ap(t). So if A, (t) = 1+ at, taking b = 1/a yields A\, (t/a) =
14t g

Remark We note for completeness of §6 that, for A > 0 and differentiable,
differentiating (GS) w.r.t. y yields XN(y) = XN (x + yA(z)) and in particular
N (x) = N(0), whence A(z) = 1+ azx, as A(0) = 1.

2 Affine functions f : R — R are termed linear in [37, § 7.7]. This usage sits well with the
context of R as a field over Q, to which the Beurling equation seems less suited.
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Corollary. (Representation for SE) For Baire/measurable ¢ € SE with posi-
tive limit A, the function ¢(x) := @(x)/As(x) is self-neglecting and so
o(x) ~ Ap(z) / e(u)du for some continuous e with e — 0.
0
Proof. By Theorem 0, we may assume that A\, (z) = 1 + ax for some a > 0,
)

)
otherwise there is nothing to prove. So ¥ (z) = O(1), as ¢(z) = O(x). Fix
t > 0; then s, :=ty(x)/p(x) — 0. Now A\, (z)/Ap(x + tp(x)) — 1, s0

(@ + t(x) /Y(x) = p(x + s20(x)) /p(7) - Ap () /A (@ + th(x)) — Ap(0) =1.
So 1» € SN and the representation follows from a result of Bloom and Shea
(see [19]; cf. [16]). O

2. Combinatorial preliminaries

We summarize from [15] the combinatorial framework needed here: Baire and
measurable cases are handled together by working bi-topologically, using the
Euclidean topology in the Baire case (the primary case) and the density topol-
ogy in the measure case; see [10,12,13]. We work in the affine group Aff
acting on (R, +) using the notation

Yn(t) = et + 2n,

where ¢, — ¢ = ¢ > 0 and z, — 0 as n — oo, as in Theorem B below. These
are to be viewed as (self-) homeomorphisms of R under either the Euclidean
topology, or the density topology. We recall the following result from [15].

Theorem B. (Affine Two-sets Theorem) For ¢, — ¢ > 0 and z, — 0, if
c¢B C A for A, B non-negligible (measurable/Baire), then for quasi all b € B
there exists an infinite set Ml = My, C N such that

{’Ym(b) =cnb+ 2z, me M} C A.

As in [16], Theorem 1 below needs only the case ¢ = 1; however, Theorem 3
needs the case ¢ # 1.

3. Uniform convergence theorem

This section closely mirrors [16, § 4] in verifying the generalization needed here;
some care is needed to distinguish SE from SN, likewise UBE,, involving 1
as limit—from W SFE involving a general limit A\. Our convention is to write
fn = fand fp =g, (“N for numerator, D for denomintor”) and also

h:=logp hx :=log fx and hp :=log fp.
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Definition. (i) For ¢ € SE we call {u,,} with limit v a I-witness sequence at
u (for non-uniformity in fy over fp) if there are €9 > 0 and a divergent
sequence x,, — 400 with

|hn (2 4+ un@(zy)) — hp(x,)] > €0 VneN. (6)

(i) For ¢ € WSE we call {u,,} with limit v a WSE -witness sequence at u

(for non-uniformity in ¢ ) if there are €9 > 0 and a divergent sequence
T, with
|h(zy, + unp(zn)) — h(xy) — k(u)] > e VneN. (7)
We call {u,} with limit u a divergent WS E-witness sequence if also
h(zy, + upe(xy)) — h(z,) — £oo.

So this divergence gives a special type of WS E-witness sequence.

Below, uniform mear a point u means ‘uniformly on sequences converging to
uw—equivalent to local uniformity at u (on compact neighbourhoods of u).

Lemma 1. (Shift Lemma: uniformity preservation under shift)

(i) Let p € SE. For any u, convergence in (BE,) is uniform near t = 0 iff
it s uniform near t = u.

(ii) Let o € WSE with limit \,: for any u, convergence in (WSE) is uniform
near t = 0 iff it is uniform near t = u.

Proof. Since in case (i) hx (@, +up(xy,)) —hp(z,) — 0 and in case (ii) h(z, +
wo(xy,)) — h(zy,) — k(u) — 0 we argue routinely, as in [15]. O

Theorem 1 follows from the argument presented in [16, Th. 2] with mini-
mal amendments, so a sketch suffices; the detailed proof of Theorem 3 below
(responding to the presence of A in WSE) is a paradigm for the SE case here.

Theorem 1. (A-Uniform convergence theorem, A-UCT) For ¢ € SE with limit
A=A, if f, 9,9 have the Baire property (are measurable) and satisfy (BE,),
then they satisfy (UBE,).

Proof. Suppose otherwise. By Theorem A the limit A, is continuous. Now we
begin as in [16, Th. 2]; let u, be a 1-witness sequence for the non-uniformity
of f over g. For some x,, — 0o and ¢ > 0 one has (6). By the Shift Lemma (i),
we may assume that u = 0. So we will write z, for u,. As @ is self-equivarying
for any € > 0 and with K :={z, : n =0,1,2,..} (compact) for large enough n
[h(zn + 2np(xn)) — h(xn) — k(2n)| <e  VnelN

But & is continuous, so that x(z,) — log A(0) = 0, and so

n 1= (Tn + 2,0(Tn))/p(zn) — 1= A¢(0)~ (8)
Write ¥y, 1= 5 + 2n@(xy,). Then y,, = x5 (1 + zp0(2) /2,) — 00, and

hn(Y,,) — hp(2n)] = €0
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Continue verbatim as in [16], applying Theorem B to 7,(s) := c¢,s + 2, to
derive a contradiction to (6). O

As an immediate corollary we have:

Theorem 2. (Beurling and Karamata UCT) For ¢ € SN, if f, ¢ have the Baire
property (are measurable) and satisfy (BRV ), then they satisfy (BRV ) locally
uniformly.

For o(z) = x, if f has the Baire property (is measurable) and satisfies
(RV), then f satisfies

ftx)/f(x) — g(t), as x — oo locally uniformly in t. (RV)
Proof. In Theorem 1, take g = f. O

Theorem 1 invites an extension of Beurling regular variation based on
p € SE, i.e. beyond SN. That extension yields only multiplicative Karamata
regular variation—because, by Theorem 0, up to rescaling (“in ¢”), there is
only one ‘canonical’ alternative beyond SN, namely A\, (t) = 1+ ¢, occurring
e.g. for ¢(z) = x. Here one has f(z + tp(x))/f(x) = f(x(1+1t))/f(x) so the
unit shift on ¢ below is inevitable.

Theorem 1’. (Extended regular variation) For ¢ € SE if f, have the Baire
property (are measurable), A\,(t) =1 +t, and f satisfies, fort >0,

[l +te(x))/ f(x) = (1),
then v(t) = (1 +t)? for some p € R.

Proof. In Theorem 1, again with ¢ = f, (UBE,) holds. So for ~(t) :=
lim f(z + tp(x))/ f(z), writing y = x + sp(z) and noting that tp(z)/e(y) —
v:=1t/A,(s), by (UBE,) one has

fx+ (s +D)e(x))

v(s+t) =lim

f(z)
_ i JW A te(@)/eW)lely)) [z + sp(@))
) f(x)
=7(v)(s)

(as y — 0o when & — 00), or, with u for s,
Y(u+vAp(u) = y(u)y(v),
where A\, (t) = 1+ t. Putting G(t) =~(t — 1), 2 =1+ u,y := 1 4+ v, one has
G(ry) =y(u+v+uw) =y(u)y(v) = G@)G(y).

As G is Baire/measurable, G(x) = x” for some p (see [3, Ch. 3]), so v(t) =
G(l1+1t)=(1+1)r. O
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4. Stability properties of Beurling functions

There is a literature surrounding (GS) and its generalizations devoted to sta-
bility properties in the sense of Hyers-Ulam—for the general context and the
literature concerned with (GS), initiated by Ger and his collaborators, see for
example [27], cf. [28], and the more recent [20,30-32,34]. We pursue a related
agenda, but motivated by the regular variation view of the interplay between
p € WSE and A,. We begin with a rigidity property noting first a formula,
an instance of which is the doubling formula A(2t) = X (t/A(t)) A(t). We omit
the routine proof.

Lemma 2. (Internal time-change) For A satisfying (GS) the internal time-
change pu(t) := X(Bt) with 8 # 0 yields a solution to (GS). Also one has

1(t) = A(Bt) = MO (at/A(t)), with a =3 —1.
Proposition 2. (Slow time-changing) For A € SE and w(.) Baire satisfying

A
lim w =1and lim w(x)=0:=1+q, YV,

(

the time-changed function p(z) = A(z)w(z) is a solution of (GS) iff

w(t) = A (at/A(t)).
In particular, for 8 =1, we have w(t) = A(0) = 1.
Proof. Put p(x) = AMz)w(x); if p is a solution of (GS), then u(t) = pu(z +
tu(z))/pu(x). Substituting into this identity,

Az + tA(z)w(x)) wz + tA(z)w(z))
) (@) = At)w(t).

Using A(t) = Ma + tA(x))/A(z) twice, we have

Mz + (@) + tw(z) = 1] - s2simy - M@ + tA@))

wit) = Mo+ (@)
w(z + tA(z)w(x))
w(x) '
Put y := z + tA\(z) and u(z) := t(w(x) — 1)/A(t); then
A+ @A) ule + [o@R@)
Ay) w(z) 7

or

A(u(m))w(w + [fuugir)v)]k(x))

As X € SE, if w is Baire and A-slowly varying and bounded, then by A-UCT

w(z + [tw(z)]A(z))

= w(t).

— 1.
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So if w(x) — 1+ «, then u(x) — ta/A(t), and so w(t) = A (at/A(t)) .
For the converse, apply Lemma 2. O

Ezample Taking A(t) = 1 + ¢, we have w(t) =1+ at/(1 +t) and

u(t) = (1+1) <1+1O‘+tt> —(1+t)+at=1+(1+alt

Theorem 3 below enables an extension of Bloom’s Theorem (see §1 and 5)
with W SFE replacing the original ‘slow Beurling’. Analogous to the Divergence
Theorem of [15], but more subtle, an extra twist calls here for a detailed proof.
It should be borne in mind that A, below is not known to satisfy (G.S); that will
be deduced later in Th. 4. The continuity assumption at 0 seems an inevitable
‘connection’ of the two parts of the definition (2).

Theorem 3. (Divergence Theorem—DBaire/measurable) For ¢ Baire/ measur-
able in WSE with limit A\, continuous at 0: if u, with limit u is a WSE-
witness sequence to the non-uniformity of ¢ over p, then either u, is a diver-
gent witness sequence, or for some divergent sequence x,,

p(en +u,o(zn))/e(2n) = A, ().

Proof. Begin as in the proof of Theorem 2, except that here hy = hp = h =
log . Let u,, with limit u be a WS E-witness sequence to the non-uniformity
of ¢ over ¢, with limit A; for some x,, — oo and gy > 0 one has (7) with
k = log A. By the Shift Lemma (ii), we may assume that u = 0. So we will
write z, for u,. That is, with y,, 1= z,, + zn@(x,),

|h(yn) - h(l'n)| > €.

Note that y, = z,(1 + z,0(z,)/x,) is divergent. Assume the non-divergence
of {h(yn) — h(zy,)}. Consider any convergent subsequence; we show its limit is
0, by contradiction. Working down a subsequence, suppose that

Cn = @(xn +u,0(z,))/¢(x,) — c € (0,00), with ¢ # 1. (9)
As |h(yn) — h(zy,)| > €o, passing to the limit we obtain
loge >¢e9 > 0.

Choose np with 0 < 79 < %logc and let n = n/6.

Suppose now that x has the Baire property and is continuous on a co-
meagre set S—see [43, Th. 8.1] or [38, § 28]. Take Ty := S, set inductively
Tpi1 =T NT, and T_(,41) = ¢ 'T_,, NT_,, and put T := :f_oo T,.
Then ¢t € T and ¢!t € T for t € T : each T}, and so T is co-meagre. So the
restriction k|7 is continuous on 7.

By assumption there is dp > 0 such that for s € (0, dp)

[6(c™ts) — (s)] <.
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For z = {z,}, working in T, put
Vi) = {seT:|h(zn + sp(@n)) — h(zn) — £ (s) | < n},
Hi(n) =) _ Vi),

n>k

and likewise for y = {y,, }. These are Baire sets, and

T=\J, Hi ) =, Hi0). (10)

as ¢ € WSE. The increasing sequence of sets { H (1)} covers TN(0, dg). So for
some k the set H (1) N (0,d) is non-negligible. As ¢~ H{ (n) is non-negligible,
sois ¢! HE(n) N'T as well as Hf(n) N T and H{ (n) NT; by (10), for some I
the set

B = ¢ '[H{(n) N(0,80)] N HY (1)

is also non-negligible. Take A := T'NH}(n); then B C H/(n) and ¢B C A with
A, B non-negligible. Applying Theorem B of §2 to the maps v,,(s) := ¢85+ 2,
with ¢ = lim,, ¢,,, there exist b € B and an infinite set M such that

{emb+ 2z :m e M} C A= H(n),
and as bc € (0,dp)
[K(b) — K (be)| <.
That is, as B C H{(n),there is b € H/(n) and an infinite M, such that
{ym(b) == cmb+ 2 : m € My} C H(n).
In particular, for this b and m € M, with m > k,[ one has
b e Vi(n) and ym(b) € Vi (n).

As t:=cb € T and v,,(b) € T, we have by the continuity of x|T" at ¢, since
Ym (b) — ¢b, that for all m large enough

|K(t) — K (ym (b)) < 7. (11)
Fix such an m. As v,,(b) € V.Z(n),
(@ + 7, (D) () = (@m) = K (7, (0))] < - (12)

But v (b) = e¢mb + 2im = 2im + 00(Ym) /@ (Xm), sO
T + Y (0)P(Tm) = T + 2mP(Tm) + 00(Ym) = Ym + bp(Ym),
‘absorbing’ the affine shift component of 7,,(b) into y. So, by (12),
12 (Ym + bp(ym)) = P(wm) = (7, (D)) < -
But b € V}¥(n), so

1P (ym + bp(Ym)) — h(ym) — K(b))] < 7.
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Using the triangle inequality, and combining the last two inequalities with (11),
we have

1h(Ym) — h(@m)| < [h(ym + o (Ym)) — h(ym) — £(D)]
+r(b) — K(eb)| + [£(cb) — K(vm(D))]
HAoYm + te(Ym)) — h(@m) — £(Ym ()]
< 4n < no.

For large m one has logec — ny < h(ym) — h(x,) < logc + 19, so for any one
such large m we have logc — 1y < h(ym) — h(xm,) < no, that is, loge < 219
contradicting the choice of ny. Thus ¢ = 1.

Now suppose that x is measurable. Proceed as before, but now apply Luzin’s
Theorem ([43], Ch. 8) to select T' C [, 2¢] U [1,2] such that |7 N [1,2]| > 2/3
and |T'N [¢,2¢]| > 3¢/4 with £|T continuous on T'. As before, put

Vi) = {s €T :[h(xn + sp(xn)) — h(zn) =k (s)| <n},
HiE(n) =), ., Vi (),

and likewise for y = {y,}. These are measurable sets, and

=], B =, B0, (13)

since ¢ € WSE. The increasing sequence of sets {H}(n)} covers T N [c, 2¢]|.
So [(T'N e, 2¢]) N HE(n)| > 2|T N e, 2¢]|/3 for some k. So in particular Hf (n)
is non-null, and furthermore, |T'N [¢,2¢\H}(n)| < |T N [¢,2¢]|/3 < ¢/3. So
[[1,2\¢ *HE(n)| < 1/3; but |T'N[1,2]| > 2/3, so [ HE(n) N [1,2]| > 0; by
(13), for some [ the set

B = ¢ Hi (n)) N HY (n)

is also non-null. Taking A := H{(n), one has B C H{(n) and ¢B C A with
A, B non-null. From here continue as in the Baire argument. O

5. The extended Bloom dichotomy

The preceding section implies the Bloom dichotomy—that ¢ Beurling-slow
(i.e. ¢ with A, = 1) is either self-neglecting or pathological —extends to W SE:
when ¢ € WSE either ¢ € SE, or ¢ is ‘pathological’. (For other occurrences
of dichotomy in this area see [11-13].) Indeed, ¢ € W SE says merely that the
limit function A, is well-defined, but nothing about whether A, satisfies (GS').
However, if A, is continuous at the origin and ¢ has just the kind of regularity
considered in the Generalized Bloom Theorem of [15], then in fact ¢ € SE,
so that A, satisfies (GS) and takes a simple form. This brings to mind, as
an analogy, Lévy’s Continuity (or Convergence) Theorem, see [50, Ch.18], or
[29, 9.8.2], that if a sequence of characteristic functions converges pointwise
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to a limit function which is continuous at the origin, then that limit is itself
a characteristic function; the continuity assumption is critical, as Bochner’s
theorem asserts the converse: a positive-definite function A, normalized so that
A(0) = 1, and continuous at the origin is a characteristic function (cf. [48,
1.4.3)).

Theorem 4. (Bloom’s Theorem for weak self-equivariance) For ¢ € WSE with
limit function A\, continuous at 0 and p(x) = O(z), if ¢ is Baire/measurable
and has any of the following properties:

(i) ¢ has the Darbouzx property (in particular, ¢ is continuous),
(ii) @(z) has bounded range on (0,00),

(i) ¢(z)/x is bounded in (0,00),

(iv) @(z) is increasing in (0, 00),

— then ¢ € SE and so A\, s continuous.

Proof. Apply Theorem 3 and use the Darboux property as in the Beurling-
Darboux UCT of [15, Th. 4] to argue as with Bloom’s Theorem that there are
no divergent witness sequences; otherwise, proceed as in [15, Th. 3]. 0

Theorem 5. (i) For ¢ € SE, if 1) > 0 is smooth, Beurling-slow and Beurling
w-equivarying with o, then ¢ € SE and ¢ is Y-equivarying with ¥; and
likewise for SN, mutatis mutandis, so in particular:

(ii) For ¢ € SN, if ¢ > 0 is smooth and Beurling p-equivarying with o, then

€ SN.

Proof. Notice first that for any fixed u > 0, we have

@)/ () = () Pl +up(x)) - Pz + up(z)/ ¢(z) — 1,
since 1) satisfies (BSV) and v is Beurling ¢ -equivarying with . So one has
Y(xz) = O(x) in the SE case and ¢ (z) = o(x) in the SN case. Since 1) is
Beurling p-equivarying with ¢, by Theorem 1, as 1 is measurable
Y(x +up(x))/p(z) — 1, loc unif. in u.

In particular, since t[1)(x)/p(z)] — t, one has as before

Pz + () P(x) = (e + (@) e(@)]e(@))/ o(z) - p(x)/ P(z) — 1.

So v € WSE with limit A = 1. But v is continuous, so by Th. 4 ¢ € SE.
As to role reversal here, similarly to Prop. 1, both terms on the right below
tend to 1 locally uniformly in ¢ as x — oo :

oz + tp(x))/ () = px + ty(x)/e(@)]p(x)/ p() - p(x)/Y(x) — 1,
as ¢ € SE by the opening remark of the proof. O

Remark Above, if one assumed instead that ¢ € WSE with limit Ay and as
before that 1 is Beurling (p-equivarying with ¢, then for any fixed u > 0
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o) ___pl)  glatup@) oo

(@) Pl tup(x)  P@)
implying that Ay(u) is constant. From here continuing the proof as above
yields ¥ € SE with limit Ay, so that Ay =1, i.e. ¥ is Beurling-slow.

6. Continuous Beurling functions

In this section we offer a new proof that every continuous solution A of (G\S), in
particular every Beurling function, is differentiable, assuming that A\ satisfies
A(t) > 1 for arbitrarily small ¢ > 0. In fact, the latter assumption already
implies continuity (as then A > 1, so a fortiori is positive—see Prop. 4 below),
by results of Brzdegk [21] combined with [25], as noted after Theorem A (in §1)
(See also ‘Added in Proof’ at end.). Our approach is via a discrete analogue
of the obvious differentiation approach to solving (GS), using the constancy
of A)k(x). First we clarify the continuity and differentiability conditions of
Theorem 0 (for an alternative see [21, Cor. 6 and 7]).

Lemma 3. For )\ satisfying (GS), if A is continuous at some point t where
A(t) # 0, then it is continuous whenever it is non-zero. Similarly, if X is
differentiable at some point t where A(t) # 0, then it is differentiable at all
points.

Proof. From (GS) for u # 0 and fixed ¢ with A\(t) # 0 one has the ‘A*-identity’
1 A(t A(t)) — A(t
s (1 uA0) =)
A(t) At)
The linear monotonic map y(u) := t + uA(t) carries any open neighbourhood
of w = 0 to an open neighbourhood of ¢, and likewise for its inverse. The
equivalence of global continuity and continuity at « = 0 follows from this
identity (since A(0) = 1). As to differentiability, the argument is almost the
same (upon division by u # 0). O

AM(t) = —1. (AM)

The following recurrence occurs in [30, Lemma 7], [6,19].

Definition. For u > 0 and ¢ : Ry — R define the Beck ¢-sequence t,(u)
by the recurrence t,, := T (t,—1) = tn—1 + up(t,—1) with t; = 0. (Though
we do not assume ¢ to be monotone, this generalizes the Beck iteration of
y(z) =T (x) =z + ¢(z) via Ypt1(x) = 71 (7m(x)), used in bounding flows—
see [6, 1.64]; cf. [19] or BGT §2.11 and [15, § 6]). Call the Beck sequence a Bloom
partition if t,(u) diverges to 400, in which case define the Beck u-step norm
of T' (u-step distance from the origin) to be the integer n = np(u) such that

to(u) <T < tpir(w).

Our first observation is motivated by summing the differences x(t;) — k(t;—1) =

k().
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Lemma 4. (cf. [25, Lemma 7)) For A\, any solution to (GS), and t, = t,(u) its
Beck \-sequence above,

Atn) = Aw)™

Proof. From (GS) one has A(t;)/A(ti—1) = AMti—1 +uA(ti—1)) /A (ti—1) = A(u);
now take products for ¢ = 1,...,n and use A(tp) = 1. O

The following, though quite distinct, resembles a result due to Beck [6, 1.69]
and relies on (14), a formula noted also in [30, Lemma 8].

Proposition 4. (Bounding Formula) For A\, any solution of (GS), and t,, its
associated Beck sequence, defined by t, := tp—1 + uX(t,—1), with u > 0, if
A(u) # 1, then

n
b (1) = “AA(ZL)); — (Aw)" - 1) /A(uil . (14)
Suppose further that X\ is continuous and in any neighbourhood of the origin
there is u > 0 with A(u) > 1 ; then A(T") > 1 for all T > 0. Moreover, given
T,e > 0, for all small enough u > 0 with A(u) > 1 and with n = ny(u), the
Beck u-step norm of T':

(1I—e)A(uw)™ =1 A(u) —1 - AT) -1 - (14+e)A(u)™ =1 A(u) —

AMu)ntt —1 u T Alw)m =1 u

Proof. As t; —t;_1 = ul(t;_1) = uA(u)*"!, by Lemma 4, summation of the
differences over i = 1,...,n yields the result (since ¢y = 0).

Now fix T. As there are arbitrarily small v > 0 with A(u) > 1, there are
arbitrarily small v > 0 with ¢, (u) divergent, by (14), and with A(¢,(v)) > 1,
by Lemma 4. So by continuity A(T") > 1.

Fix e > 0. Again by continuity at 7', there is . > 0 such that for each ¢ with
[t — T| < 0. one has A(t) # 0 and [A(T)/A(t) — 1] < e. Consider 0 < u < d,
with A(u) > 1 and tn+1 t, < 0g; the latter is possible, since by (14) and
continuity, uA(u)” < T(A(u) — 1) + u — 0. For any such u, put n := nyp(u).
As [t (u) = T| < (55, and A(t,(u)) = A(u)™, by Lemma 4, one has

(
(1—€)A(U)" AT) < (1+e)A(w)"

(15)

(1—e)M(u)™ — < (T) 1 (1 +e)A(u)" —1
T T '
Approximating T from below and above by t, and t,+1 gives (15). O

Theorem 6. If \ is a continuous solution of (GS), with A(u) > 0 for all u > 0,
then X is differentiable (and so of form A(t) = 1+ at); in particular, this is so
if there are arbitrarily small w > 0 with A(u) > 1.

Proof. Note first that if 0 < A(u) < 1 for some u > 0, then t,(u) is monotone
increasing for such w and converges to 7 = u/(1 — A(u)) by (14). Then, by
continuity, A(7) = lim,, A\(¢,) = lim,, A(u)™ = 0, contradicting positivity. Thus
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positivity implies that A(u) > 1 for all w > 0. The latter conclusion holds also
if A(u) > 1 for arbitrarily small « > 0, by Prop. 4.

We shall now prove that (A(u) — 1) /u has a limit as u — 0, i.e. A is
differentiable at the origin and so everywhere, by Lemma 3. For the purposes
of this proof only, call a sequence wu,, nice if it is null (i.e. satisfies u, — 0),
and A(uy,) < 2 for all n. By the continuity of A at 0, any null sequence may be
assumed to be nice, and satisfy A(u,) — 1.

We claim that for every nice sequence u, the corresponding quotient
sequence (A(up) — 1) /u, is bounded. Otherwise, there is a nice sequence u,
with {(A(u,) — 1) /uy, } unbounded. Take T' = 1 and let € > 0 be arbitrary.
Choose d. as in the proof of Proposition 4. Without loss of generality suppose
that (M(u,) — 1) /u, > 2, so that, in particular, A(u,) > 1 and Proposition 4
applies to T = 1 for all n.

For m=m(n)=nr(u,), as ty(un) <T=1<tpt1(un), by (14)

Aug) —

1
Atg) < Aup)™™ <1+ < Aug)™MFL,

u7l
As {(M(un) — 1) /u, } is unbounded, so is A(u, )™+ and A(u,)™™ (as
Mun) < 2). By Lemma 4, A\(up,)™™ = Aty (un)) and At (un)) — A(1)] < 0.
for all n with u, < d. so that A(u,)™™ — A(1), a contradiction to the
unboundedness assumption.

Now we may suppose, by passing to a subsequence if necessary, that for
every nice sequence u,, the corresponding quotient sequence (A(u,)—1) /u, is
not only bounded but in fact convergent. If the limit of the quotient sequence
is 0 for each nice sequence, then \'(0) = 0, so by the A*-identity of Lemma
3, N (t) = 0 for all ¢; then \(t) is constant (and so equal to 1). If, however,
the limit of the quotients is not always zero, then fix a nice sequence u,, with
positive quotient limit p. Here again A(u,) > 1 for all n.

Next fix any 7' > 0 with A(T") > 1 (possible as otherwise X is again con-
stant). Again take m = m(n) = np(u,). Then, as in the unbounded case
above, A(t,)™™ = Xt (un)) — A(T) > 1. Then, by (15),

(MT) = 1)/T = limp oo (A1) — 1) /tn = p, ice. A(T) =1+ pT.

But this holds also in an interval around T, making A differentiable with deriv-
ative p in an interval around 7" and so everywhere, including the origin, by
Lemma 3. ]

Remark By Proposition 3, nu < t,(u) < T for n = ny(u), so u < T/n. So if
A(t) = 1 +at, then A(u)" < (1 +aT/n)" — T as u — 0, explaining why the
unbounded case in the proof above does not arise.

Added in proof The thrust of Theorem 6 above was to explain why conti-
nuity entails differentiability here; this is a matter to which we will return
elsewhere—with a recent perspective inspired by [7]—see [18]. As to our
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assumptions: (working in Ry) if f > 0, then f > 1. Indeed, otherwise,
suppose f(u) < 1 for some u > 0; then v := w/(1 — f(u)) > 0, and
0 < f(v) = flu+vf(u) = f(u)f(v), implying f(u) = 1, a contradiction.
So f(z+y) = f(x)f(y/f(z)) > f(x) for z,y > 0; so f is (weakly) increasing,
and so continuous somewhere, and hence everywhere.
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